Impact of Climate Change on the Yield and Water Footprint of Winter Wheat in the Haihe River Basin, China
Abstract
:1. Introduction
2. Methodology and Data
2.1. Study Areas
2.2. Data Inputs, Calibration, and Validation of the DSSAT Model
2.3. Model Evaluation
2.4. Simulation in Future Climate Scenarios
3. Results
3.1. Simulation of Winter Wheat Growth and Yield Using the DSSAT Model
3.2. Prediction of Growth Process, Yield, and Water Footprint under RCP Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pachauri, R.K.; Reisinger, A. (Eds.) Climate Change: Synthesis Report; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Masson-Delmotte, V.P.; Zhai, A.; Pirani, S.L. (Eds.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernment Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Schmidhuber, J.; Tubiello, F.N. Global food security under climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19703–19708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Fang, J. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Elbeltagi, A.; Aslam, M.R.; Malik, A.; Mehdinejadiani, B.; Srivastava, A.; Bhatia, A.S.; Deng, J. The impact of climate changes on the water footprint of wheat and maize production in the Nile Delta, Egypt. Sci. Total Environ. 2020, 743, 140770. [Google Scholar] [CrossRef] [PubMed]
- Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Zhu, Y. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Shrestha, S.; Chapagain, R.; Babel, M.S. Quantifying the impact of climate change on crop yield and water footprint of rice in the Nam Oon Irrigation Project, Thailand. Sci. Total Environ. 2017, 599–600, 689–699. [Google Scholar] [CrossRef]
- Das, J.; Poonia, V.; Jha, S.; Goyal, M.K. Understanding the climate change impact on crop yield over Eastern Himalayan Region: Ascertaining GCM and scenario uncertainty. Theor. Appl. Climatol. 2020, 142, 467–482. [Google Scholar] [CrossRef]
- Deihimfard, R.; Rahimi-Moghaddam, S.; Collins, B.; Azizi, K. Future climate change could reduce irrigated and rainfed wheat water footprint in arid environments. Sci. Total Environ. 2021, 807, 150991. [Google Scholar] [CrossRef]
- Felzer, B.; Heard, P. Precipitation differences amongst GCMs used for the U.S. national assessment. JAWRA J. Am. Water Resour. Assoc. 1999, 35, 1327–1340. [Google Scholar] [CrossRef]
- Nijssen, B.; O’Donnell, G.M.; Hamlet, A.F.; Lettenmaier, D.P. Hydrologic sensitivity of global rivers to climate change. Clim. Chang. 2001, 50, 143–175. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 2006, 111, D05109. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y. (Ed.) Virtual Water Trade. In Virtual Water Trade, Proceedings of the International Expert Meeting on Virtual Water Trade, Delft, The Netherlands, 12–13 December 2002; UNESCO-IHE: Delft, The Netherlands, 2003. [Google Scholar]
- Hoekstra, A.Y. Water footprint assessment: Evolvement of a new research field. Water Resour. Manag. 2017, 31, 3061–3081. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Manual: Setting the Global Standard; Earthscan: London, UK, 2011. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.P.; Han, Y.P.; Jia, D.D. Impact of climate change on the blue water footprint of agriculture on regional scale. Water Sci. Technol. Water Supply 2019, 19, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Arshad Awan, Z.; Khaliq, T.; Masood Akhtar, M.; Imran, A.; Irfan, M.; Jarrar Ahmed, M.; Ahmad, A. Building climate-resilient cotton production system for changing climate scenarios using the DSSAT model. Sustainability 2021, 13, 10495. [Google Scholar] [CrossRef]
