Typhoon Quantitative Precipitation Forecasts by the 2.5 km CReSS Model in Taiwan: Examples and Role of Topography
Abstract
:1. Introduction
2. Model, Data, and Methodology
2.1. The CReSS Model and Its Forecasts
2.2. Data and Methodology
2.3. Categorical Score Measures
3. The Overall Threat Scores by Year between 2010 and 2015
4. Examples of Typhoons and CReSS Forecasts
4.1. Typhoon Saola (2012)
4.2. Typhoon Fung-Wong (2014)
4.3. Typhoon Tembin (2012)
4.4. Typhoons Nanmadol (2011), Kong-Rey (2013), Matmo (2014), and Soudelor (2015)
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, C.-C.; Kuo, Y.-H. Typhoons affecting Taiwan: Current understanding and future challenges. Bull. Amer. Meteor. Soc. 1999, 80, 67–80. [Google Scholar] [CrossRef]
- Cheung, K.K.W.; Huang, L.-R.; Lee, C.-S. Characteristics of rainfall during tropical cyclone periods in Taiwan. Nat. Hazards Earth Syst. Sci. 2008, 8, 1463–1474. [Google Scholar] [CrossRef]
- Lee, C.-S.; Wu, C.-C.; Chen, T.-C.; Elsberry, R.L. Advances in understanding the “perfect monsoon-influenced typhoon”: Summary from international conference on typhoon Morakot (2009). Asian-Pac. J. Atmos. Sci. 2011, 47, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Lackmann, G.M. Hurricane Sandy before 1900 and after 2100. Bull. Amer. Meteor. Soc. 2015, 96, 547–559. [Google Scholar] [CrossRef]
- Chen, G.T.-J.; Shieh, S.L.; Chen, L.F.; Chen, C.D. On the forecast skill of heavy rainfall in Taiwan. Atmos. Sci. 1991, 19, 177–188, (In Chinese with English abstract). [Google Scholar]
- Mullen, S.L.; Buizza, R. Quantitative precipitation forecasts over the United States by the ECMWF Ensemble Prediction System. Mon. Weather Rev. 2001, 129, 638–663. [Google Scholar] [CrossRef]
- Cuo, L.; Pagano, T.C.; Wang, Q.J. A review of quantitative precipitation forecasts and their use in short- to medium-range streamflow forecasting. J. Hydormeteor. 2011, 12, 713–728. [Google Scholar] [CrossRef]
- Ebert, E.E.; Turk, M.; Kusselson, S.J.; Yang, J.; Seybold, M.; Keehn, P.R.; Kuligowski, R.J. Ensemble Tropical Rainfall Potential (eTRaP) forecasts. Weather Forecast. 2011, 26, 213–224. [Google Scholar] [CrossRef]
- Wang, C.-C.; Kuo, H.-C.; Yeh, T.-C.; Chung, C.-H.; Chen, Y.-H.; Huang, S.-Y.; Wang, Y.-W.; Liu, C.-H. High-resolution quantitative precipitation forecasts and simulations by the Cloud-Resolving Storm Simulator (CReSS) for Typhoon Morakot (2009). J. Hydrol. 2013, 506, 26–41. [Google Scholar] [CrossRef]
- Tallapragada, V.; Kieu, C.; Trahan, S.; Liu, Q.; Wang, W.; Zhang, Z.; Tong, M.; Zhang, B.; Zhu, L.; Strahl, B. Forecasting tropical cyclones in the western North Pacific basin using the NCEP operational HWRF model: Model upgrades and evaluation of real-time performance in 2013. Weather Forecast. 2016, 31, 877–894. [Google Scholar] [CrossRef]
- Heming, J.T. Met Office Unified Model tropical cyclone performance following major changes to the initialization scheme and a model upgrade. Weather Forecast. 2016, 31, 1433–1449. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Chiao, S.; Wang, T.-A.; Kaplan, M.L. Some common ingredients for heavy orographic rainfall. Weather Forecast. 2001, 16, 633–660. [Google Scholar] [CrossRef]
- Ge, X.; Li, T.; Zhang, S.; Peng, M.S. What causes the extremely heavy rainfall in Taiwan during Typhoon Morakot (2009)? Atmos. Sci. Lett. 2010, 11, 46–50. [Google Scholar] [CrossRef]
