Low-Dose Benzene Exposure Monitoring of Oil Refinery Workers: Inhalation and Biomarkers
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Snyder, R. Benzene and leukemia. Crit. Rev. Toxicol. 2002, 32, 155–210. [Google Scholar] [CrossRef] [PubMed]
- Bleasdale, C.; Kennedy, G.; MacGregor, J.O.; Nieschalk, J.; Pearce, K.; Watson, W.P.; Golding, B.T. Chemistry of muconaldehydes of possible relevance to the toxicology of benzene. Environ. Health Perspect. 1996, 104, 1201–1209. [Google Scholar] [PubMed] [Green Version]
- Commission Directive 2000/39/EC of 8 June 2000. Official Journal of the European Communiti, L 142/47 16.6.2000. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32000L0039&from=EN (accessed on 8 January 2020).
- Aprea, M.C.; Scapellato, M.L.; Valsania, M.C.; Perico, A.; Perbellini, L.; Ricossa, M.C.; Pradella, M.; Negri, S.; Iavicoli, I.; Lovreglio, P.; et al. Methodology to define biological reference values in the environmental and occupational fields: The contribution of the Italian Society for Reference Values (SIVR). Med. Lav. 2017, 108, 138–148. [Google Scholar] [PubMed]
- Fustinoni, S.; Rossella, F.; Polledri, E.; Bollati, V.; Campo, L.; Byun, H.-M.; Agnello, L.; Consonni, D.; Pesatori, A.; Baccarelli, A.; et al. Global DNA methylation and low-level exposure to benzene. Med. Lav. 2012, 103, 84–95. [Google Scholar]
- Inoue, O.; Seiji, K.; Nakatsuka, H.; Watanabe, T.; Yin, S.N.; Li, G.L.; Cai, S.X.; Jin, C.; Ikeda, M. Urinary t, t muconic acid as an indicator of exposure to benzene. Br. J. Ind. Med. 1989, 46, 122–127. [Google Scholar] [CrossRef]
- Kim, S.; Vermeulen, R.; Waidyanatha, S.; Johnson, B.A.; Lan, Q.; Rothman, N.; Smith, M.T.; Zhang, L.; Li, G.; Shen, M.; et al. Using urinary biomarkers to elucidate dose-related patterns of human benzene metabolism. Carcinogenesis 2006, 27, 772–781. [Google Scholar] [CrossRef]
- Renner, T.; Baer-Koetzle, M.; Scherer, G. Determination of sorbic acid in urine by gas chromatography–mass spectrometry. J. Chromatogr. A 1999, 847, 127–133. [Google Scholar] [CrossRef]
- Verger, P.; Chambolle, M.; Babayou, P.; Le Breton, S.; Volatier, J. Estimation of the distribution of the maximum theoretical intake for ten additives in France. Food Addit. Contam. 1998, 15, 759–766. [Google Scholar] [CrossRef]
- Tfouni, S.A.V.; Toledo, M.C.F. Estimates of the mean per capita daily intake of benzoic and sorbic acids in Brazil. Food Addit. Contam. 2002, 19, 647–654. [Google Scholar] [CrossRef]
- Ruppert, T.; Scherer, G.; Tricker, A.R.; Adlkofer, F. trans, trans-Muconic acid as a biomarker of non-occupational environmental exposure to benzene. Int. Arch. Occup. Environ. Health 1997, 69, 247–251. [Google Scholar] [CrossRef]
- Hoet, P.; De Smedt, E.; Ferrari, M.; Imbriani, M.; Maestri, L.; Negri, S.; De Wilde, P.; Lison, D.; Haufroid, H. Evaluation of urinary biomarkers of exposure to benzene: Correlation with blood benzene and influence of confounding factors. Int. Arch. Occup. Environ. Health 2009, 82, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Melikian, A.A.; Qu, Q.; Shore, R.; Li, G.; Li, H.; Jin, X.; Cohen, B.; Chen, L.; Li, Y.; Yin, S.; et al. Personal exposure to different levels of benzene and its relationships to the urinary metabolites S-phenylmercapturic acid and trans, trans-muconic acid. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002, 778, 211–221. [Google Scholar] [CrossRef]