- Govere, S.; Nyamangara, J.; Nyakatawa, E.Z. Climate change signals in the historical water footprint of wheat production in Zimbabwe. Sci. Total Environ. 2020, 742, 140473. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asner, G.P. Climate and management in U.S. agricultural yields. Science 2003, 299, 1032. [Google Scholar] [CrossRef]
- Gong, L.; Xu, C.Y.; Chen, D.; Halldin, S.; Chen, Y.D. Sensitivity of the Penman-Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin. J. Hydrol. 2006, 329, 620–629. [Google Scholar] [CrossRef]
- Sharifi, A.; Dinpashoh, Y. Sensitivity Analysis of the Penman-Monteith reference Crop Evapotranspiration to Climatic Variables in Iran. Water Resour. Manag. 2014, 28, 5465–5476. [Google Scholar] [CrossRef]
- Tuninetti, M.; Tamea, S.; D’Odorico, P.; Laio, F.; Ridolfi, L. Global sensitivity of high-resolution estimates of crop water footprint. Water Resour. Res. 2015, 51, 8257–8272. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Liu, C.; Qiao, F.; Juan, D.U.; Wang, M. Seasonal response of reference crop evapotranspiration to key climatic variables in North China Plain. Clim. Environ. Res. 2016, 21, 418–428. [Google Scholar]
- Liang, L.; Li, L.; Li, Z.; Li, J.; Jiang, D.; Xu, M.; Song, W. Sensitivity on the reference crop evapotranspiration in growing season in the West Songnen Plain. Trans. Chin. Soc. Agric. Eng. 2008, 5, 1–5. (In Chinese) [Google Scholar]
- Wang, Z.; Fang, G.; Zhang, H.; Tang, X.; Duan, L. Sensitivity Analysis of crop water requirement to meteorological factors in Aksu Irrigation Area. Desert Oasis Meteorol. 2018, 12, 33–39. [Google Scholar]
- Liu, C.; Zhang, D. Temporal and spatial changes analysis of the sensitivity of potential evapotranspiration to meteorological influencing factors in China. Acta Geogr. Sin. 2011, 66, 579–588. [Google Scholar]
- Liu, X.; Zheng, H.; Liu, C. Sensitivity of the potential evapotranspiration to key climatic variables in the Haihe River Basin. Resour. Sci. 2009, 31, 1470–1476. (In Chinese) [Google Scholar]
- Yang, J.; Liu, Q.; Mei, X.; Yan, C.; Hui, J.; Xu, J. Spatiotemporal characteristics of reference evapotranspiration and its sensitivity coefficients to climate factors in Huang-Huai-Hai Plain, China. J. Integr. Agric. 2013, 12, 2280–2291. [Google Scholar] [CrossRef]
- Dettori, M.; Cesaraccio, C.; Motroni, A.; Spano, D.; Duce, P. Using CERES-Wheat to simulate durum wheat production and phenology in Southern Sardinia. Field Crop Res. 2011, 102, 179–188. [Google Scholar] [CrossRef]
- Jing, Q.; McConkey, B.; Qian, B.; Smith, W.N.; Luce, M.S. Assessing water management effects on spring wheat yield in the Canadian Prairies using DSSAT wheat models. Agric. Water Manag. 2021, 244, 106591. [Google Scholar] [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Kroes, J.G.; Van Dam, J.C. Reference manual SWAP version 3.0.3. In Alterra-Report: Alterra Green World Research; Wageningen University and Research Centre: Wageningen, The Netherlands, 2003; Volume 773, pp. 1–211. [Google Scholar]
- Kroes, J.G.; Wesseling, J.G.; Van Dam, J.C. Integrated modelling of the soil–water -atmosphere-plant system using the model SWAP 2.0, an overview of theory and an application. Hydrol. Process 2000, 14, 1993–2002. [Google Scholar] [CrossRef]
- Hoogenboom, G.; Jones, J.E.; Wikens, P.W.; Porter, C.Q.; Boote, K.J.; Hunt, L.D.; Singh, U.; Lizaso, J.I.; White, J.M.; Uryasev, O. (Eds.) Decision Support System for Agro-technology Transfer (DSSAT); Version 4.5; University of Hawaii: Honolulu, HI, USA, 2010. [Google Scholar]
