Assessing the Impact of Cumulus Parameterization Schemes on Simulated Summer Wind Speed over Mainland China
Abstract
:1. Introduction
2. Methodology and Data
2.1. Model and Experimental Design
2.2. The Data
2.3. Wind Speed Change Equation
2.4. Measures for Assessment
3. Simulated Results
3.1. The 10 m Wind Speed
3.1.1. Spatial Distributions
3.1.2. Assessment Results
3.2. Processes Affecting Wind Speed Change
3.3. Associated Boundary-Layer Parameters
3.3.1. Near-Surface Fluxes
3.3.2. Atmospheric Boundary Layer Stability
4. Summary and Discussion
- (1)
- By and large, different CPSs can reproduce 10 m wind speed over mainland China, which is also indicated by the simulation–reference correlation efficiency of approximately 0.70. Previous studies of CPSs were basically associated with precipitation [14], while this result indicates an overall performance of simulating wind speed by the CPSs.
- (2)
- In comparison to the CPS ensembles, the largest simulated difference is generally found between Grell and pKF. Although the CPS choice does not greatly modify the simulated wind speed, sub-regions of mainland China show quite a large CPS-induced impact on wind speed. It can be seen that northern China is relatively unaffected by the CPSs, but southern China, East China, and the Tibetan Plateau are affected to quite large extents, as is confirmed by Student’s t-tests. These high sensitivities are associated with the frequent convective activities in the summer monsoon (e.g., over East China) and a relatively thin troposphere (i.e., over the Tibetan Plateau). Because the influence of CPSs on wind speed simulation has been rarely investigated on a climate scale [13,15], these results clearly indicate where the simulated wind speed is greatly affected in mainland China on the summer scale, and the mechanisms have been revealed.
- (3)
- Among the terms of influencing processes, CON is most affected by the CPSs, followed by PRE and DFN, corresponding to CPS-induced DIF values of 95%, 14%, and 12% for the sub-regions, respectively. ADV is a secondary term for contribution to Vt, with the latter having a large DIF value of 283% for East China. Previous works seldom showed the CPS-induced impacts on complete influencing processes [14]; this study presents the impacts of the turbulence effect (DFN) and revealed that they cannot be conventionally quantified.
- (4)
- The results of the related boundary layer parameters can demonstrate the CPS-induced impact on simulated wind speed, in which surface fluxes do not show clear correlations with wind change while the Richardson number does. This suggests that compared with the CPS-induced changes in wind speed in the interior atmosphere, the CPS-induced changes of surface fluxes are less important. This work makes an incremental advance in wind speed study based on the LSS-induced impact [13], emphasizing the importance of the atmospheric process rather than land surface processes.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Santos, C. A sensitivity study of the WRF model in wind simulation for an area of high wind energy. Environ. Model. Softw. 2012, 33, 23–34. [Google Scholar] [CrossRef] [Green Version]
- McInnes, K.L.; Erwin, T.A.; Bathols, J.M. Global climate model projected changes in 10 m wind speed and direction due to anthropogenic climate change. Atmos. Sci. Lett. 2011, 12, 325–333. [Google Scholar] [CrossRef]
- He, Y.; Monahan, A.H.; McFarlane, N.A. Diurnal variations of land surface wind speed probability distributions under clear-sky and low-cloud conditions. Geophys. Res. Lett. 2013, 40, 3308–3314. [Google Scholar] [CrossRef]
- Monahan, A.H. The probability distribution of sea surface wind speeds. Part I: Theory and sea winds observations. J. Clim. 2006, 19, 497–520. [Google Scholar] [CrossRef]
- Cakmur, R.; Miller, R.; Torres, O. Incorporating the effect of small-scale circulations upon dust emission in an atmospheric general circulation model. J. Geophys. Res. 2004, 109, D07201. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.M.; Klein, P.M.; Xue, M. Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. J. Geophys. Res. Atmos. 2013, 118, 10490–10505. [Google Scholar] [CrossRef]