- Carrieri, M.; Bartolucci, G.B.; Scapellato, M.L.; Spatari, G.; Sapienza, D.; Soleo, L.; Lovreglio, P.; Tranfo, G.; Manno, M.; Trevisan, A. Influence of glutathione S-transferases polymorphisms on biological monitoring of exposure to low doses of benzene. Toxicol. Lett. 2012, 213, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Manini, P.; De Palma, G.; Andreoli, R.; Mozzoni, P.; Poli, D.; Goldoni, M.; Petyx, M.; Apostoli, P.; Mutti, A. Occupational exposure to low levels of benzene: Biomarkers of exposure and nucleic acid oxidation and their modulation by polymorphic xenobiotic metabolizing enzymes. Toxicol. Lett. 2010, 193, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Frigerio, G.; Mercadante, R.; Polledri, E.; Missineo, P.; Campo, L.; Fustinoni, S. An LC-MS/MS method to profile urinary mercapturic acids, metabolites of electrophilic intermediates of occupational and environmental toxicants. J. Chromatogr. B 2019, 1117, 66–67. [Google Scholar] [CrossRef]
- Marrubini, G.; Dugheri, S.; Pacenti, M.; Coccini, T.; Arcangeli, G.; Cupelli, V.; Manzo, L. Determination of S-phenylmercapturic acid by GC-MS and ELISA: A comparison of the two methods. Biomarkers 2005, 10, 238–251. [Google Scholar] [CrossRef]
- Ong, C.N.; Kok, P.W.; Ong, H.Y.; Shi, C.Y.; Lee, B.L.; Phoon, W.H.; Tan, K.T. Biomarkers of exposure to low concentrations of benzene: A Weld assessment. Occup. Environ. Med. 1996, 53, 328–333. [Google Scholar] [CrossRef] [Green Version]
- Polzin, G.M.; Kosa-Maines, R.E.; Ashley, D.L.; Watson, C.H. Analysis of volatile organic compounds in mainstream cigarette smoke. Environ. Sci. Tecnol. 2007, 41, 1297–1302. [Google Scholar] [CrossRef]
- Petersen, G.O.; Leite, C.E.; Chatkin, J.M.; Thiesen, F. Cotinine as a biomarker of tobacco exposure: Development of a HPLC method and comparison of matrices. J. Sep. Sci. 2010, 33, 516–521. [Google Scholar] [CrossRef]
- Williams, P.R.; Paustenbach, D.J. Reconstruction of benzene exposure for the Pliofilm cohort (1936–1976) using Monte Carlo techniques. J. Toxicol. Environ. Health A 2003, 66, 677–678. [Google Scholar] [CrossRef]
- Lovreglio, P.; Barbierato, M.; Crociata, F.; Tomao, E.; Diomede, L.; Gallo, E.; Scaramuzzo, P.; Drago, I.; Paganelli, M.; Apostoli, P.; et al. Biological monitoring of exposure to polycyclic aromatic hydrocarbons and to metallic elements in Italian Navy workers operating near the industrial area in Taranto (South Italy). Med. Lav. 2018, 110, 339–362. [Google Scholar] [PubMed]
- European Society of Anesthesiology. The Helsinki Declaration on Patient Safety in Anaesthesiology, WMA 2010. Available online: https://www.esahq.org/patient-safety/patient-safety/helsinki-declaration (accessed on 12 December 2019).