- Yano, T.; Aydin, M.; Haraguchi, T. Impact of climate change on irrigation demand and crop growth in a Mediterranean environment of Turkey. Sensors 2007, 7, 2297–2315. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Yang, X.; Zheng, B.; Liu, Z.; Zhao, J.; Sun, S.; Li, K.; Dong, C. Effects of climate change on the extension of the potential double cropping region and crop water requirements in Northern China. Agric. For. Meteorol. 2019, 268, 146–155. [Google Scholar] [CrossRef]
- Garofalo, P.; Ventrella, D.; Kersebaum, K.C.; Gobin, A.; Trnka, M.; Giglio, L.; Dubrovsky, M.; Castellini, M. Water footprint of winter wheat under climate change: Trends and uncertainties associated to the ensemble of crop models. Sci. Total Environ. 2019, 658, 1186–1208. [Google Scholar] [CrossRef]
- Boonwichai, S.; Shrestha, S.; Babel, M.S.; Weesakul, S.; Datta, A. Climate change impacts on irrigation water requirement, crop water productivity and rice yield in the Songkhram River Basin, Thailand. J. Clean. Prod. 2018, 198, 1157–1164. [Google Scholar] [CrossRef]
- Fu, L.T.; Zhao, Z. Impacts of climate change as a function of global mean temperature: Maize productivity and water use in China. Clim. Chang. 2011, 105, 409–422. [Google Scholar]
- Rahimi-Moghaddam, S.; Kambouzia, J.; Deihimfard, R. Adaptation strategies to lessen negative impact of climate change on grain maize under hot climatic conditions: A model-based assessment. Agric. For. Meteorol. 2018, 253–254, 1–14. [Google Scholar] [CrossRef]
- Phetheet, J.; Hill, M.C.; Barron, R.W.; Rossi, M.W.; Amanor-Boadu, V.; Wu, H.; Kisekka, I. Consequences of climate change on food-energy-water systems in arid regions without agricultural adaptation, analyzed using FEWCalc and DSSAT. Resources. Conserv. Recycl. 2020, 168, 105309. [Google Scholar] [CrossRef]
- Tooley, B.E.; Mallory, E.B.; Porter, G.A.; Hoogenboom, G. Predicting the response of a potato-grain production system to climate change for a humid continental climate using DSSAT. Agric. For. Meteorol. 2021, 307, 108452. [Google Scholar] [CrossRef]
- Masud, M.B.; McAllister, T.; Cordeiro, M.R.C.; Faramarzi, M. Modelling future water footprint of barley production in Alberta, Canada: Implications for water use and yields to 2064. Sci. Total Environ. 2018, 616–617, 208–222. [Google Scholar] [CrossRef]
- Mubeen, M.; Ahmad, A.; Hammad, H.M.; Awais, M.; Farid, H.U.; Saleem, M.; ul Din, M.S.; Amin, A.; Ali, A.; Fahad, S.; et al. Evaluating the climate change impact on water use efficiency of cotton-wheat in semi-arid conditions using DSSAT model. J. Water Clim. Chang. 2020, 11, 1661–1675. [Google Scholar] [CrossRef]
- Alejo, L.A. Assessing the impacts of climate change on aerobic rice production using the DSSAT-CERES-Rice model. J. Water Clim. Chang. 2021, 12, 1–13. [Google Scholar] [CrossRef]
- Han, Y.P.; Jia, D.D.; Zhuo, L.; Sauvage, S.; Sánchez-Pérez, J.M.; Huang, H.P.; Wang, C.Y. Assessing the Water Footprint of Wheat and Maize in Haihe River Basin, Northern China (1956–2015). Water 2018, 10, 867. [Google Scholar] [CrossRef] [Green Version]
- Bao, Z.X.; Zhang, J.Y.; Wang, G.Q.; Fu, G.B.; He, R.M.; Yan, X.L.; Jin, J.L.; Liu, Y.L.; Zhang, A.J. Attribution for decreasing stream flow of the Haihe River Basin, northern China: Climate variability or human activities? J. Hydrol. 2012, 460–461, 117–129. [Google Scholar] [CrossRef]
- Zou, J.; Xie, Z.H.; Zhan, C.S.; Qin, P.H.; Sun, Q.; Jia, B.H.; Xia, J. Effects of anthropogenic groundwater exploitation on land surface processes: A case study of the Haihe River Basin, northern China. J. Hydrol. 2015, 524, 625–641. [Google Scholar] [CrossRef]
- CMA (China Meteorological Administration). China Meteorological Data Sharing Service System, Beijing, China. Available online: http://data.cma.cn/ (accessed on 29 November 2016).
