Determination of Air Urban Heat Island Parameters with High-Precision GPS Data
Abstract
:1. Introduction
2. Study Areas and Datasets
2.1. Study Area: Hong Kong
2.2. Study Area: Tokyo, Japan
2.3. GPS and Meteorological Datasets Used in Algorithm
2.3.1. GPS Data Used to Estimate UHII
2.3.2. Meteorological Data Used for Validation
2.3.3. Data Used for Classification of Surroundings of Stations
2.3.4. Radiosonde Data Used in the Algorithm
3. Local Climate Zone Classification
3.1. Urban Stations in Hong Kong and Tokyo
3.2. Rural Stations in Hong Kong and Tokyo
4. Algorithm to Estimate Temperature from GPS Data
- GPS observation data are processed using the PPP technique to obtain the ZTD and location coordinates of the station.
- Calculation of temperature using ZTD in both urban and rural stations.
- Computation of the intensity of the UHI effect.
4.1. Step 1: Estimation of ZTD
4.2. Step 2: ZTD Based Temperature Derivation
4.2.1. Height of the Troposphere (Ztrop)
4.2.2. Pressure (P)
4.2.3. Water Vapor Pressure
4.2.4. ZTD and Environmental Variables
4.3. Step 3: GPS Based UHII Estimation
4.4. UHII Obtained with Meteorological Data
5. Results and Discussion
5.1. UHII in Hong Kong
5.2. UHII in Tokyo
5.3. Validation of the Proposed Method
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Roth, M. Urban Heat Island. In Handbook of Environmental Fluid Dynamics; Fernando, H.J.S., Ed.; Taylor & Francis Group: Abingdon, UK, 2013; Volume II, pp. 143–159. [Google Scholar]
- United Nations. World Population Prospects. 2018. Available online: https://population.un.org/wpp/ (accessed on 16 November 2021).
- Huang, K.; Li, X.; Liu, X.; Seto, K.C. Projecting global urban land expansion and heat island intensification through 2050. Environ. Res. Lett. 2019, 14, 114037. [Google Scholar] [CrossRef] [Green Version]
- Tuholske, C.; Caylor, K.; Funk, C.; Verdin, A.; Sweeney, S.; Grace, K.; Peterson, P.; Evans, T. Global urban population exposure to extreme heat. Proc. Natl. Acad. Sci. USA 2021, 118, e2024792118. [Google Scholar] [CrossRef] [PubMed]
- Khosla, R.; Jani, A.; Perera, R. Editorial: Health risks of extreme heat. BMJ 2021, 375, n2438. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, D.; Liu, L.; Liang, Z.; Shen, J.; Wei, F.; Li, S. Spatiotemporal Characteristics of the Surface Urban Heat Island and its Driving Factors Based on Local Climate Zones and Population in Beijing, China. Atmosphere 2021, 12, 1271. [Google Scholar] [CrossRef]
- Gawuc, L.; Jefimow, M.; Szymankiewicz, K.; Kuchcik, M.; Sattari, A.; Struzewska, J. Statistical Modeling of Urban Heat Island intensity in Warsaw, Poland Using Simultaneous Air and Surface Temperature Observations. IEEE J. Sel. Top. Appl. 2020, 13, 2716–2728. [Google Scholar] [CrossRef]
- Yu, K.; Rizos, C.; Burrage, D.; Dempster, A.G.; Zhang, K.; Markgraf, M. An overview of GNSS remote sensing EURASIP J. Adv. Signal Process. 2014, 2014, 134. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Penna, N.T.; Li, Z. Generation of real-time mode high-resolution water vapor fields from GPS observations. J. Geophys. Res. Atmos. 2017, 122, 2008–2025. [Google Scholar] [CrossRef]
- Campos-Arias, P.; Esquivel-Hernández, G.; Valverde-Calderón, J.F.; Rodríguez-Rosales, S.; Moya-Zamora, J.; Sánchez-Murillo, R.; Boll, J. GPS Precipitable Water Vapor Estimations over Costa Rica: A comparison against atmospheric sounding and Moderate Resolution Imaging Spectrometer (MODIS). Climate 2019, 7, 63. [Google Scholar] [CrossRef] [Green Version]
