Influence of Trade Winds on the Detection of Trans-Hemispheric Swells near the Canary Islands
Abstract
:1. Introduction
2. The Climate of the Canary Islands in the General Context of the Macaronesian Region
- The semi-permanent Azores subtropical high-pressure system.
- Trade winds.
- The African continental thermal low and monsoon.
- African easterly jet/waves.
- Extra/sub-tropical storms.
- Coastal upwelling.
- Saharan dust advection (calima).
- Ocean currents (Canary current).
- The semi-permanent Azores subtropical high-pressure system, and its relation with the Icelandic low determines the North Atlantic Oscillation (NAO). NAO is a fundamental parameter in North Atlantic wave climate [16].
- Northeasterly trade winds with cycles of increased intensity and calm periods are, as already mentioned in the introduction, key players in the production and evolution of sea waves, but they also influence swells coming from other regions.
3. Materials and Methods: The REDEXT Buoy of Tenerife Sur Data
- Mooring position: longitude: 16.61° W, latitude: 28.00° N. Mooring depth: 710 m.
- Technical information: Data sampling frequency: hourly. Type of sensor: directional Oce-Met. Model: SeaWatch.
- Vv_md: mean wind speed (m/s).
- Dv_md: mean wind direction (°, 0 = N, 90 = E).
- Hm0: spectral significant height, hereinafter referred to as significant height Hs (m).
- Tp: peak period (s).
- Dmd_P: mean wave direction at spectral peak (°, 0 = N, 90 = E).
4. Results
4.1. Trade Wind Records
4.2. Swells from the Southern Hemisphere Records
- With respect to direction, all readings that do not come from the window bounded by the shape of the Atlantic Ocean basin were removed. Given the location of the buoy, the range of directions that guarantee the Southern Hemisphere provenance is 184°–208° (Figure 6).
- With respect to the peak period, to ensure that the records come from waves formed thousands of kilometers away, limiting their origin to the Southern Hemisphere, all records with periods shorter than 14 s were eliminated. It should be noted that the periods do not have a clear general distribution, even more so when sea and swell waves coexist in the same area [1]. There are methods to separate these two types of waves from the spectra [22,23], but this is not the case here, since only the buoy-processed output data described above are available. This is why a value limit of wave period is used for partitioning.
4.3. Possible Correlation of Wind Speed to Southern Swell Records
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goda, Y. Random Seas and Design of Maritime Structures, 3rd ed.; Word Scientific Publishing Co. Pte. Ltd.: Singapore, 2010; Volume 33. [Google Scholar] [CrossRef]
- Megías, E. Observation of Transhemispheric Waves on the Southern Coast of the Canary Islands. Proc. Inst. Civ. Eng. Marit. Eng. 2021, 174, 34–52. [Google Scholar] [CrossRef]
- Reboita, M.S.; da Rocha, R.P.; de Souza, M.R.; Llopart, M. Extratropical Cyclones over the Southwestern South Atlantic Ocean: HadGEM2-ES and RegCM4 Projections. Int. J. Climatol. 2018, 38, 2866–2879. [Google Scholar] [CrossRef]
- de Jesus, E.M.; da Rocha, R.P.; Crespo, N.M.; Reboita, M.S.; Gozzo, L.F. Multi-Model Climate Projections of the Main Cyclogenesis Hot-Spots and Associated Winds over the Eastern Coast of South America. Clim. Dyn. 2021, 56, 537–557. [Google Scholar] [CrossRef]
- Munk, W.H. Tracking Storm by Forerunners of Sweell. J. Meteorol. 1947, 4, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Munk, W.; Miller, G.; Snodgrass, F.; Barber, N. Directional Recording of Swell from Distant Storms. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1963, 255, 505–584. [Google Scholar] [CrossRef] [PubMed]
- Young, I.R. Seasonal Variability of the Global Ocean Wind and Wave Climate. Int. J. Climatol. 1999, 19, 931–950. [Google Scholar] [CrossRef]
- Afonso, J.A. Infraestructuras Marítimas En Islas Volcánicas. In Ingenieria Geológica en Terrenos Volcánicos. Métodos, Técnicas y Experiencias en las Islas Canarias; Hernández-Gutiérrez, L., Santamarta, J.C., Eds.; Ilustre Colegio Oficial de Geólogos: Madrid, Spain, 2015; pp. 175–224. [Google Scholar]
- Megías, E.; García-Román, M. Estimación Del Comportamiento de Swells Transhemisféricos En La Costa de Islas Oceánicas Mediante El Uso Del Número de Iribarren: El Caso de La Costa Sur de Tenerife. In Proceedings of the XXIX Congreso Latinoamericano de Hidráulica México, IAHR-AMH, Online, 15–19 November 2021. [Google Scholar]
- Graham, B. Basic Wave Theory Review. In Proceedings of the Workshop on Wind Wave and Storm Surge Analysis and Forecasting for Carribean Countries, Dartmouth, NS, Canada, 16–20 June 2003. [Google Scholar]
- González, J.; Monagas, V.; Delory, E.; Hernandez Brito, J.; Llinás, O. A Marine Test Site for Ocean Energy Converters: Oceanic Platform of the Canary Islands. In Proceedings of the OCEANS 2011 IEEE, Santander, Spain, 6–9 June 2011. [Google Scholar] [CrossRef]
- Alonso-Pérez, S.; López-Solano, J.; Rodríguez-Mayor, L.; Márquez-Martinón, J.M. Evaluation of the Tourism Climate Index in the Canary Islands. Sustainability 2021, 13, 7042. [Google Scholar] [CrossRef]
- Bechtel, B. The Climate of the Canary Islands by Annual Cycle P.arameters. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives, Prague, Czech Republic, 12–19 July 2016; Volume 41, pp. 243–250. [Google Scholar] [CrossRef]
- AEMET—IM IP. Climate Atlas of the Archipelagos of the Canary Islands, Madeira and the Azores. 2012. Available online: http://www.aemet.es/es/conocermas/recursos_en_linea/publicaciones_y_estudios/publicaciones/detalles/segundo_Atlas_climatologic (accessed on 25 January 2022).
