Quantification of SO2 Emission Variations and the Corresponding Prediction Improvements Made by Assimilating Ground-Based Observations
Abstract
:1. Introduction
2. Methodology
2.1. The Priori Inventory and Observation Data
2.2. CUACE-4DVar Time-Resolved Emission Inversion System
2.3. Model Setup and Experiments Design
3. Results and Discussion
3.1. Spatial Distribution of the MEIC and Optimized SO2 Emissions
3.2. Variation of SO2 Emission Due to the Lockdown
3.3. Surface SO2 and Sulfate Concentration Changes Due to the Lockdown
3.4. Simulation Improvement of the Optimized SO2 Emission Inventory
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, J.J.; Cui, L. Current Status, Characteristics and Causes of Particulate Air Pollution in the Fenwei Plain, China: A Review. J. Geophys. Res. Atmos. 2021, 126, e2020JD034472. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Mao, F.; Hong, J.; Zang, L.; Chen, J.; Zhang, Y.; Gan, Y.; Gong, W.; Xu, H. Improving PM2.5 predictions during COVID-19 lockdown by assimilating multi-source observations and adjusting emissions. Environ. Pollut. 2022, 297, 118783. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Hou, L.; Liu, B.; Zhang, Y.; Song, C.; Shi, Z.; Hopke, P.K.; Feng, Y. Spring Festival and COVID-19 Lockdown: Disentangling PM Sources in Major Chinese Cities. Geophys. Res. Lett. 2021, 48, e2021GL093403. [Google Scholar] [CrossRef] [PubMed]
- Dai, T.; Cheng, Y.; Goto, D.; Li, Y.; Tang, X.; Shi, G.; Nakajima, T. Revealing the sulfur dioxide emission reductions in China by assimilating surface observations in WRF-Chem. Atmos. Chem. Phys. 2021, 21, 4357–4379. [Google Scholar] [CrossRef]
- Doumbia, T.; Granier, C.; Elguindi, N.; Bouarar, I.; Darras, S.; Brasseur, G.; Gaubert, B.; Liu, Y.; Shi, X.; Stavrakou, T.; et al. Changes in global air pollutant emissions during the COVID-19 pandemic: A dataset for atmospheric modeling. Earth Syst. Sci. Data 2021, 13, 4191–4206. [Google Scholar] [CrossRef]
- Fan, C.; Li, Y.; Guang, J.; Li, Z.; Elnashar, A.; Allam, M.; de Leeuw, G. The Impact of the Control Measures during the COVID-19 Outbreak on Air Pollution in China. Remote Sens. 2020, 12, 1613. [Google Scholar] [CrossRef]
- Feng, S.; Jiang, F.; Wang, H.; Wang, H.; Ju, W.; Shen, Y.; Zheng, Y.; Wu, Z.; Ding, A. NOx Emission Changes Over China During the COVID-19 Epidemic Inferred from Surface NO2 Observations. Geophys. Res. Lett. 2020, 47, e2020GL090080. [Google Scholar] [CrossRef]
- Feng, S.; Jiang, F.; Wu, Z.; Wang, H.; Ju, W.; Wang, H. CO Emissions Inferred from Surface CO Observations Over China in December 2013 and 2017. J. Geophys. Res. Atmos. 2020, 125, e2019JD031808. [Google Scholar] [CrossRef]
- Gaubert, B.; Bouarar, I.; Doumbia, T.; Liu, Y.; Stavrakou, T.; Deroubaix, A.; Darras, S.; Elguindi, N.; Granier, C.; Lacey, F.; et al. Global Changes in Secondary Atmospheric Pollutants During the 2020 COVID-19 Pandemic. J. Geophys. Res. Atmos. 2021, 126, e2020JD034213. [Google Scholar] [CrossRef]
- Ghahremanloo, M.; Lops, Y.; Choi, Y.; Mousavinezhad, S. Impact of the COVID-19 outbreak on air pollution levels in East Asia. Sci. Total Environ. 2021, 754, 142226. [Google Scholar] [CrossRef] [PubMed]
- Granier, C.; Bessagnet, B.; Bond, T.; D’Angiola, A.; van Der Gon, H.D.; Frost, G.J.; Heil, A.; Kaiser, J.W.; Kinne, S.; Klimont, Z. Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Clim. Change 2011, 109, 163–190. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Guerrette, J.J.; Henze, D.K. Four-dimensional variational inversion of black carbon emissions during ARCTAS-CARB with WRFDA-Chem. Atmos. Chem. Phys. 2017, 17, 7605–7633. [Google Scholar] [CrossRef] [Green Version]
- Hakami, A.; Henze, D.K.; Seinfeld, J.H.; Singh, K.; Sandu, A.; Kim, S.; Byun, D.; Li, Q. The adjoint of CMAQ. Environ. Sci. Technol. 2007, 41, 7807–7817. [Google Scholar] [CrossRef]
- Hansen, P.C. Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1998. [Google Scholar]
