Theoretical Foundation of the Relationship between Three Definitions of Effective Density and Particle Size
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. The Decrease in ρeI and ρeIII with Particle Size for Aspherical Particles
3.2. The Factors That Cause the Decrease in ρeI and ρeIII with Particle Size
3.3. The Independent Relationship between ρeII and Particle Size
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Symbol | Definition | Derivation | Example of Measurement Instrument |
---|---|---|---|
Da | Aerodynamic diameter is defined as the diameter of a sphere with standard density that settles at the same terminal velocity as the particle of interest. | Aerodynamic Aerosol Classifier (AAC) | |
Dva | In the free-molecular regime, the aerodynamic diameter is called the vacuum aerodynamic diameter. | Single-Particle Aerosol Mass Spectrometry (SPAMS) | |
Dm | Mobility diameter is defined as the diameter of a sphere with the same migration velocity in a constant electric field as the particle of interest. | Differential Mobility Analyzer (DMA) | |
Dve | Volume-equivalent diameter is defined as the diameter of a spherical particle of the same volume as the particle under consideration. | AAC-SPAMS |
References
- Buseck, P.R.; Posfai, M. Airborne minerals and related aerosol particles: Effects on climate and the environment. Proc. Natl. Acad. Sci. USA 1999, 96, 3372–3379. [Google Scholar] [CrossRef] [Green Version]
- Poschl, U. Atmospheric aerosols: Composition, transformation, climate and health effects. Angew. Chem. Int. Ed. 2005, 44, 7520–7540. [Google Scholar] [CrossRef]
- Katrib, Y.; Martin, S.T.; Rudich, Y.; Davidovits, P.; Jayne, J.T.; Worsnop, D.R. Density changes of aerosol particles as a result of chemical reaction. Atmos. Chem. Phys. 2005, 5, 275–291. [Google Scholar] [CrossRef] [Green Version]
- Sumlin, B.J.; Oxford, C.R.; Seo, B.; Pattison, R.R.; Williams, B.J.; Chakrabarty, R.K. Density and Homogeneous Internal Composition of Primary Brown Carbon Aerosol. Environ. Sci. Technol. 2018, 52, 3982–3989. [Google Scholar] [CrossRef]
- Nosko, O.; Olofsson, U. Effective density of airborne wear particles from car brake materials. J. Aerosol Sci. 2017, 107, 94–106. [Google Scholar] [CrossRef]
- Guo, S.; Hu, M.; Zamora, M.L.; Peng, J.; Shang, D.; Zheng, J.; Du, Z.; Wu, Z.; Shao, M.; Zeng, L.; et al. Elucidating severe urban haze formation in China. Proc. Natl. Acad. Sci. USA 2014, 111, 17373–17378. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Ye, X.; Jiang, S.; Tao, Y.; Shi, Y.; Yang, X.; Chen, J. Size-resolved effective density of urban aerosols in Shanghai. Atmos. Environ. 2015, 100, 133–140. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, B.; Ji, D.; Wang, Y.; Wang, M.; Wang, Y. Diurnal and seasonal variation of the PM2.5 apparent particle density in Beijing, China. Atmos. Environ. 2015, 120, 328–338. [Google Scholar] [CrossRef]
- Yon, J.; Bescond, A.; Ouf, F.X. A simple semi-empirical model for effective density measurements of fractal aggregates. J. Aerosol Sci. 2015, 87, 28–37. [Google Scholar] [CrossRef]
- DeCarlo, P.F.; Slowik, J.G.; Worsnop, D.R.; Davidovits, P.; Jimenez, J.L. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory. Aerosol Sci. Technol. 2004, 38, 1185–1205. [Google Scholar] [CrossRef] [Green Version]