- Pohl, B.; Morel, B.; Barthe, C.; Bousquet, O. Regionalizing rainfall at very high resolution over La Réunion island: A case study for Tropical Cyclone Ando. Mon. Weather. Rev. 2016, 144, 4081–4099. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Wang, S. Impact of land–sea breezes at different scales on the diurnal rainfall in Taiwan. Clim. Dyn. 2013, 43, 1951–1963. [Google Scholar] [CrossRef]
- Chang, C.-P.; Yeh, T.-C.; Chen, J.-M. Effects of terrain on the surface structure of typhoons over Taiwan. Mon. Weather Rev. 1993, 121, 734–752. [Google Scholar] [CrossRef]
- Chen, C.-S.; Chen, Y.-L. The rainfall characteristics of Taiwan. Mon. Weather Rev. 2003, 131, 1323–1341. [Google Scholar] [CrossRef]
- Fang, X.; Kuo, Y.-H.; Wang, A. The impact of Taiwan topography on the predictability of Typhoon Morakot’s record-breaking rainfall: A high-resolution ensemble simulation. Weather Forecast. 2011, 26, 613–633. [Google Scholar] [CrossRef] [Green Version]
- Su, S.-H.; Kuo, H.-C.; Hsu, L.-H.; Yang, Y.-T. Temporal and spatial characteristics of typhoon extreme rainfall in Taiwan. J. Meteor. Soc. Japan 2012, 90, 721–736. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.-K.; Cheng, L.-W. Distribution and mechanisms of orographic precipitation associated with Typhoon Morakot (2009). J. Atmos. Sci. 2013, 70, 2894–2915. [Google Scholar] [CrossRef]
- Chang, C.-P.; Yang, Y.-T.; Kuo, H.-C. Large increasing trend of tropical cyclone rainfall in Taiwan and the roles of terrain. J. Clim. 2013, 26, 4138–4147. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, J.T. The critical success index as an indicator of warning skill. Weather Forecast. 1990, 5, 570–575. [Google Scholar] [CrossRef] [Green Version]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, MA, USA, 1995; p. 467. [Google Scholar]
- Jolliffe, I.T.; Stephenson, D.B. Forecast Verification: A Practitioner’s Guide in Atmospheric Science; Wiley and Sons: Hoboken, NJ, USA, 2003; p. 240. [Google Scholar]
- Ebert, E.E.; McBride, J.L. Verification of precipitation in weather systems: Determination of systematic errors. J. Hydrol. 2000, 239, 179–202. [Google Scholar] [CrossRef]
- Davis, C.; Brown, B.; Bullock, R. Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Weather Rev. 2006, 134, 1772–1784. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-C. On the calculation and correction of equitable threat score for model quantitative precipitation forecasts for small verification areas: The example of Taiwan. Weather Forecast. 2014, 29, 788–798. [Google Scholar] [CrossRef]
- Tsuboki, K.; Sakakibara, A. Large-scale parallel computing of cloud resolving storm simulator. In High Performance Computing; Zima, H.P., Ed.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 243–259. [Google Scholar]
- Tsuboki, K.; Sakakibara, A. Numerical Prediction of High-Impact Weather Systems: In The Textbook for the Seventeenth IHP Training Course in 2007; Hydrospheric Atmospheric Research Center, Nagoya University: Nagoya, Japan; UNESCO: Paris, France, 2007; p. 273. [Google Scholar]
- Wang, C.-C. The more rain, the better the model performs—The dependency of quantitative precipitation forecast skill on rainfall amount for typhoons in Taiwan. Mon. Weather Rev. 2015, 143, 1723–1748. [Google Scholar] [CrossRef]