- Monico, J.F.G.; Marques, H.A.; Tsuchiya, I.; Oyama, R.T.; Queiroz, W.R.S.; Wentz, J.P. Real Time PPP Applied to Airplane Flight Tests. Bol. Cienc. Geod. 2019, 25, e2019009. [Google Scholar] [CrossRef] [Green Version]
- Shinghal, G.; Bisnath, S. Conditioning and PPP processing of smartphone GNSS measurements in realistic environments. Satell. Navig. 2021, 2, 10. [Google Scholar] [CrossRef]
- Mendez-Astudillo, J.; Lau, L.; Tang, Y.T.; Moore, T. A new Global Navigation Satellite System (GNSS) based method for urban heat island intensity monitoring. Int. J. Appl. Earth Obs. Geoinf. 2021, 94, 102222. [Google Scholar] [CrossRef]
- Statistia. Number of Smartphone Users from 2016 to 2021. Available online: https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide (accessed on 8 September 2021).
- Giridharan, R.; Ganesan, S.; Lau, S.S.Y. Daytime urban heat island effect in high-rise and high-density residential developments in Hong Kong. Energy Build. 2004, 36, 525–534. [Google Scholar] [CrossRef]
- Giridharan, R.; Lau, S.S.Y.; Ganesan, S. Nocturnal heat island effect in urban residential developments of Hong Kong. Energy Build. 2005, 37, 964–971. [Google Scholar] [CrossRef]
- Giridharan, R.; Lau, S.S.Y.; Ganesan, S.; Givoni, B. Urban design factors influencing heat island intensity in high-rise high-density environments of Hong Kong. Build Environ. 2007, 42, 3669–3684. [Google Scholar] [CrossRef]
- Fung, W.Y.; Lam, K.S.; Nichol, J.E.; Wong, M.S. Derivation of nighttime urban air temperature using a satellite thermal image. J. Appl. Meteorol. Clim. 2009, 48, 863–872. [Google Scholar] [CrossRef] [Green Version]
- Nichol, J.E.; Fung, W.Y.; Lam, K.S.; Wong, M.S. Urban heat island diagnosis using ASTER satellite images and ‘in situ’ air temperature. Atmos. Res. 2009, 94, 276–284. [Google Scholar] [CrossRef]
- Siu, L.W.; Hart, M.A. Quantifying urban heat island intensity in Hong Kong SAR, China. Environ. Monit. Assess. 2013, 185, 4383–4398. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Jeong, S.-J. Shifting the urban heat island clock in a megacity: A case study of Hong Kong. Environ. Res. Lett. 2018, 13, 014014. [Google Scholar] [CrossRef]
- Yoshikado, H.; Tsuchida, M. High levels of winter air pollution under the influence of the Urban Heat Island along the shore of Tokyo Bay. J. Appl. Meteorol. 1996, 35, 1804–1813. [Google Scholar] [CrossRef] [Green Version]
- Hirano, Y.; Fujita, T. Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo. Energy 2012, 37, 371–383. [Google Scholar] [CrossRef]
- Matsumoto, J.; Fujibe, F.; Takahashi, H. Urban climate in the Tokyo metropolitan area in Japan. J. Environ. Sci. 2017, 59, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Varquez, A.C.G.; Kanda, M. Global urban climatology: A meta-analysis of air temperature trends (1960-2009). NPJ Clim. Atmos. Sci. 2018, 1, 32. [Google Scholar] [CrossRef]
- Mendez-Astudillo, J.; Mendez-Astudillo, M. A Machine Learning Approach to Monitoring the UHI from GNSS Data. IEEE Trans. Geosci. Remote 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Japan Meteorological Agency. Surface Observation. Available online: https://www.jma.go.jp/jma/en/Activities/surf/surf.html (accessed on 2 October 2021).