- Fustinoni, S.; Rossella, F.; Campo, L.; Mercadante, R.; Bertazzi, P.A. Urinary BTEX, MTBE and naphthalene as biomarkers to gain environmental exposure profiles of the general population. Sci. Total Environ. 2010, 408, 2840–2849. [Google Scholar] [CrossRef] [PubMed]
- Dugheri, S.; Mucci, N.; Cappelli, G.; Bonari, A.; Campagna, M.; Arcangeli, G.; Bartolucci, G. New fully automated gas chromatographic analysis of urinary S-phenylmercapturic acid in isotopic dilution using negative chemical ionization with isobutane as reagent gas. J. Mass Spectrom. 2019, 55, e4481. [Google Scholar] [CrossRef] [PubMed]
- Dugheri, S.; Bonari, A.; Gentili, M.; Cappelli, G.; Pompilio, I.; Bossi, C.; Arcangeli, G.; Campagna, M.; Mucci, N. High-Throughput Analysis of Selected Urinary Hydroxy Polycyclic Aromatic Hydrocarbons by an Innovative Automated Solid-Phase Microextraction. Molecules 2018, 23, 1869. [Google Scholar] [CrossRef] [Green Version]
- Paci, E.; Pigini, D.; Cialdella, A.M.; Faranda, P.; Tranfo, G. Determination of free and total S-phenylmercapturic acid by HPLC/MS/MS in the biological monitoring of benzene exposure. Biomarkers 2007, 12, 111–122. [Google Scholar] [CrossRef]
- Pacenti, M.; Dugheri, S.; Traldi, P.; Degli Esposti, F.; Perchiazzi, N.; Franchi, E.; Calamante, M.; Kikic, I.; Alessi, P.; Bonacchi, A.; et al. New Automated and High-Throughput Quantitative Analysis of Urinary Ketones by Multifiber Exchange-Solid Phase Microextraction Coupled to Fast Gas Chromatography/Negative Chemical-Electron Ionization/Mass Spectrometry. J. Autom. Methods Manag. Chem. 2010, 2010, 972926. [Google Scholar] [CrossRef] [Green Version]
- Pacenti, M.; Dugheri, S.; Villanelli, F.; Bartolucci, G.; Calamai, L.; Boccalon, P.; Arcangeli, G.; Vecchione, F.; Alessi, P.; Kikic, I.; et al. Determination of organic acid in urine by solid-phase microextraction and gas chromatography-ion trap tandem mass spectrometry previous “in sample” derivatization with trimethyloxonium tetrafluoroborate. Biomed. Chromatogr. 2008, 22, 1155–1163. [Google Scholar] [CrossRef]
- Pharmaceutical Quality/CMC. Analytical Procedures and Methods Validation for Drugs and Biologics. Guidance for Industry. Available online: https://www.fda.gov/files/drugs/published/Analytical-Procedures-and-Methods-Validation-for-Drugs-and-Biologics.pdf (accessed on 12 January 2020).
- Cocker, J.; Mason, H.J.; Warren, N.D.; Cotton, R.J. Creatinine adjustment of biological monitoring results. Occup. Med. 2011, 61, 349–353. [Google Scholar] [CrossRef] [Green Version]
- ACGIH. TLVs and BEIs Based on the Documentation of the Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices; ACGIH: Cincinnati, OH, USA, 2019. [Google Scholar]
- Carrieri, M.; Spatari, G.; Tranfo, G.; Sapienza, D.; Scapellato, M.L.; Bartolucci, G.B.; Manno, M. Biological monitoring of low-level exposure to benzene in an oil refinery: Effect of modulating factors. Toxicol. Lett. 2018, 298, 70–75. [Google Scholar] [CrossRef]
- Pizzella, G.; Macrì, S.; Gregio, M.; Zamengo, L.; Barbiero, N.; Orrù, G. Ridurre l’esposizione cutanea: l’uso corretto dei DPI. In Proceedings of the 17th Conference Associazione Italiana degli Igienisti Industriali, Corvara, Italy, 25 March 2011. [Google Scholar]