- Heald, C.L.; Jacob, D.J.; Jones, D.B.A.; Palmer, P.I.; Logan, J.A.; Streets, D.G.; Sachse, G.W.; Gille, J.C.; Hoffman, R.N.; Nehrkorn, T. Comparative inverse analysis of satellite (MOPITT) and aircraft (TRACE-P) observations to estimate Asian sources of carbon monoxide. J. Geophys. Res. Atmos. 2004, 109, D23306. [Google Scholar] [CrossRef] [Green Version]
- Henze, D.K.; Seinfeld, J.H.; Shindell, D.T. Inverse modeling and mapping US air quality influences of inorganic PM2.5 precursor emissions using the adjoint of GEOS-Chem. Atmos. Chem. Phys. 2009, 9, 5877–5903. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Ding, A.; Gao, J.; Zheng, B.; Zhou, D.; Qi, X.; Tang, R.; Wang, J.; Ren, C.; Nie, W.; et al. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. Natl. Sci. Rev. 2020, 8, 1–9. [Google Scholar] [CrossRef]
- Jia, M.; Evangeliou, N.; Eckhardt, S.; Huang, X.; Gao, J.; Ding, A.; Stohl, A. Black Carbon Emission Reduction Due to COVID-19 Lockdown in China. Geophys. Res. Lett. 2021, 48, e2021GL093243. [Google Scholar] [CrossRef]
- Kong, L.; Tang, X.; Zhu, J.; Wang, Z.; Pan, Y.; Wu, H.; Wu, L.; Wu, Q.; He, Y.; Tian, S. Improved inversion of monthly ammonia emissions in China based on the Chinese ammonia monitoring network and ensemble Kalman filter. Environ. Sci. Technol. 2019, 53, 12529–12538. [Google Scholar] [CrossRef] [PubMed]
- Kopacz, M.; Jacob, D.J.; Henze, D.K.; Heald, C.L.; Streets, D.G.; Zhang, Q. Comparison of adjoint and analytical Bayesian inversion methods for constraining Asian sources of carbon monoxide using satellite (MOPITT) measurements of CO columns. J. Geophys. Res. 2009, 114, D04305. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Klimont, Z.; Zhang, Q.; Martin, R.V.; Zheng, B.; Heyes, C.; Cofala, J.; Zhang, Y.; He, K. Comparison and evaluation of anthropogenic emissions of SO2 and NOx over China. Atmos. Chem. Phys. 2018, 18, 3433–3456. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wang, T.; Xie, M.; Li, S.; Zhuang, B.; Fu, Q.; Zhao, M.; Wu, H.; Liu, J.; Saikawa, E.; et al. Drivers for the poor air quality conditions in North China Plain during the COVID-19 outbreak. Atmos. Environ. 2021, 246, 118103. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, Q.; Kurokawa, J.-i.; Woo, J.-H.; He, K.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D.G.; Carmichael, G.R.; et al. MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 2017, 17, 935–963. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Mei, X.; Wei, L.; Han, X.; Zhang, M.; Jing, Y. Study on the contribution of transport to PM2. 5 in typical regions of China using the regional air quality model RAMS-CMAQ. Atmos. Environ. 2019, 214, 116856. [Google Scholar] [CrossRef]
- Li, R.; Zhao, Y.; Fu, H.; Chen, J.; Peng, M.; Wang, C. Substantial changes in gaseous pollutants and chemical compositions in fine particles in the North China Plain during the COVID-19 lockdown period: Anthropogenic vs. meteorological influences. Atmos. Chem. Phys. 2021, 21, 8677–8692. [Google Scholar] [CrossRef]
- Li, Z.; Yu, S.; Li, M.; Chen, X.; Zhang, Y.; Li, J.; Jiang, Y.; Liu, W.; Li, P.; Lichtfouse, E. Non-stop industries were the main source of air pollution during the 2020 coronavirus lockdown in the North China Plain. Environ. Chem. Lett. 2021, 20, 59–69. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Farley, R.D.; Orville, H.D. Bulk Parameterization of the Snow Field in a Cloud Model. J. Clim. Appl. Meteorol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef] [Green Version]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Mo, J.; Gong, S.; Zhang, L.; He, J.; Lu, S.; Zhou, Y.; Ke, H.; Zhang, H. Impacts of long-range transports from Central and South Asia on winter surface PM2.5 concentrations in China. Sci. Total Environ. 2021, 777, 146243. [Google Scholar] [CrossRef]
- Myllyvirta, L. Analysis: Coronavirus Temporarily Reduced China’s CO2 Emissions by a Quarter. 2020. Available online: https://www.carbonbrief.org/analysis-coronavirus-has-temporarily-reduced-chinas-co2-emissions-by-a-quarter (accessed on 3 February 2022).