- Cropper, T. The Weather and Climate of Macaronesia: Past, Present and Future. Weather 2013, 68, 300–307. [Google Scholar] [CrossRef]
- Woolf, D.K. Variability and Predictability of the North Atlantic Wave Climate. J. Geophys. Res. 2002, 107, 9-1–9-14. [Google Scholar] [CrossRef]
- Li, J.; Sun, C.; Jin, F.F. NAO Implicated as a Predictor of Northern Hemisphere Mean Temperature Multidecadal Variability. Geophys. Res. Lett. 2013, 40, 5497–5502. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, C.; Kucharski, F.; Li, J.; Wang, C.; Ding, R. The North Pacific Blob Acts to Increase the Predictability of the Atlantic Warm Pool. Environ. Res. Lett. 2021, 16, 064034. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, F.; Stuecker, M.F.; Jin, F.F.; Timmermann, A. Spurious North Tropical Atlantic Precursors to El Niño. Nat. Commun. 2021, 12, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Puertos del Estado. REDEXT Datasets. Available online: https://bancodatos.puertos.es//BD/informes/INT_2.pdf (accessed on 27 December 2021).
- Puertos del Estado. Oceanography. Available online: http://www.puertos.es/en-us/oceanografia/Pages/portus.aspx (accessed on 24 January 2022).
- Wang, D.W.; Hwang, P.A. An Operational Method for Separating Wind Sea and Swell from Ocean Wave Spectra. J. Atmos. Ocean. Technol. 2001, 18, 2052–2062. [Google Scholar] [CrossRef]
- Ailliot, P.; Maisondieu, C.; Monbet, V. Dynamical Partitioning of Directional Ocean Wave Spectra. Probabilistic Eng. Mech. 2013, 33, 95–102. [Google Scholar] [CrossRef]
- Crespo, N.M.; Porfírio, R.; Marcos de Jesus, E. Cyclones Density and Characteristics in Different Reanalyses Dataset over South America. In Proceedings of the EGU General Assembly 2020, Online, 4–8 May 2020. [Google Scholar] [CrossRef]
- AEMET. Escalas de Viento y Oleaje. Available online: https://www.aemet.es/documentos/es/conocermas/maritima/escalas_de_viento_y_oleaje.pdf (accessed on 3 January 2022).
Wind Speed (m/s) | Total Number of Records | Swells Records | Annual Mean Ratio of Swell Records |
---|---|---|---|
<1.6 | 7709 | 644 | 0.084 |
<3.4 | 27,101 | 2149 | 0.079 |
<5.5 | 47,318 | 3192 | 0.067 |
<8 | 71,303 | 4019 | 0.056 |
<10.8 | 90,519 | 4340 | 0.048 |
≤12.1 * | 93,549 | 4372 | 0.047 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Megías, E.; García-Román, M. Influence of Trade Winds on the Detection of Trans-Hemispheric Swells near the Canary Islands. Atmosphere 2022, 13, 505. https://doi.org/10.3390/atmos13040505
Megías E, García-Román M. Influence of Trade Winds on the Detection of Trans-Hemispheric Swells near the Canary Islands. Atmosphere. 2022; 13(4):505. https://doi.org/10.3390/atmos13040505
Chicago/Turabian StyleMegías, Emilio, and Manuel García-Román. 2022. "Influence of Trade Winds on the Detection of Trans-Hemispheric Swells near the Canary Islands" Atmosphere 13, no. 4: 505. https://doi.org/10.3390/atmos13040505
APA StyleMegías, E., & García-Román, M. (2022). Influence of Trade Winds on the Detection of Trans-Hemispheric Swells near the Canary Islands. Atmosphere, 13(4), 505. https://doi.org/10.3390/atmos13040505