- van Wendel de Joode, B.; Tielemans, E.; Vermeulen, R.; Wegh, H.; Kromhout, H. Dermal exposure assessment to benzene and toluene using charcoal cloth pads. J. Expo. Sci. Environ. Epidemiol. 2005, 15, 47–50. [Google Scholar] [CrossRef]
- Jalai, A.; Ramezani, Z.; Ebrahim, K. Urinary trans, trans-muconic acid is not a reliable biomarker for low-level environmental and occupational benzene exposures. Saf. Health Work 2017, 8, 220–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marrubini, G.; Coccini, T.; Maestri, L.; Manzo, L. Effect of sorbic acid administration on urinary trans, trans-muconic acid excretion in rats exposed to low levels of benzene. Food Chem. Toxicol. 2002, 40, 1799–1806. [Google Scholar] [CrossRef]
- Sanguinetti, G.; Accorsi, A.; Barbieri, A.; Raffi, G.B.; Violante, F.S. Failure of urinary trans, trans-muconic acid as a biomarker for indoor environmental benzene exposure at PPB levels. J. Toxicol. Environ. Health A 2001, 63, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Carrieri, M.; Tranfo, G.; Pigini, D.; Paci, E.; Salamon, F.; Scapellato, M.L.; Fracasso, M.E.; Manno, M.; Bartolucci, G.B. Correlation between environmental and biological monitoring of exposure to benzene in petrochemical industry operators. Toxicol. Lett. 2010, 192, 17–21. [Google Scholar] [CrossRef]
- Locatelli, M.; Tartaglia, A.; Piccolantonio, S.; Di Iorio, L.A.; Sperandio, E.; Ulusoy, H.I.; Furton, K.G.; Kabir, A. Innovative configurations of sample preparation techniques applied in bioanalytical chemistry: A review. Curr. Anal. Chem. 2019, 15, 731–744. [Google Scholar] [CrossRef]
Monitoring Type | Analytes | Injection | Instrument | Autosampler | Column | Oven Temperature (GC)/Gradient (LC) |
---|---|---|---|---|---|---|
Air Monitoring | Benzene n-hexane Toluene Fluorotoluene | 0.3 µL split/splitless 30:1 Merlin Microseal 280 °C | Shimadzu QP2010 Single quadrupole GC-MS | AOC-5000 Plus with Multi Tools Exchange | Varian Factor FOUR VF-5 MS, 60 m, with a 0.25 mm internal diameter, and 1.0 µm film thickness | 1 min @ 45 °C rate of 10 °C/min to 320 °C 8 min @ 320 °C |
Biological Monitoring | U-B | HS SPME- split/splitless 20:1 Merlin Microseal 290 °C | Shimadzu QP2010 Single quadrupole GC-MS | AOC-5000 Plus and MFX | Varian Factor FOUR VF-5 MS, 30 m × 0.25 mm, film thickness 0.25 mm, with a 10 m EZ-GUARD | 1 min @ 45 °C rate of 10 °C/min to 320 °C 2 min @ 320 °C |
SPMA | DI SPME split/splitless 20:1 Merlin Microseal 290 °C | Varian 3900/MS 320 triple quadrupole (TQ) GC-MS/MS | Flex x,y,z autosampler and MFX | Varian Factor FOUR VF-5 MS with a 10 m EZ-GUARD | 1 min @ 45 °C rate of 10 °C/min to 320 °C 2 min @ 320 °C | |
2,5-HD | HS SPME split/splitless 20:1 Merlin Microseal 250 °C | Varian CP 3800/Saturn 2200 Ion Trap | CTC CombiPAL and MFX | Varian Factor FOUR VF-5MS with a 10 m EZ-GUARD | 1 min @ 50 °C rate of 10 °C/min to 250 °C 6 min @ 250 °C | |