- Qu, Z.; Henze, D.K.; Capps, S.L.; Wang, Y.; Xu, X.; Wang, J.; Keller, M. Monthly top-down NOx emissions for China (2005–2012): A hybrid inversion method and trend analysis. J. Geophys. Res. Atmos. 2017, 122, 4600–4625. [Google Scholar] [CrossRef]
- Stockwell, W.R.; Middleton, P.; Chang, J.S.; Tang, X. The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J. Geophys. Res. Atmos. 1990, 95, 16343–16367. [Google Scholar] [CrossRef]
- Tang, X.; Zhu, J.; Wang, Z.F.; Wang, M.; Gbaguidi, A.; Li, J.; Shao, M.; Tang, G.Q.; Ji, D.S. Inversion of CO emissions over Beijing and its surrounding areas with ensemble Kalman filter. Atmos. Environ. 2013, 81, 676–686. [Google Scholar] [CrossRef]
- Valencia, A.; Arunachalam, S.; Isakov, V.; Naess, B.; Serre, M. Improving emissions inputs via mobile measurements to estimate fine-scale Black Carbon monthly concentrations through geostatistical space-time data fusion. Sci. Total Environ. 2021, 793, 148378. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; An, X.; Hou, Q.; Sun, Z.; Li, Y.; Li, J. Development of four-dimensional variational assimilation system based on the GRAPES–CUACE adjoint model (GRAPES–CUACE-4D-Var V1.0) and its application in emission inversion. Geosci. Model Dev. 2021, 14, 337–350. [Google Scholar] [CrossRef]
- Wang, C.; An, X.; Zhang, P.; Sun, Z.; Cui, M.; Ma, L. Comparing the impact of strong and weak East Asian winter monsoon on PM2.5 concentration in Beijing. Atmos. Res. 2019, 215, 165–177. [Google Scholar] [CrossRef]
- Wang, M.Y.; Yim, S.H.L.; Wong, D.C.; Ho, K.F. Source contributions of surface ozone in China using an adjoint sensitivity analysis. Sci. Total Environ. 2019, 662, 385–392. [Google Scholar] [CrossRef]
- Wang, Q.; Su, M. A preliminary assessment of the impact of COVID-19 on environment—A case study of China. Sci. Total Environ. 2020, 728, 138915. [Google Scholar] [CrossRef]
- Wang, Y.; Zhuang, G.; Xu, C.; An, Z. The air pollution caused by the burning of fireworks during the lantern festival in Beijing. Atmos. Environ. 2007, 41, 417–431. [Google Scholar] [CrossRef]
- Xing, J.; Li, S.; Jiang, Y.; Wang, S.; Ding, D.; Dong, Z.; Zhu, Y.; Hao, J. Quantifying the emission changes and associated air quality impacts during the COVID-19 pandemic on the North China Plain: A response modeling study. Atmos. Chem. Phys. 2020, 20, 14347–14359. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, J.; Ying, Q.; Hao, H.; Wang, D.; Zhang, H. Current and future emissions of primary pollutants from coal-fired power plants in Shaanxi, China. Sci. Total Environ. 2017, 595, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ren, L.; Li, H.; Wang, H.; Wang, P.; Chen, L.; Yue, X.; Liao, H. Fast Climate Responses to Aerosol Emission Reductions During the COVID-19 Pandemic. Geophys. Res. Lett. 2020, 47, e2020GL089788. [Google Scholar] [CrossRef]
- Zaveri, R.A.; Peters, L.K. A new lumped structure photochemical mechanism for large-scale applications. J. Geophys. Res. Atmos. 1999, 104, 30387–30415. [Google Scholar] [CrossRef]
- Zhai, S.; An, X.; Zhao, T.; Sun, Z.; Wang, W.; Hou, Q.; Guo, Z.; Wang, C. Detection of critical PM2.5 emission sources and their contributions to a heavy haze episode in Beijing, China, using an adjoint model. Atmos. Chem. Phys. 2018, 18, 6241–6258. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Chen, Y.; Zhao, Y.; Henze, D.K.; Zhu, L.; Song, Y.; Paulot, F.; Liu, X.; Pan, Y.; Lin, Y.; et al. Agricultural ammonia emissions in China: Reconciling bottom-up and top-down estimates. Atmos. Chem. Phys. 2018, 18, 339–355. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Gong, S.; Zhao, T.; Zhou, C.; Wang, Y.; Li, J.; Ji, D.; He, J.; Liu, H.; Gui, K.; et al. Development of WRF/CUACE v1.0 model and its preliminary application in simulating air quality in China. Geosci. Model Dev. 2021, 14, 703–718. [Google Scholar] [CrossRef]