- Wang, C.-C.; Chang, C.-S.; Wang, Y.-W.; Huang, C.-C.; Wang, S.-C.; Chen, Y.-S.; Tsuboki, K.; Huang, S.-Y.; Chen, S.-H.; Chuang, P.-Y.; et al. Evaluating quantitative precipitation forecasts using the 2.5 km CReSS model for typhoons in Taiwan: An update through the 2015 season. Atmosphere 2021, 12, 1501. [Google Scholar] [CrossRef]
- Done, J.; Davis, C.A.; Weisman, M. The next generation of NWP: Explicit forecasts of convection using the weather research and forecasting (WRF) model. Atmos. Res. Lett. 2004, 5, 110–117. [Google Scholar] [CrossRef]
- Gentry, M.S.; Lackmann, G.M. Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Weather Rev. 2010, 138, 688–704. [Google Scholar] [CrossRef] [Green Version]
- Hsu, J.C.-S.; Wang, C.-J.; Chen, P.-Y.; Chang, T.-H.; Fong, C.-T. Verification of quantitative precipitation forecasts by the CWB WRF and ECMWF on 0.125° grid. In Proceedings of the 2014 Conference on Weather Analysis and Forecasting; Central Weather Bureau: Taipei, Taiwan, 2014; pp. 16–18. (In Chinese) [Google Scholar]
- Huang, T.-H.; Yeh, S.-H.; Lu, G.-C.; Hong, J.-S. A synthesis and comparison of QPF verifications at the CWB and major NWP guidance. In Proceedings of the 2015 Conference on Weather Analysis and Forecasting; Central Weather Bureau: Taipei, Taiwan, 2015; pp. 15–17. (In Chinese) [Google Scholar]
- Tsai, C.-C.; Hsiao, L.-F.; Chen, D.-S.; Bao, C.-W.; Lee, C.-S. Evaluation of the performance of Hurricane WRF model over the western North Pacific in 2013. In Proceedings of the Conference on Weather Analysis and Forecasting; Central Weather Bureau: Taipei, Taiwan, 2014. (In Chinese) [Google Scholar]
- Wang, C.-J.; Huang, L.-J.; Hsiao, L.-F.; Lee, C.-S. Analysis and discussion on the results of Taiwan-Area Precipitation Ensemble Experiment (TAPEX) in 2014. In Proceedings of the Conference on Weather Analysis and Forecasting; Central Weather Bureau: Taipei, Taiwan, 2014. (In Chinese) [Google Scholar]
- Wang, C.-C. Corrigendum. Mon. Weather Rev. 2016, 144, 3031–3033. [Google Scholar] [CrossRef]
- Wang, C.-C. Paper of notes: The more rain from typhoons, the better the models perform. Bull. Am. Meteorol. Soc. 2016, 97, 16–17. [Google Scholar]
- Hendricks, E.A.; Jin, Y.; Moskaitis, J.R.; Doyle, J.D.; Peng, M.S.; Wu, C.-C.; Kuo, H.-C. Numerical simulations of Typhoon Morakot (2009) using a multiply nested tropical cyclone prediction model. Weather Forecast. 2016, 31, 627–645. [Google Scholar] [CrossRef]
- Wang, C.-C.; Chuang, P.-Y.; Chang, C.-S.; Tsuboki, K.; Huang, S.-Y.; Leu, G.-C. Evaluation of mei-yu heavy-rainfall quantitative precipitation forecasts in Taiwan by a cloud-resolving model for three seasons of 2012-2014. Nat. Hazards Earth Syst. Sci. 2022, 22, 23–40. [Google Scholar] [CrossRef]
- Wang, C.-C.; Kuo, H.-C.; Chen, Y.-H.; Huang, H.-L.; Chung, C.-H.; Tsuboki, K. Effects of asymmetric latent heating on typhoon movement crossing Taiwan: The case of Morakot (2009) with extreme rainfall. J. Atmos. Sci. 2012, 69, 3172–3196. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Kuo, H.-C.; Wang, C.-C.; Yang, Y.-T. Influence of southwest monsoon flow and typhoon track on Taiwan rainfall during the exit phase: Modeling study of Typhoon Morakot (2009). Quart. J. Roy. Meteor. Soc. 2017, 143, 3014–3024. [Google Scholar] [CrossRef]