t,t-SA | HS SPME split/splitless 20:1 Merlin Microseal 280 °C | GC-MS on a Varian CP3800/Saturn 2200 Ion Trap detector | CTC CombiPAL and MFX | Varian Factor FOUR VF-5 MS with 10 m EZ-GUARD | 1 min @ 50 °C rate of 10 °C/min to 250 °C 6 min @ 250 °C | |
t,t-MA | 10 μL–on-line SPE | Alliance e2695 LC Selector Valve–Quattro Micro API TQ-MS | Atlantis T3, 3-μm particles, 2.1-mm internal diameter, 100-mm column length | 0.3 mL/min flow @ 25 °C A: 0.1% formic acid solution B: 0.1% formic acid in 60:40 acetonitrile:methanol 0.0–2.0 min, 5% B; 2.1–17 min, 85% B; 17.1–20.5 min, 95% B | ||
U-Cotinine | 10 μL–on-line SPE | Alliance e2695 LC Selector Valve–Quattro Micro API TQ-MS | Atlantis T3, 3-μm particles, 2.1-mm internal diameter, 100-mm column length | 0.3 mL/min flow @ 25 °C A: 0.1% formic acid solution B: 0.1% formic acid in 60:40 acetonitrile:methanol 0.0–2.0 min, 5% B; 2.1–17 min, 85% B; 17.1–20.5 min, 95% B |
Monitoring Type | Analytes | Internal Standard (I.S.) | Acquisition Mode | m/z | Calibration Standards Concentrations |
---|---|---|---|---|---|
Air Monitoring | Benzene n-hexane Toluene | Fluorotoluene | EI scan mode | 78 57 91 109 (I.S.) | 1.25–2.5–5–10–20–40 ng/tube |
Biological Monitoring | U-B | Fluorotoluene | SIM mode | 78 109 (I.S.) | 125–250–500–1000–2000 ng/L |
SPMA | 13C6-SPMA | Negative CI–Multiple Reaction Monitoring (MRM)–Q1 > Q3 mode | SPMA derivative 238 > 108.8 13C6-SPMA derivative 244 > 115 (I.S.) | 0.625–1-25–2-5–5–10 ng/mL | |
2,5-HD | Cyclohexanone | EI scan mode | 2,5-HD/bis-PFB-oxime 292, 181, 323, 504 276 (I.S.) | 10–20–40–80–160 ng/mL | |
t,t-SA | CPC | EI scan mode | 111, 67, 95, 126 87 (I.S.) | 62.5–125–250–500–1000 ng/mL | |
t,t-MA | cis,cis-2,5-dimethylmuconic acid | Multiple Reaction Monitoring (MRM)–Q1 > Q3 mode | 141.018 > 52.77 141.018 > 96.89 169.149 > 125.039 (I.S.) | 62.5–125–250–500–1000 ng/mL | |
U-Cotinine | Daunorubicin | Multiple Reaction Monitoring (MRM)–Q1 > Q3 mode | 177.093 > 79.861 528.256 > 321.124 (I.S.) | 10–50–250–2500 ng/mL |
Monitoring Type | Calibration Curve Parameters Response Factor Plot | ||||||
---|---|---|---|---|---|---|---|
Analyte | m = Slope b = Intercept | Correlation Coefficient (R) | Standard Error | LOD (LOQ) | Within Session Accuracy (%) | Within Session Repeatability (Intersession Repeatability) (%) | |
Personal air samplings | Benzene | m = 3.16 b = 0.124 | 0.99 | 0.034 | 0.15 (0.5) µg/m3 * | 6% | 8 (7)% |
n-hexane | m = 6.33 b = 0.221 | 0.98 | 0.032 | 0.12 (0.4) µg/m3 * | 7% | 8 (9)% | |
Biomonitoring | U-B | m = 1.12 b = 0.362 | 0.99 | 0.43 | 2.1 (7.1) ng/L | 10% | 10 (9)% |
t,t-SA | m = 2.75 b = 0.78 | 0.98 | 1.45 | 2.4 (8.1) µg/L | 8% | 5 (5)% | |
U-C | m = 2.62 b = 1.01 | 0.98 | 0.98 | 2.3 (7.6) µg/L | 8% | 5 (5)% | |
t,t-MA | m = 6.37 b = 1.04 | 0.99 | 1.89 | 1.4 (4.6) µg/L | 10% | 9 (11)% | |
SPMA | m = 610.01 b = 2.1 | 0.98 | 0.95 | 0.28 (0.1) µg/L | 6% | 7 (7)% | |
2,5-HD | m = 28.20 b = 0.11 | 0.99 | 1.29 | 0.15 (0.5) µg/L | 5% | 4 (5)% |
Toluene (µg/m3) | n-Hexane (µg/m3) | 2,5-HD (ng/L) | Benzene (µg/m3) | U-B (ng/L) | t,t-MA (µg/g crea) | SPMA (µg/g crea) | Living Area | |
---|---|---|---|---|---|---|---|---|
TLV-TWA ACGIH (1) ECHA-UE (2) | 72,000 (2) | 1600 (1) 160 (2) | ||||||