- Statistics Bureau of Japan. Population and Households of Japan. Available online: http://www.stat.go.jp/english/data/kokusei/2015/final_en/final_en.html#Summary (accessed on 31 August 2021).
- HKGSS. Hong Kong Satellite Positioning Reference Station Network (SatRef). Available online: https://www.geodetic.gov.hk/en/satref/satref.htm (accessed on 10 December 2020).
- International GNSS Service. CDDIS Daily 30-Second Data. Available online: https://cddis.nasa.gov/Data_and_Derived_Products/GNSS/daily_30second_data.html (accessed on 10 December 2020).
- IGRA. Integrated Global Radiosonde Archive. Available online: https://www.ncdc.noaa.gov/data-access/weather-balloon/integrated-global-radiosonde-archive (accessed on 2 October 2021).
- Stewart, I.D.; Oke, T.R.; Krayenhoff, E.S. Evaluation of the ‘local climate zone’ scheme using temperature observations and model simulations. Int. J. Climatol. 2014, 34, 1062–1080. [Google Scholar] [CrossRef]
- Heroux, P.; Kouba, J. GPS precise point positioning using IGS orbit products. Phys. Chem. Earth Part A 2001, 26, 573–578. [Google Scholar] [CrossRef]
- Gao, Y. GNSS Solutions: Precise Point Positioning and its Challenges. Inside GNSS 2006, November–December 2016, 16–18. Available online: https://www.insidegnss.com/auto/NovDec06GNSSSolutions.pdf (accessed on 25 January 2022).
- Mendez-Astudillo, J.; Lau, L.; Tang, Y.T.; Moore, T. Analysing the Zenith Tropospheric Delay Estimates in On-line Precise Point Positioning (PPP) Services and PPP Software Packages. Sensors 2018, 18, 580. [Google Scholar] [CrossRef] [Green Version]
- Stull, R. Chapter 4. Water Vapor. In Practical Meteorology: An Algebra-Based Survey of Atmospheric Science; The University of British Columbia: Vancouver, BC, Canada, 2017; Volume 1.02b. [Google Scholar]
- Hofmann-Wellenhof, B.; Lichtenegger, H.; Wasle, E. GNSS-Global Navigation Satellite Systems GPS, GLONASS, Galielo and More; Springer: Vienna, Austria, 2008. [Google Scholar]
- Lasota, E.; Rohm, W.; Guerova, G.; Liu, C.-Y. A comparison between ray-traced GFS/WRF/ERA and GNSS Slant Path Delays in tropical cyclone Meranti. IEEE Ttans. Geosci. Remote 2020, 58, 421–435. [Google Scholar] [CrossRef]
- Mendez-Astudillo, J. Investigation into UHI Monitoring with GNSS Sensor Network. Ph.D. Thesis, University of Nottingham Ningbo China, Ningbo, China, 2020. [Google Scholar]
- Alkan, R.M.; Erol, S.; Ilci, V.; Murat Ozulu, I. Comparative analysis of real-time kinematic and PPP techniques in dynamic environment. Measurement 2020, 163, 107995. [Google Scholar] [CrossRef]
- Lachapelle, G.; Gratton, P. GNSS Precise Point Positioning with Android Smartphones and Comparison with High Performance Receivers. In Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 11–13 December 2019; pp. 1–9. [Google Scholar]
- Wang, L.; Li, Z.; Wang, N.; Wang, Z. Real-Time GNSS precise point positioning for low-cost smart devices. GPS Solut. 2021, 25, 69. [Google Scholar] [CrossRef]