- Zhang, L.; Henze, D.K.; Grell, G.A.; Carmichael, G.R.; Bousserez, N.; Zhang, Q.; Torres, O.; Ahn, C.; Lu, Z.; Cao, J.; et al. Constraining black carbon aerosol over Asia using OMI aerosol absorption optical depth and the adjoint of GEOS-Chem. Atmos. Chem. Phys. 2015, 15, 10281–10308. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Shao, J.; Lu, X.; Zhao, Y.; Hu, Y.; Henze, D.K.; Liao, H.; Gong, S.; Zhang, Q. Sources and Processes Affecting Fine Particulate Matter Pollution over North China: An Adjoint Analysis of the Beijing APEC Period. Environ. Sci. Technol. 2016, 50, 8731–8740. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, T.; Gong, S.; Kong, S.; Tang, L.; Liu, D.; Wang, Y.; Jin, L.; Shan, Y.; Tan, C. Updated emission inventories of power plants in simulating air quality during haze periods over East China. Atmos. Chem. Phys. 2018, 18, 2065–2079. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Pappin, A.J.; Morteza Mesbah, S.; Joyce Zhang, J.; MacDonald, N.L.; Hakami, A. Adjoint estimation of ozone climate penalties. Geophys. Res. Lett. 2013, 40, 5559–5563. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Gong, S.; Zhou, C.; Zhang, L.; He, J.; Wang, Y.; Ji, D.; Feng, J.; Mo, J.; Ke, H. A new parameterization of uptake coefficients for heterogeneous reactions on multi-component atmospheric aerosols. Sci. Total Environ. 2021, 781, 146372. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chen, L.; Liao, H.; Yang, H.; Yang, Y.; Yue, X. Enhanced PM2.5 Decreases and O3 Increases in China During COVID-19 Lockdown by Aerosol-Radiation Feedback. Geophys. Res. Lett. 2021, 48, e2020GL090260. [Google Scholar] [CrossRef] [PubMed]
Province | Ratio | Province | Ratio |
---|---|---|---|
Beijing | −20.7% | Shandong | −19.1% |
Tianjin | −20.2% | Henan | −25.9% |
Hebei | −26.1% | ||
Shanxi | −18.3% | NCP | −20.1% |
Period | Statistics | MEIC | Optimization |
---|---|---|---|
SO2 (pre-lockdown) | R | 0.46 | 0.87 |
RMSE (µg/m3) | 17.0 | 13.7 | |
NMB (%) | 3.7 | −39.0 | |
BIAS (µg/m3) | 0.7 | −7.8 | |
SO2 (lockdown) | R | 0.28 | 0.79 |
RMSE (µg/m3) | 12.7 | 8.8 | |
NMB (%) | 23.1 | −32.3 | |
BIAS (µg/m3) | 2.6 | −4.8 | |
PM2.5 (pre-lockdown) | R | 0.62 | 0.67 |
RMSE (µg/m3) | 61.3 | 56.2 | |
NMB (%) | −45.9 | −40.1 | |
BIAS (µg/m3) | −37.8 | −33.1 | |
PM2.5 (lockdown) | R | 0.67 | 0.74 |
RMSE (µg/m3) | 20.4 | 18.9 | |
NMB (%) | −31.2 | −30.1 | |
BIAS (µg/m3) | −11.3 | −10.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, J.; Gong, S.; He, J.; Zhang, L.; Ke, H.; An, X. Quantification of SO2 Emission Variations and the Corresponding Prediction Improvements Made by Assimilating Ground-Based Observations. Atmosphere 2022, 13, 470. https://doi.org/10.3390/atmos13030470
Mo J, Gong S, He J, Zhang L, Ke H, An X. Quantification of SO2 Emission Variations and the Corresponding Prediction Improvements Made by Assimilating Ground-Based Observations. Atmosphere. 2022; 13(3):470. https://doi.org/10.3390/atmos13030470
Chicago/Turabian StyleMo, Jingyue, Sunling Gong, Jianjun He, Lei Zhang, Huabing Ke, and Xingqin An. 2022. "Quantification of SO2 Emission Variations and the Corresponding Prediction Improvements Made by Assimilating Ground-Based Observations" Atmosphere 13, no. 3: 470. https://doi.org/10.3390/atmos13030470
APA StyleMo, J., Gong, S., He, J., Zhang, L., Ke, H., & An, X. (2022). Quantification of SO2 Emission Variations and the Corresponding Prediction Improvements Made by Assimilating Ground-Based Observations. Atmosphere, 13(3), 470. https://doi.org/10.3390/atmos13030470