- Du, X.Y. Study on Optimal Irrigation Scheme of Winter Wheat in North China Based on DSSAT Model. Master’s Thesis, Hebei Normal University, Shijiazhuang, China, 2016. (In Chinese). [Google Scholar]
- Liu, J.G.; Chu, Q.Q.; Wang, G.Y.; Chen, F.; Zhang, Y.Y. Simulation yield gap of winter wheat in response to nitrogen management in North China Plain based on DSSAT model. Trans. Chin. Soc. Agric. Eng. 2013, 29, 124–129. (In Chinese) [Google Scholar]
- FAO; IIASA; ISRIC; ISS-CAS; JRC. Harmonized World Soil Database; Version 1.1; FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2009. [Google Scholar]
- Shi, X.Z.; Yu, D.S.; Warner, E.D.; Pan, X.Z.; Petersen, G.W.; Gong, Z.G.; Weindorf, D.C. Soil database of 1: 1,000,000 digital soil survey and reference system of the Chinese genetic soil classification system. Soil Surv. Horiz. 2004, 45, 129–136. [Google Scholar] [CrossRef]
- Cong, Z.T.; Xin, R.; Yao, B.Z.; Lei, Z.D. Impact of climate change on water use of winter wheat with HadCM3 model. J. Hydraul. Eng. 2010, 41, 1101–1107. (In Chinese) [Google Scholar]
- Chen, S.; He, L.; Cao, Y.; Wang, R.; Wu, L.; Wang, Z.; Zou, Y.; Siddique, K.H.M.; Xiong, W.; Liu, M.; et al. Comparisons among four different upscaling strategies for cultivar genetic parameters in rain-fed spring wheat phenology simulations with the DSSAT-CERES-Wheat model. Agric. Water Manag. 2021, 258, 107181. [Google Scholar] [CrossRef]
- Ritchie, J.T. Soil water balance and plant stress. In Understanding Options for Agricultural Production; Tsuji, G.Y., Hoogenboom, G., Thornton, P.K., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998; pp. 41–54. [Google Scholar]
- Muratoglu, A. Assessment of wheat’s water footprint and virtual water trade: A case study for Turkey. Ecol. Processes 2020, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.L.; Liu, H.B.; Lei, Q.L.; Zhai, L.M.; Wang, H.Y.; Zhang, J.Z.; Zhu, Y.P.; Liu, S.P.; Li, S.J.; Zhang, J.S. Using the DSSAT model to simulate wheat yield and soil organic carbon under a wheat-maize cropping system in the North China Plain. J. Integr. Agric. 2017, 16, 2300–2307. [Google Scholar] [CrossRef] [Green Version]
- Xevi, E.; Gilley, J.; Feyen, J. Comparative study of two crop yield simulation models. Agric. Water Manag. 1996, 30, 155–173. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 81, 119–159. [Google Scholar] [CrossRef] [Green Version]
- Moss, R.; Babiker, M.; Brinkman, S.; Calvo, E.; Carter, T.; Edmonds, J.A.; Elgizouli, I.; Emori, S.; Lin, E.; Hibbard, K.; et al. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies; IPCC: Noordwijkerhout, The Netherlands, 2007. [Google Scholar]
- Zhang, J.P.; Zhao, Y.X.; Wang, C.Y.; He, Y. Effect of climate change on winter wheat growth and yield in North China. Chin. J. Appl. Ecol. 2006, 17, 1179–1184. (In Chinese) [Google Scholar]
- Li, X.X. The Impact of Future Climate Change on Winter Wheat and the Adaptive Capacity of Technologies to Drought Risks in the Huang-Huai-Hai Plain. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2017. (In Chinese). [Google Scholar]