- Schwierz, C.; Köllner-Heck, P.; Mutter, E.Z.; Bresch, D.N.; Vidale, P.; Wild, M.; Schär, C. Modelling European winter wind storm losses in current and future climate. Clim. Chang. 2010, 101, 485–514. [Google Scholar] [CrossRef] [Green Version]
- Van den Broeke, M.R.; van Lipzig, N.P.M. Factors controlling the near-surface wind field in Antarctica. Mon. Weather Rev. 2003, 131, 733–743. [Google Scholar] [CrossRef]
- Horvath, K.; Koracin, D.; Vellore, R.; Jiang, J.; Belu, R. Sub-kilometer dynamical downscaling of near-surface winds in complex terrain using WRF and MM5 mesoscale models. J. Geophys. Res. 2012, 117, D11111. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.H.; Lu, S.H.; Jin, J.M. Integrating remote sensing data with WRF for improved simulations of oasis effects on local weather processes over an arid region in Northwestern China. J. Hydrometeorol. 2012, 13, 573–587. [Google Scholar] [CrossRef]
- Lin, C.G.; Yang, K.; Qin, J.; Fu, R. Observed coherent trends of surface and upper-air wind speed over China since 1960. J. Clim. 2013, 26, 2891–2903. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.L.; Pu, Z.X.; Zhang, X.B. Examination of Errors in Near-Surface Temperature and Wind from WRF Numerical Simulations in Regions of Complex Terrain. Weather Forecast. 2013, 28, 893–914. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.M.; Wang, M.; Wang, N.; Yi, X.; Chen, C.H.; Zhou, Z.G.; Wang, G.L.; Zheng, Y.Q. Assessing simulated summer 10-m wind speed over China: Influencing processes and sensitivities to land surface schemes. Clim. Dyn. 2018, 50, 4189–4209. [Google Scholar] [CrossRef]
- Kotroni, V.; Lagouvardos, K. Precipitation forecast skill of different convective parameterization and microphysical schemes: Application for the cold season over Greece. Geophys. Res. Lett. 2001, 28, 1977–1980. [Google Scholar] [CrossRef]
- Cohen, C. A comparison of cumulus parameterizations in idealized sea-breeze simulations. Mon. Weather Rev. 2002, 130, 2554–2571. [Google Scholar] [CrossRef]
- Srinivas, C.V.; Bhaskar, R.D.V.; Yesubabu, V.; Baskaran, R.; Venkatraman, B. Tropical cyclone predictions over the bay of bengal using the high-resolution advanced research weather research and forecasting (ARW) model. Q. J. R. Meteor. Soc. 2013, 139, 1810–1825. [Google Scholar] [CrossRef]
- Asai, T. Cumulus Convection in the Atmosphere with Vertical Wind Shear: Numerical Experiment. J. Meteorol. Soc. Jpn. 1964, 42, 245–259. [Google Scholar] [CrossRef] [Green Version]
- Sui, C.H.; Yanai, M. Cumulus Ensemble Effects on the Large-Scale Vorticity and Momentum Fields of GATE. Part I: Observational Evidence. J. Atmos. Sci. 1986, 43, 1618–1642. [Google Scholar]
- Das, S.; Mitra, A.K.; Iyengar, G.R.; Mohandas, S. Comprehensive test of different cumulus parameterization schemes for the simulation of the Indian summer monsoon. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2001, 78, 227–244. [Google Scholar] [CrossRef]
- Rao, X.N.; Zhao, K.; Chen, X.C.; Huang, A.N.; Xue, M.; Zhang, Q.H.; Wang, M.J. Influence of Synoptic Pattern and Low-Level Wind Speed on Intensity and Diurnal Variations of Orographic Convection in Summer over Pearl River Delta, South China. J. Geophys. Res. Atmos. 2019, 124, 6157–6179. [Google Scholar] [CrossRef]
- Zeng, X.M.; Wu, Z.H.; Song, S.; Xiong, S.Y.; Zheng, Y.Q.; Zhou, Z.G.; Liu, H.Q. Effects of land surface schemes on the simulation of a heavy rainfall event by WRF. Chin. J. Geophys. 2012, 55, 16–28. [Google Scholar] [CrossRef]
- Zeng, X.M.; Wang, B.; Zhang, Y.; Zheng, Y.; Wang, N.; Wang, M.; Yi, X.; Chen, C.; Zhou, Z.; Liu, H. Effects of land surface schemes on WRF-simulated geopotential heights over China in summer 2003. J. Hydrometeorol. 2016, 17, 829–851. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J. A Description of the Advanced Research WRF Version 3; NCAR/TN–475 + STR.; National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Kain, J.S. The Kain-Fritsch convective parameterization, an update. J. Appl. Met. 2004, 43, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.S.; Fritsch, J.M. A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci. 1990, 47, 2784–2802. [Google Scholar] [CrossRef] [Green Version]
- Betts, A.K.; Miller, M.J. A new convective adjustment scheme Part II: Single column tests using GATE wave, BOMEX, and arctic air-mass datasets. Q. J. R. Meteor. Soc. 1986, 112, 693–709. [Google Scholar]