- Sugimoto, S.; Sato, T.; Sasaki, T. Seasonal and diurnal variability in historical warming due to the urbanization of Hokkaido, Japan. J. Geophys. Res.-Atmos. 2015, 120, 5437–5445. [Google Scholar] [CrossRef]
Code | GNSS Data | Meteorological Data | Source | Site | Coordinates (deg) | |
---|---|---|---|---|---|---|
Hong Kong | HKKT | X | X | GEO | Kam Tim | 22.44, 114.06 |
HKPC | X | X | GEO | Peng Chau | 22.28, 114.03 | |
HKSC | X | X | GEO | Stonecutters Island | 22.32, 114.14 | |
HKSL | X | X | IGS | Siu Lang Shui | 22.37, 113.93 | |
HKWS | X | X | IGS | Wong Shek | 22.43, 114.33 | |
T430 | X | X | GEO | Fan Ling | 22.49, 114.14 | |
Tokyo | KGNI | X | IGS | Koganei | 35.71, 139.48 | |
MTKA | X | IGS | Mitaka | 35.67, 139.56 | ||
TSKB | X | IGS | Tsukuba | 36.1, 140.08 | ||
TOK | X | JMA | Chiyoda | 35.69, 139.75 | ||
HND | X | JMA | Haneda Airport | 35.53, 139.78 | ||
NER | X | JMA | Shakuji Park | 35.75, 139.59 |
HKKT (GPS + met) Kam Tim | T430 (GPS + met) Fan Ling |
---|---|
LCZ 6A | LCZ 4 |
Surrounded by vegetation, some open low-rise structures and a highway. | Surrounded by compact high-rise structures and open low high-rise structures. |
Code | Site | LCZ | Description | |
---|---|---|---|---|
Hong Kong GNSS + met | HKLT | Lam Tei | A | Surrounded by vegetation. |
HKOH | Shek O | A | Surrounded by vegetation. | |
HKPC | Peng Chau | G7 | Surrounded by sea and open low-rise. | |
HKSC | Stonecutters Island | A6 | Surrounded by vegetation and open low-rise. | |
HKSL | Siu Lang Shui | 10C | Industrial area nearby and vegetation. | |
HKSS | Tseng Tau Tsuen | BG | Surrounded by vegetation and compact low-rise, seashore nearby. | |
HKST | Fo Tan | B6 | Surrounded by vegetation and open low-rise. | |
HKWS | Wong Shek | AG | Surrounded by vegetation water body nearby. | |
Tokyo GNSS | TSKB | Tsukuba | A9 | Surrounded by vegetation and sparsely built structures. The station is 65 km away from Tokyo’s urban core. |
Tokyo met | HND | Haneda airport | E9 | Surrounded by pavement, and sparsely built structures. |
Stations | MEA [°C] | |
---|---|---|
Hong Kong | hkoh-hksl | 0.85 |
hkst-hksl | 0.74 | |
Tokyo | mtka-tskb | 0.22 |
kogn-tskb | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendez-Astudillo, J.; Lau, L.; Tang, Y.-T.; Moore, T. Determination of Air Urban Heat Island Parameters with High-Precision GPS Data. Atmosphere 2022, 13, 417. https://doi.org/10.3390/atmos13030417
Mendez-Astudillo J, Lau L, Tang Y-T, Moore T. Determination of Air Urban Heat Island Parameters with High-Precision GPS Data. Atmosphere. 2022; 13(3):417. https://doi.org/10.3390/atmos13030417
Chicago/Turabian StyleMendez-Astudillo, Jorge, Lawrence Lau, Yu-Ting Tang, and Terry Moore. 2022. "Determination of Air Urban Heat Island Parameters with High-Precision GPS Data" Atmosphere 13, no. 3: 417. https://doi.org/10.3390/atmos13030417
APA StyleMendez-Astudillo, J., Lau, L., Tang, Y. -T., & Moore, T. (2022). Determination of Air Urban Heat Island Parameters with High-Precision GPS Data. Atmosphere, 13(3), 417. https://doi.org/10.3390/atmos13030417