- Wang, C.-C.; Kuo, H.-C.; Chen, Y.-H.; Chen, S.-H.; Tsuboki, K. A decade after Typhoon Morakot (2009): What have we learned about its physics and predictability? Weather Forecast. 2022; under review. [Google Scholar]
- Lin, Y.-L.; Farley, R.D.; Orville, H.D. Bulk parameterization of the snow field in a cloud model. J. Appl. Meteorol. Climatol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef] [Green Version]
- Cotton, W.R.; Tripoli, G.J.; Rauber, R.M.; Mulvihill, E.A. Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Appl. Meteorol. Climatol. 1986, 25, 1658–1680. [Google Scholar] [CrossRef] [Green Version]
- Murakami, M. Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud—The 19 July 1981 CCOPE cloud. J. Meteorol. Soc. Jpn. 1990, 68, 107–128. [Google Scholar] [CrossRef] [Green Version]
- Ikawa, M.; Saito, K. Description of a nonhydrostatic model developed at the Forecast Research Department of the MRI. MRI Tech. Rep. 1991, 28, 238. [Google Scholar]
- Murakami, M.; Clark, T.L.; Hall, W.D. Numerical simulations of convective snow clouds over the Sea of Japan: Two-dimensional simulation of mixed layer development and convective snow cloud formation. J. Meteor. Soc. Jpn. 1994, 72, 43–62. [Google Scholar] [CrossRef] [Green Version]
- Deardorff, J.W. Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor. 1980, 18, 495–527. [Google Scholar] [CrossRef]
- Louis, J.F.; Tiedtke, M.; Geleyn, J.F. A short history of the operational PBL parameterization at ECMWF. In Workshop on Planetary Boundary Layer Parameterization; ECMWF: Reading, UK, 1981; pp. 59–79. [Google Scholar]
- Kondo, J. Heat balance of the China Sea during the air mass transformation experiment. J. Meteor. Soc. Jpn. 1976, 54, 382–398. [Google Scholar] [CrossRef] [Green Version]
- Segami, A.; Kurihara, K.; Nakamura, H.; Ueno, M.; Takano, I.; Tatsumi, Y. 1989: Operational mesoscale weather prediction with Japan Spectral Model. J. Meteor. Soc. Jpn. 1989, 67, 907–924. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E.; Kanamitsu, M.; Baker, W.E. Global numerical weather prediction at the National Meteorological Center. Bull. Amer. Meteor. Soc. 1990, 71, 1410–1428. [Google Scholar] [CrossRef]
- Moorthi, S.; Pan, H.L.; Caplan, P. Changes to the 2001 NCEP operational MRF/AVN global analysis/forecast system. In Technical Procedures Bulletin 484; Office of Meteorology, National Weather Service: Silver Spring, MD, USA, 2001; p. 14. [Google Scholar]
- Kleist, D.T.; Parrish, D.F.; Derber, J.C.; Treadon, R.; Wu, W.S.; Lord, S. 2009: Introduction of the GSI into the NCEP global data assimilation system. Weather Forecast. 2009, 24, 1691–1705. [Google Scholar] [CrossRef] [Green Version]
- Hsu, J. ARMTS up and running in Taiwan. Väisälä News 1998, 146, 24–26. [Google Scholar]
- Hsu, L.-H.; Kuo, H.-C.; Fovell, R.G. On the geographic asymmetry of typhoon translation speed across the mountainous island of Taiwan. J. Atmos. Sci. 2013, 70, 1006–1022. [Google Scholar] [CrossRef]
- Wang, C.-C.; Huang, S.-Y.; Chen, S.-H.; Chang, C.-S.; Tsuboki, K. Cloud-resolving typhoon rainfall ensemble forecasts for Taiwan with large domain and extended range through time-lagged approach. Weather Forecast. 2016, 31, 151–172. [Google Scholar] [CrossRef]