BEI ACGIH 2021 | 500 | 500 | 25 | |||||
LISTA SIVR 2005 (3), 2017 (4) | <15–4615 (4) | 15–165 (4) | <0.05–35 (4) | |||||
Reference Value Fustinoni, S. et al. (5) | 5 (5) | |||||||
Sample | ||||||||
1 | 43.4 | 9.0 | 10.8 | 3.9 | 74 | 27.1 | 0.45 | urban |
2 | 0.4 | <0.5 | 2.1 | 2.9 | 48 | <10 | 1.48 | suburban |
3 | 140.3 | 3.2 | 16.1 | 2.2 | 46 | 30.6 | 0.42 | urban |
4 | 7.3 | 0.9 | 4.3 | 1.3 | 58 | 36.2 | 0.19 | urban |
5 | 893.7 | 37.5 | 4.4 | 83.5 | 4893 | 79.4 | 3.96 | urban |
6 | 1.1 | 0.9 | 3.2 | 0.9 | 22 | <10 | 0.88 | suburban |
7 | 16.5 | 10.1 | 4.3 | 2.8 | 149 | 35.6 | 1.24 | urban |
8 | 1.7 | 1.2 | 1.0 | 1.3 | 91 | 5.2 | 0.04 | suburban |
9 | 1.4 | 0.8 | 1.4 | 1.2 | 68 | 16.6 | 0.10 | suburban |
10 | 1.4 | 1.4 | 1.3 | 1.4 | 39 | 44.7 | 0.11 | urban |
11 | 1.6 | 1.2 | 3.0 | 1.4 | 58 | 73.3 | 0.13 | urban |
12 | 2.2 | 1.3 | 2.9 | 1.7 | 21 | <10 | 0.84 | urban |
13 | 0.9 | 0.9 | 1.0 | 1.3 | 49 | 24.7 | 0.06 | urban |
14 | 4.8 | 0.7 | 4.9 | 3.1 | 23 | 22.0 | 0.64 | urban |
15 | 3.2 | 0.9 | 1.0 | 1.4 | 52 | 72.2 | 0.09 | urban |
16 | 301.4 | 10.5 | 3.3 | 77.1 | 512 | 31.0 | 2.64 | urban |
17 | 156.7 | 42.4 | 0.8 | 2.2 | 67 | 14.2 | 0.06 | urban |
18 | 13.7 | 1.7 | 1.4 | 1.3 | 21 | 46.3 | 0.18 | urban |
19 | 9.4 | 1.6 | 2.4 | 1.1 | 18 | <10 | <0.05 | suburban |
20 | 274.5 | 21.4 | 3.8 | 2.1 | 42 | 26.4 | 0.06 | urban |
Median | 6.05 | 1.4 | 2.9 | 1.55 | 50.5 | 30.8 | 0.18 | |
Range | 0.4–893.7 | 0.25–42.4 | 0.8–16.1 | 0.9–83.5 | 18.0–4893.0 | 5.0–79.4 | 0.025–3.96 |
Benzene (µg/m3) | U-B (ng/L) | ||
---|---|---|---|
U-B (ng/L) | PC | 0.820 * | - |
Significance (two-tailed) | 0.000 | - | |
t,t-MA (µg/g crea) | PC | 0.465 ** | 0.440 |
Significance (two-tailed) | 0.039 | 0.052 | |
SPMA (µg/g crea) | PC | 0.812 * | 0.795 * |
Significance (two-tailed) | 0.000 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dugheri, S.; Pizzella, G.; Mucci, N.; Bonari, A.; Cappelli, G.; Santillo, M.; Rainaldi, I.; Pompilio, I.; Carrara, M.; Rapisarda, V.; et al. Low-Dose Benzene Exposure Monitoring of Oil Refinery Workers: Inhalation and Biomarkers. Atmosphere 2022, 13, 450. https://doi.org/10.3390/atmos13030450
Dugheri S, Pizzella G, Mucci N, Bonari A, Cappelli G, Santillo M, Rainaldi I, Pompilio I, Carrara M, Rapisarda V, et al. Low-Dose Benzene Exposure Monitoring of Oil Refinery Workers: Inhalation and Biomarkers. Atmosphere. 2022; 13(3):450. https://doi.org/10.3390/atmos13030450
Chicago/Turabian StyleDugheri, Stefano, Giulia Pizzella, Nicola Mucci, Alessandro Bonari, Giovanni Cappelli, Mario Santillo, Iacopo Rainaldi, Ilenia Pompilio, Maria Carrara, Venerando Rapisarda, and et al. 2022. "Low-Dose Benzene Exposure Monitoring of Oil Refinery Workers: Inhalation and Biomarkers" Atmosphere 13, no. 3: 450. https://doi.org/10.3390/atmos13030450
APA StyleDugheri, S., Pizzella, G., Mucci, N., Bonari, A., Cappelli, G., Santillo, M., Rainaldi, I., Pompilio, I., Carrara, M., Rapisarda, V., De Sio, S., & Arcangeli, G. (2022). Low-Dose Benzene Exposure Monitoring of Oil Refinery Workers: Inhalation and Biomarkers. Atmosphere, 13(3), 450. https://doi.org/10.3390/atmos13030450