- Hand, J.L.; Kreidenweis, S.M. A new method for retrieving particle refractive index and effective density from aerosol size distribution data. Aerosol Sci. Technol. 2002, 36, 1012–1026. [Google Scholar] [CrossRef]
- Schneider, J.; Weimer, S.; Drewnick, F.; Borrmann, S.; Helas, G.; Gwaze, P.; Schmid, O.; Andreae, M.O.; Kirchner, U. Mass spectrometric analysis and aerodynamic properties of various types of combustion-related aerosol particles. Int. J. Mass Spectrom. 2006, 258, 37–49. [Google Scholar] [CrossRef]
- Peng, L.; Li, Z.; Zhang, G.; Bi, X.; Hu, W.; Tang, M.; Wang, X.; Peng, P.; Sheng, G. A review of measurement techniques for aerosol effective density. Sci. Total Environ. 2021, 778, 146248. [Google Scholar] [CrossRef]
- Schnitzler, E.G.; Dutt, A.; Charbonneau, A.M.; Olfert, J.S.; Jaeger, W. Soot Aggregate Restructuring Due to Coatings of Secondary Organic Aerosol Derived from Aromatic Precursors. Environ. Sci. Technol. 2014, 48, 14309–14316. [Google Scholar] [CrossRef]
- Wu, Y.F.; Xia, Y.J.; Huang, R.J.; Deng, Z.Z.; Tian, P.; Xia, X.G.; Zhang, R.J. A study of the morphology and effective density of externally mixed black carbon aerosols in ambient air using a size-resolved single-particle soot photometer (SP2). Atmos. Meas. Tech. 2019, 12, 4347–4359. [Google Scholar] [CrossRef] [Green Version]
- Spencer, M.T.; Prather, K.A. Using ATOFMS to determine OC/EC mass fractions in particles. Aerosol Sci. Technol. 2006, 40, 585–594. [Google Scholar] [CrossRef] [Green Version]
- Bahreini, R.; Keywood, M.D.; Ng, N.L.; Varutbangkul, V.; Gao, S.; Flagan, R.C.; Seinfeld, J.H.; Worsnop, D.R.; Jimenez, J.L. Measurements of Secondary Organic Aerosol from Oxidation of Cycloalkenes, Terpenes, and m-Xylene Using an Aerodyne Aerosol Mass Spectrometer. Environ. Sci. Technol. 2005, 39, 5674–5688. [Google Scholar] [CrossRef] [Green Version]
- Spencer, M.T.; Shields, L.G.; Prather, K.A. Simultaneous measurement of the effective density and chemical composition of ambient aerosol particles. Environ. Sci. Technol. 2007, 41, 1303–1309. [Google Scholar] [CrossRef]
- Zhai, J.H.; Lu, X.H.; Li, L.; Zhang, Q.; Zhang, C.; Chen, H.; Yang, X.; Chen, J.M. Size-resolved chemical composition, effective density, and optical properties of biomass burning particles. Atmos. Chem. Phys. 2017, 17, 7481–7493. [Google Scholar] [CrossRef] [Green Version]
- Murphy, S.M.; Agrawal, H.; Sorooshian, A.; Padro, L.T.; Gates, H.; Hersey, S.; Welch, W.A.; Jung, H.; Miller, J.W.; Cocker, D.R.; et al. Comprehensive Simultaneous Shipboard and Airborne Characterization of Exhaust from a Modern Container Ship at Sea. Environ. Sci. Technol. 2009, 43, 4626–4640. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.; Li, L.; Zhang, G.; Du, X.; Wang, X.; Peng, P.a.; Sheng, G.; Bi, X. Technical note: Measurement of chemically resolved volume equivalent diameter and effective density of particles by AAC-SPAMS. Atmos. Chem. Phys. 2021, 21, 5605–5613. [Google Scholar] [CrossRef]
- Park, K.; Cao, F.; Kittelson, D.B.; McMurry, P.H. Relationship between particle mass and mobility for diesel exhaust particles. Env. Sci. Technol. 2003, 37, 577–583. [Google Scholar] [CrossRef]
- Deye, G.J.; Kulkarni, P.; Ku, B.K. Morphological characterization of carbon nanofiber aerosol using tandem mobility and aerodynamic size measurements. J. Nanopart. Res. 2012, 14, 1112. [Google Scholar] [CrossRef]