- Wang, C.-C.; Huang, S.-Y.; Chen, S.-H.; Chang, C.-S.; Tsuboki, K. Paper of notes: Cloud-resolving, time-lagged typhoon rainfall ensemble forecasts. Bull. Amer. Meteor. Soc. 2016, 97, 1128–1129. [Google Scholar]
- Tsujino, S.; Tsuboki, K.; Kuo, H.-C. Structure and maintenance mechanism of long-lived concentric eyewalls associated with simulated Typhoon Bolaven (2012). J. Atmos. Sci. 2017, 74, 3609–3634. [Google Scholar] [CrossRef]
- Wang, C.-C.; Chen, Y.-H.; Li, M.-C.; Kuo, H.-C.; Tsuboki, K. On the separation of upper and low-level centres of tropical storm Kong-Rey (2013) near Taiwan in association with asymmetric latent heating. Quart. J. Roy. Meteor. Soc. 2021, 147, 1135–1149. [Google Scholar] [CrossRef]
- Alexander, L.A.; Tebaldi, C. Climate and weather extremes: Observations, modeling and projections. In The Future of the World’s Climate; Henderson-Sellers, A., McGuffie, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 253–288. [Google Scholar]
- Tsuboki, K.; Yoshioka, M.K.; Shinoda, T.; Kato, M.; Kanada, S.; Kitoh, A. Future increase of supertyphoon intensity associated with climate change. Geophys. Res. Lett. 2015, 42, 646–652. [Google Scholar] [CrossRef]
- Wang, C.-C.; Lin, B.-X.; Chen, C.-T.; Lo, S.-H. Quantifying the effects of long-term climate change on tropical cyclone rainfall using cloud-resolving models: Examples of two landfall typhoons in Taiwan. J. Clim. 2015, 28, 66–85. [Google Scholar] [CrossRef]
- Wang, C.-C.; Tseng, L.-S.; Huang, C.-C.; Lo, S.-H.; Chen, C.-T.; Chuang, P.-Y.; Su, N.-C. How much of Typhoon Morakot’s extreme rainfall is attributable to anthropogenic climate change? Int. J. Climatol. 2019, 39, 3454–3464. [Google Scholar] [CrossRef]
- Kouhestani, S.; Eslamian, S.S.; Abedi-Koupai, J.; Besalatpour, A.A. Projection of climate change impacts on precipitation using soft-computing techniques: A case study in Zayandeh-rud Basin, Iran. Glob. Planet. Chang. 2016, 144, 158–170. [Google Scholar] [CrossRef]
- Knutson, T.; Camargo, S.J.; Chan, J.C.L.; Emanuel, K.; Ho, C.-H.; Kossin, J.; Mohapatra, M.; Satoh, M.; Sugi, M.; Walsh, K.; et al. Tropical Cyclones and Climate Change Assessment: Part I: Detection and Attribution. Bull. Am. Meteorol. Soc. 2019, 100, 1987–2007. [Google Scholar] [CrossRef] [Green Version]
- Knutson, T.; Camargo, S.J.; Chan, J.C.L.; Emanuel, K.; Ho, C.-H.; Kossin, J.; Mohapatra, M.; Satoh, M.; Sugi, M.; Walsh, K.; et al. Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming. Bull. Am. Meteorol. Soc. 2020, 101, E303–E322. [Google Scholar] [CrossRef]
- Zhang, F.; Weng, Y.; Kuo, Y.-H.; Whitaker, J.-S.; Xie, B. Predicting Typhoon Morakot’s catastrophic rainfall with a convection-permitting mesoscale ensemble system. Weather Forecast. 2010, 25, 1816–1825. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Kuo, Y.-H. Improving ensemble-based quantitative precipitation forecasts for topography-enhanced typhoon heavy rainfall over Taiwan with a modified probability-matching technique. Mon. Weather Rev. 2013, 141, 3908–3932. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-C.; Chen, S.-H.; Tsuboki, K.; Huang, S.-Y.; Chang, C.-S. Application of time-lagged ensemble quantitative precipitation forecasts for Typhoon Morakot (2009) in Taiwan by a cloud-resolving model. Atmosphere 2022, 13, 585. [Google Scholar] [CrossRef]
Season | 2010–2011 | 2012–2015 |
---|---|---|