- Ji, X.J.; Zhu, Y.Y.; Liu, X.Y.; Xiong, S.P.; Wang, G. Impacts of climate change on the winter wheat growth stage in North China. Chin. J. Agrometeorol. 2011, 32, 561–581. (In Chinese) [Google Scholar]
- Yu, W.D.; Zhao, G.Q.; Chen, H.L. Impacts of climate change on growing stages of main crops in Henan province. Chin. J. Agrometeorol. 2007, 28, 9–12. (In Chinese) [Google Scholar]
- Yang, L.; Liu, H.J.; Tang, X.P.; Feng, D.X.; Li, L. Effect of climate change on winter wheat yield in low/high yield years in Ningjin Country, Hebei Province. South North Water Transf. Water Sci. Technol. 2021, 19, 971. (In Chinese) [Google Scholar]
- Sun, S.; Wu, P.; Wang, Y.; Zhao, X.; Liu, J.; Zhang, X. The impacts of interannual climate variability and agricultural inputs on water footprint of crop production in an irrigation district of China. Sci. Total Environ. 2013, 444, 498–507. [Google Scholar] [CrossRef]
- Zhi, Y.; Yang, Z.F.; Yin, X.A. Decomposition analysis of water footprint changes in a water-limited river basin: A case study of the Haihe River basin, China. Hydrol. Earth Syst. Sci. 2014, 18, 1549–1559. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Chen, B.; Hayat, T.; Alsaedi, A.; Ahmad, B. The driving force of water footprint under the rapid urbanization process: A structural decomposition analysis for Zhangye city in China. J. Clean. Prod. 2017, 163, 322–328. [Google Scholar] [CrossRef]
Soil Type | Relative Thickness (cm) | The Percentage of Soil Size | Nutrients, and Physical and Chemical Properties | ||
---|---|---|---|---|---|
2–0.02 mm | 0.02–0.002 mm | <0.002 mm | |||
Loess | 18 | 61.2 | 23.55 | 15.3 | Cation exchange capacity: 11.5 cmol/(+); organic matter: 8.3 g/kg; total nitrogen: 0.59 g/kg; total phosphorus: 0.46 g/kg; total potassium: 17.5 g/kg; water extraction pH: 8.2. |
23 | 62.79 | 23.18 | 15.1 | ||
76 | 56.43 | 25.72 | 17.9 | ||
33 | 56.13 | 26.93 | 16.9 |
Parameters | Explanations [32] | Shijiazhuang | Beijing | Tianjin |
---|---|---|---|---|
PIV | Vernalization sensitivity coefficient, days | 35 | 35 | 15 |
PID | Photoperiod sensitivity coefficient, %h | 75 | 65 | 65 |
P5 | Thermal time from the onset of linear filling to maturity, °C.days | 550 | 550 | 550 |
G1 | Kernel number per unit stem + spike weight at anthesis, numbers/g | 17 | 15 | 15 |
G2 | Standard kernel size under optimal conditions, mg | 32 | 30 | 30 |
G3 | Standard, non-stressed dry weight of a single tiller at maturity, g | 1.4 | 1.4 | 1.1 |
PHINT | Thermal time between the appearance of leaf tips, °C.days | 70 | 70 | 70 |
Precipitation (mm) | Min. Temperature (°C) | Max. Temperature (°C) | Wind Speed (m/s) | Relative Humidity (%) | Sunshine Hours (h) | |
---|---|---|---|---|---|---|
Shijiazhuang | 510 | 9.9 | 19.5 | 1.5 | 57.0 | 2135 |
Beijing | 496 | 8.5 | 18.5 | 2.3 | 52.7 | 2425 |
Tianjin | 527 | 9.2 | 18.1 | 1.2 | 59.1 | 2244 |