- Momenimovahed, A.; Olfert, J.S. Effective Density and Volatility of Particles Emitted from Gasoline Direct Injection Vehicles and Implications for Particle Mass Measurement. Aerosol Sci. Technol. 2015, 49, 1051–1062. [Google Scholar] [CrossRef]
- Alexander, J.M.; Bell, D.M.; Imre, D.; Kleiber, P.D.; Grassian, V.H.; Zelenyuk, A. Measurement of size-dependent dynamic shape factors of quartz particles in two flow regimes. Aerosol Sci. Technol. 2016, 50, 870–879. [Google Scholar] [CrossRef] [Green Version]
- Afroughi, M.J.; Falahati, F.; Kostiuk, L.W.; Olfert, J.S. Properties of carbon black produced by the thermal decomposition of methane in the products of premixed flames. J. Aerosol Sci. 2019, 131, 13–27. [Google Scholar] [CrossRef]
- Olfert, J.; Rogak, S. Universal relations between soot effective density and primary particle size for common combustion sources. Aerosol Sci. Technol. 2019, 53, 485–492. [Google Scholar] [CrossRef] [Green Version]
- Alfarra, M.R.; Paulsen, D.; Gysel, M.; Garforth, A.A.; Dommen, J.; Prevot, A.S.H.; Worsnop, D.R.; Baltensperger, U.; Coe, H. A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber. Atmos. Chem. Phys. 2006, 6, 5279–5293. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Peng, J.F.; Sun, K.; Yue, D.L.; Guo, S.; Wiedensohler, A.; Wu, Z.J. Estimation of size-resolved ambient particle density based on the measurement of aerosol number, mass, and chemical size distributions in the winter in Beijing. Environ. Sci. Technol. 2012, 46, 9941–9947. [Google Scholar] [CrossRef]
- Rissler, J.; Nordin, E.Z.; Eriksson, A.C.; Nilsson, P.T.; Frosch, M.; Sporre, M.K.; Wierzbicka, A.; Svenningsson, B.; Londahl, J.; Messing, M.E.; et al. Effective Density and Mixing State of Aerosol Particles in a Near-Traffic Urban Environment. Environ. Sci. Technol. 2014, 48, 6300–6308. [Google Scholar] [CrossRef]
- Zieger, P.; Vaisanen, O.; Corbin, J.C.; Partridge, D.G.; Bastelberger, S.; Mousavi-Fard, M.; Rosati, B.; Gysel, M.; Krieger, U.K.; Leck, C.; et al. Revising the hygroscopicity of inorganic sea salt particles. Nat. Commun. 2017, 8, 15883. [Google Scholar] [CrossRef]
- Khlystov, A.; Stanier, C.; Pandis, S.N. An algorithm for combining electrical mobility and aerodynamic size distributions data when measuring ambient aerosol. Aerosol Sci. Technol. 2004, 38, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Beddows, D.C.S.; Dall’osto, M.; Harrison, R.M. An Enhanced Procedure for the Merging of Atmospheric Particle Size Distribution Data Measured Using Electrical Mobility and Time-of-Flight Analysers. Aerosol Sci. Technol. 2010, 44, 930–938. [Google Scholar] [CrossRef]
- Kassianov, E.; Barnard, J.; Pekour, M.; Berg, L.K.; Shilling, J.; Flynn, C.; Mei, F.; Jefferson, A. Simultaneous retrieval of effective refractive index and density from size distribution and light-scattering data: Weakly absorbing aerosol. Atmos. Meas. Tech. 2014, 7, 3247–3261. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.P.; Yu, Y.; Yin, D.Y.; He, J.J. Effective Density of Submicron Aerosol Particles in a Typical Valley City, Western China. Aerosol Air Qual. Res. 2017, 17, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Han, C.; Li, S.M.; Liu, P.; Lee, P. Size Dependence of the Physical Characteristics of Particles Containing Refractory Black Carbon in Diesel Vehicle Exhaust. Environ. Sci. Technol. 2019, 53, 137–145. [Google Scholar] [CrossRef]