Grid spacing (km) | 2.5 × 2.5 × 0.2-0.663 (0.5) * | |
Grid dimension (x, y, z) | 432 × 360 × 40 | 600 × 480 × 40 |
Domain size (km) | 1080 × 900 × 20 | 1500 × 1200 × 20 |
Forecast frequency and range | Every 6 h (at 0000, 0600, 1200, and 1800 UTC) and 72 h (or 78 h) | |
IC and BCs | NCEP GFS analyses and forecasts (every 1.0° or 0.5°, 26 levels) |
Name of TC | Track Type * | Main Target Period | Peak Rainfall (mm) |
---|---|---|---|
Fanapi (2010) | 4 | 0000 UTC 19 September–1000 UTC 20 September | 1110 |
Megi (2010) | 9 | 0000 UTC 21 October–0000 UTC 22 October | 945 |
Nanmadol (2011) | 4 | 1200 UTC 28 August–1200 UTC 29 August | 488 |
Saola (2012) | 2 | 1200 UTC 1 August–1200 UTC 2 August | 889 |
Tembin (2012) | 10 | 0000 UTC 24 August–0000 UTC 25 August | 621 |
10 | 0000 UTC 27 August–0000 UTC 28 August | 322 | |
Soulik (2013) | 2 | 1200 UTC 12 July–1200 UTC 13 July | 876 |
Kong-Rey (2013) | 6 | 1200 UTC 28 August–1200 UTC 29 August | 706 |
Matmo (2014) | 3 | 0000 UTC 22 July–0000 UTC 23 July | 556 |
Fung-Wong (2014) | 10 | 1200 UTC 20 September–1200 UTC 21 September | 797 |
Soudelor (2015) | 3 | 1200 UTC 7 August–1200 UTC 8 August | 842 |
Name of Typhoon | Observed Peak Rainfall (mm) | TS ≥ 0.2 | TS ≥ 0.5 | Source | ||||
---|---|---|---|---|---|---|---|---|
Day 1 | Day 2 | Day 3 | Day 1 | Day 2 | Day 3 | |||
Fanapi (2010) | 1110 | 720 | 290 | 440 | 290 | 180 | 320 | [30] |
Megi (2010) | 945 | 700 | 440 | 470 | (600) | 190 | 390 | [30] |
Nanmadol (2011) | 488 | 350 | 240 | 130 | 150 | 135 | 50 | F12a |
Saola (2012) | 889 | 490 | 540 | 145 | 305 | 270 | 55 | F5 |
Tembin (2012) | 621 | (200) | 155 | 210 | (30) | (65) | 115 | F10a |
322 | 210 | 290 | 85 | 60 | (175) | 15 | F10c | |
Soulik (2013) | 876 | 870 | (870) | (870) | 400 | 390 | (380) | [31] |
Kong-Rey (2013) | 706 | 265 | 405 | 125 | 140 | 130 | (8) | F12c |
Matmo (2014) | 556 | 500 | (135) | (65) | 300 | 55 | 30 | F12e |
Fung-Wong (2014) | 797 | 350 | 410 | 600 | 160 | 150 | 25 | F8 |
Soudelor (2015) | 842 | (840) | 800 | 615 | 195 | 200 | 175 | F12g |
Percent range of peak | min. | 32.2 | 24.3 | 11.7 | 4.8 | 10.5 | 1.1 | |
max. | 99.8 | 99.3 | 99.3 | 63.5 | 54.3 | 43.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-C.; Paul, S.; Huang, S.-Y.; Wang, Y.-W.; Tsuboki, K.; Lee, D.-I.; Lee, J.-S. Typhoon Quantitative Precipitation Forecasts by the 2.5 km CReSS Model in Taiwan: Examples and Role of Topography. Atmosphere 2022, 13, 623. https://doi.org/10.3390/atmos13040623
Wang C-C, Paul S, Huang S-Y, Wang Y-W, Tsuboki K, Lee D-I, Lee J-S. Typhoon Quantitative Precipitation Forecasts by the 2.5 km CReSS Model in Taiwan: Examples and Role of Topography. Atmosphere. 2022; 13(4):623. https://doi.org/10.3390/atmos13040623
Chicago/Turabian StyleWang, Chung-Chieh, Sahana Paul, Shin-Yi Huang, Yi-Wen Wang, Kazuhisa Tsuboki, Dong-In Lee, and Ji-Sun Lee. 2022. "Typhoon Quantitative Precipitation Forecasts by the 2.5 km CReSS Model in Taiwan: Examples and Role of Topography" Atmosphere 13, no. 4: 623. https://doi.org/10.3390/atmos13040623
APA StyleWang, C. -C., Paul, S., Huang, S. -Y., Wang, Y. -W., Tsuboki, K., Lee, D. -I., & Lee, J. -S. (2022). Typhoon Quantitative Precipitation Forecasts by the 2.5 km CReSS Model in Taiwan: Examples and Role of Topography. Atmosphere, 13(4), 623. https://doi.org/10.3390/atmos13040623