Parameters | Shijiazhuang | Beijing | Tianjin | ||||
---|---|---|---|---|---|---|---|
Obs | Sim | Obs | Sim | Obs | Sim | ||
Calibration | Mean | 214 | 218 | 223 | 224 | 220 | 223 |
Standard deviation | 5.1 | 4.8 | 7 | 9 | 7 | 8 | |
Minimum | 203 | 208 | 210 | 211 | 206 | 210 | |
Maximum | 223 | 227 | 235 | 238 | 230 | 239 | |
Data number | 18 | 18 | 18 | ||||
r | 0.85 *** | 0.96 *** | 0.91 *** | ||||
NRMSE, % | 2.3 | 1.2 | 1.9 | ||||
CRM | −0.019 | −0.004 | −0.013 | ||||
d | 0.21 | 0.03 | 0.09 | ||||
Validation | Mean | 211 | 216 | 222 | 225 | 218 | 222 |
Standard deviation | 5.2 | 5.3 | 7 | 8 | 7 | 6 | |
Minimum | 196 | 206 | 210 | 210 | 206 | 210 | |
Maximum | 218 | 225 | 234 | 239 | 231 | 233 | |
Data number | 22 | 21 | 24 | ||||
r | 0.71 *** | 0.93 *** | 0.92 *** | ||||
nRMSE, % | 3 | 1.9 | 1.8 | ||||
CRM | −0.023 | −0.015 | −0.015 | ||||
d | 0.31 | 0.09 | 0.10 |
Parameters | Shijiazhuang | Beijing | Tianjin | ||||
---|---|---|---|---|---|---|---|
Obs | Sim | Obs | Sim | Obs | Sim | ||
Calibration | Mean | 250 | 247 | 255 | 255 | 253 | 253 |
Standard deviation | 3.6 | 4.3 | 6.4 | 8.2 | 7.8 | 7.3 | |
Minimum | 244 | 240 | 243 | 240 | 237 | 240 | |
Maximum | 258 | 257 | 265 | 267 | 262 | 268 | |
Data number | 17 | 17 | 18 | ||||
r | 0.81 *** | 0.97 *** | 0.84 *** | ||||
nRMSE, % | 1.4 | 1.0 | 1.7 | ||||
CRM | 0.011 | 0.001 | −0.000 | ||||
Validation | Mean | 248 | 247 | 251 | 253 | 252 | 253 |
Standard deviation | 2.8 | 4.5 | 6.6 | 8.8 | 6.2 | 6.4 | |
Minimum | 243 | 238 | 240 | 241 | 242 | 241 | |
Maximum | 253 | 256 | 265 | 269 | 263 | 262 | |
Data number | 18 | 17 | 24 | ||||
r | 0.65 ** | 0.92 *** | 0.76 *** | ||||
nRMSE, % | 1.4 | 1.7 | 1.7 | ||||
CRM | 0.004 | −0.008 | −0.002 |
PIV | PID | P5 | G1 | G2 | G3 | PHINT | |
---|---|---|---|---|---|---|---|
Current study | 35 | 75 | 550 | 17 | 32 | 1.4 | 70 |
“41,581” | 32.76 | 82.79 | 558.2 | 17.16 | 34.31 | 1.144 | 70 |
“Kenong199” | 39.22 | 59.13 | 656.3 | 17.55 | 37.77 | 1.933 | 70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, D.; Wang, C.; Han, Y.; Huang, H.; Xiao, H. Impact of Climate Change on the Yield and Water Footprint of Winter Wheat in the Haihe River Basin, China. Atmosphere 2022, 13, 630. https://doi.org/10.3390/atmos13040630
Jia D, Wang C, Han Y, Huang H, Xiao H. Impact of Climate Change on the Yield and Water Footprint of Winter Wheat in the Haihe River Basin, China. Atmosphere. 2022; 13(4):630. https://doi.org/10.3390/atmos13040630
Chicago/Turabian StyleJia, Dongdong, Chunying Wang, Yuping Han, Huiping Huang, and Heng Xiao. 2022. "Impact of Climate Change on the Yield and Water Footprint of Winter Wheat in the Haihe River Basin, China" Atmosphere 13, no. 4: 630. https://doi.org/10.3390/atmos13040630
APA StyleJia, D., Wang, C., Han, Y., Huang, H., & Xiao, H. (2022). Impact of Climate Change on the Yield and Water Footprint of Winter Wheat in the Haihe River Basin, China. Atmosphere, 13(4), 630. https://doi.org/10.3390/atmos13040630