- Grell, G.A.; Devenyi, D.A. Generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002, 29, 1693. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.M.; Zhou, T.J.; Yu, R.C.; Bao, Q. The East Asian Summer Monsoon Simulated by Coupled Model FGOALS_s. Chin. J. Atmos. Sci. 2009, 33, 155–167. [Google Scholar]
- Student. Review of Statistical Methods for Research Workers, by R. A. Fisher. Eugen. Rev. 1926, 18, 148–150. [Google Scholar]
- Zeng, X.; Pielke, R.A. Landscape-induced atmospheric flow and its parameterization in large-scale numerical models. J. Clim. 1995, 8, 1156–1177. [Google Scholar] [CrossRef]
- Yan, H.; Anthes, R.A. The effect of variations in the surface moisture on mesoscale circulations. Mon. Weather Rev. 1988, 116, 192–208. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.-M.; Zhao, M.; Su, B.-K.; Tang, J.-P.; Zheng, Y.-Q.; Zhang, Y.-J.; Chen, J. Effects of the land-surface heterogeneities in temperature and moisture from the “combined approach” on regional climate: A sensitivity study. Glob. Planet. Chang. 2003, 37, 247–263. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1987; p. 177. [Google Scholar]
Scheme | NW | EC | TP | ALL |
---|---|---|---|---|
BMJ | 0.31 | 0.80 | 0.31 | 0.69 |
KF | 0.31 | 0.75 | 0.28 | 0.71 |
Grell | 0.24 | 0.74 | 0.42 | 0.72 |
pKF | 0.33 | 0.77 | 0.39 | 0.76 |
Vt | ADV | PRE | CON | DFN | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NW | EC | TP | NW | EC | TP | NW | EC | TP | NW | EC | TP | NW | EC | TP | |
KF | −0.99 | −0.13 | −0.26 | 57.37 | 31.52 | 17.91 | 4.27 × 103 | 2.77 × 103 | 1.72 × 104 | 1.01 × 103 | 8.47 × 102 | −1.43 × 103 | −5.34 × 103 | −3.65 × 103 | −1.58 × 104 |
BMJ | −1.52 | −0.09 | −0.53 | 64.27 | 24.17 | 8.07 | 4.30 × 103 | 2.62 × 103 | 1.88 × 104 | 1.04 × 103 | 8.83 × 102 | −2.45 × 103 | −5.40 × 103 | −3.53 × 103 | −1.64 × 104 |
Grell | −1.33 | 0.18 | −0.21 | 56.96 | 30.91 | 13.46 | 4.19 × 103 | 2.54 × 103 | 1.89 × 104 | 1.06 × 103 | 8.94 × 102 | −1.26 × 103 | −5.31 × 103 | −3.46 × 103 | −1.77 × 104 |
pKF | −1.51 | −0.35 | −0.65 | 53.69 | 36.94 | 11.05 | 3.72 × 103 | 2.43 × 103 | 1.68 × 104 | 1.27 × 103 | 9.22 × 102 | −9.91 × 102 | −5.04 × 103 | −3.39 × 103 | −1.59 × 104 |
Vt | ADV | PRE | CON | DFN | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BMJ | Grell | pKF | BMJ | Grell | pKF | BMJ | Grell | pKF | BMJ | Grell | pKF | BMJ | Grell | pKF | ||
NW | KF | 40 | 25 | 39 | −12 | 1 | 6 | −1 | 2 | 14 | −3 | −5 | −24 | 1 | −1 | −6 |
BMJ | - | −14 | −1 | - | 13 | 18 | - | 3 | 14 | - | −2 | −21 | - | −2 | −7 | |
Grell | - | - | 14 | - | - | 6 | - | - | 12 | - | - | −19 | - | - | −5 | |
EC | KF | −25 | −168 | 115 | 6 | 0 | −4 | 6 | 9 | 13 | −4 | −5 | −8 | −3 | −5 | −8 |
BMJ | - | −143 | 140 | - | −5 | −10 | - | 3 | 8 | - | −1 | −4 | - | −2 | −4 | |
Grell | - | - | 283 | - | - | −5 | - | - | 4 | - | - | −3 | - | - | −2 | |
TP | KF | 66 | −11 | 95 | 78 | 35 | 54 | −9 | −10 | 2 | 67 | −11 | −28 | 3 | 12 | 0 |
BMJ | - | −77 | 29 | - | −43 | −24 | - | −1 | 11 | - | −77 | −95 | - | 8 | −3 | |
Grell | - | - | 106 | - | - | 19 | - | - | 12 | - | - | −18 | - | - | −11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.-J.; Wang, M.; Yi, X.; Shao, S.-B.; Zheng, Y.-Q.; Zeng, X.-M. Assessing the Impact of Cumulus Parameterization Schemes on Simulated Summer Wind Speed over Mainland China. Atmosphere 2022, 13, 617. https://doi.org/10.3390/atmos13040617
Liu S-J, Wang M, Yi X, Shao S-B, Zheng Y-Q, Zeng X-M. Assessing the Impact of Cumulus Parameterization Schemes on Simulated Summer Wind Speed over Mainland China. Atmosphere. 2022; 13(4):617. https://doi.org/10.3390/atmos13040617
Chicago/Turabian StyleLiu, Si-Jie, Ming Wang, Xiang Yi, Shuai-Bing Shao, Yi-Qun Zheng, and Xin-Min Zeng. 2022. "Assessing the Impact of Cumulus Parameterization Schemes on Simulated Summer Wind Speed over Mainland China" Atmosphere 13, no. 4: 617. https://doi.org/10.3390/atmos13040617
APA StyleLiu, S. -J., Wang, M., Yi, X., Shao, S. -B., Zheng, Y. -Q., & Zeng, X. -M. (2022). Assessing the Impact of Cumulus Parameterization Schemes on Simulated Summer Wind Speed over Mainland China. Atmosphere, 13(4), 617. https://doi.org/10.3390/atmos13040617