- Rissler, J.; Messing, M.E.; Malik, A.I.; Nilsson, P.T.; Nordin, E.Z.; Bohgard, M.; Sanati, M.; Pagels, J.H. Effective Density Characterization of Soot Agglomerates from Various Sources and Comparison to Aggregation Theory. Aerosol Sci. Technol. 2013, 47, 792–805. [Google Scholar] [CrossRef] [Green Version]
- Dastanpour, R.; Momenimovahed, A.; Thomson, K.; Olfert, J.; Rogak, S. Variation of the optical properties of soot as a function of particle mass. Carbon 2017, 124, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Kiselev, A.; Wennrich, C.; Stratmann, F.; Wex, H.; Henning, S.; Mentel, T.F.; Kiendler-Scharr, A.; Schneider, J.; Walter, S.; Lieberwirth, I. Morphological characterization of soot aerosol particles during LACIS Experiment in November (LExNo). J. Geophys. Res. Atmos. 2010, 115, 11204. [Google Scholar] [CrossRef] [Green Version]
- Leskinen, J.; Ihalainen, M.; Torvela, T.; Kortelainen, M.; Lamberg, H.; Tiitta, P.; Jakobi, G.; Grigonyte, J.; Joutsensaari, J.; Sippula, O.; et al. Effective Density and Morphology of Particles Emitted from Small-Scale Combustion of Various Wood Fuels. Environ. Sci. Technol. 2014, 48, 13298–13306. [Google Scholar] [CrossRef]
- Dinar, E.; Mentel, T.F.; Rudich, Y. The density of humic acids and humic like substances (HULIS) from fresh and aged wood burning and pollution aerosol particles. Atmos. Chem. Phys. 2006, 6, 5213–5224. [Google Scholar] [CrossRef] [Green Version]
- Qiu, C.; Khalizov, A.F.; Zhang, R. Soot Aging from OH-Initiated Oxidation of Toluene. Environ. Sci. Technol. 2012, 46, 9464–9472. [Google Scholar] [CrossRef] [PubMed]
- Khalizov, A.F.; Lin, Y.; Qiu, C.; Guo, S.; Collins, D.; Zhang, R. Role of OH-Initiated Oxidation of Isoprene in Aging of Combustion Soot. Environ. Sci. Technol. 2013, 47, 2254–2263. [Google Scholar] [CrossRef] [PubMed]
Particles | ρ (g/cm3) | χ | Dm (nm) |
---|---|---|---|
Y | 1.0 1.4 1.8 2.2 2.6 3.0 3.4 | 2.00 | |
Z | 1.80 | 1.05 1.10 1.20 1.60 2.00 2.50 | 40, 80, 150, 250, 350, 450, and 550 |
The Trend of | ||||
---|---|---|---|---|
(a) Fixed value of ρ | χ | ρeI | ρeII | ρeIII |
Increasing | Decreasing | Decreasing | Decreasing | |
Invariant | Decreasing | Invariant | Decreasing | |
Decreasing | Invariant or increasing | Increasing | Invariant or increasing | |
(b) Fixed value of χ | ρ | ρeI | ρeII | ρeIII |
Increasing | Invariant or increasing | Increasing | Invariant or increasing | |
Invariant | Decreasing | Invariant | Decreasing | |
Decreasing | Decreasing | Decreasing | Decreasing |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, L.; Liu, Y. Theoretical Foundation of the Relationship between Three Definitions of Effective Density and Particle Size. Atmosphere 2022, 13, 564. https://doi.org/10.3390/atmos13040564
Peng L, Liu Y. Theoretical Foundation of the Relationship between Three Definitions of Effective Density and Particle Size. Atmosphere. 2022; 13(4):564. https://doi.org/10.3390/atmos13040564
Chicago/Turabian StylePeng, Long, and Yonglin Liu. 2022. "Theoretical Foundation of the Relationship between Three Definitions of Effective Density and Particle Size" Atmosphere 13, no. 4: 564. https://doi.org/10.3390/atmos13040564
APA StylePeng, L., & Liu, Y. (2022). Theoretical Foundation of the Relationship between Three Definitions of Effective Density and Particle Size. Atmosphere, 13(4), 564. https://doi.org/10.3390/atmos13040564