Dust Climatology of Turkey as a Part of the Eastern Mediterranean Basin via 9-Year CALIPSO-Derived Product
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Domain
2.2. CALIPSO–CALIOP
2.3. Aqua—MODIS
2.4. Trend Decomposition Analysis
3. Results and Discussion
3.1. Horizontal Distributions
3.2. Vertical Distributions
3.2.1. Climatological Profiles
3.2.2. Conditional Profiles
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Jacobson, M.Z. Global Direct Radiative Forcing Due to Multicomponent Anthropogenic and Natural Aerosols. J. Geophys. Res. Atmos. 2001, 106, 1551–1568. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Lelieveld, J. Global Air Pollution Crossroads over the Mediterranean. Science 2002, 298, 794–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jickells, T.D.; Baker, A.R.; Brooks, N.; Liss, P.S.; An, Z.S.; Cao, J.J.; Andersen, K.K.; Bergametti, C.; Boyd, P.W.; Hunter, K.A.; et al. Global Iron Connections between Desert Dust, Ocean Biogeochemistry, and Climate. Science 2005, 308, 67–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saltzman, E.S.; Dioumaeva, I.; Finley, B.D. Glacial/Interglacial Variations in Methanesulfonate (MSA) in the Siple Dome Ice Core, West Antarctica. Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, D.; Lohmann, U.; Raga, G.B.; O’Dowd, C.D.; Kulmala, M.; Reissell, A.; Fuzzi, S.; Andreae, M.O. Flood or Drought: How Do Aerosols Affect Precipitation? Science 2008, 321, 1309–1313. [Google Scholar] [CrossRef] [Green Version]
- Ridley, D.A.; Heald, C.L.; Ford, B. North African Dust Export and Deposition: A Satellite and Model Perspective. J. Geophys. Res. Atmos. 2012, 117, 1–21. [Google Scholar] [CrossRef]
- Yu, H.; Chin, M.; Yuan, T.; Bian, H.; Remer, L.A.; Prospero, J.M.; Omar, A.; Winker, D.; Yang, Y.; Zhang, Y.; et al. The Fertilizing Role of African Dust in the Amazon Rainforest: A First Multiyear Assessment Based on CALIPSO Lidar Observations. Geophys. Res. Lett. 2015, 42, 1984–1991. [Google Scholar] [CrossRef]
- Nickovic, S.; Vukovic, A.; Vujadinovic, M.; Djurdjevic, V.; Pejanovic, G. Technical Note: High-Resolution Mineralogical Database of Dust-Productive Soils for Atmospheric Dust Modeling. Atmos. Chem. Phys. 2012, 12, 845–855. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.J.; Smorodinsky, S.; Lipsett, M.; Singer, B.C.; Hodgson, A.T.; Ostro, B. Traffic-Related Air Pollution near Busy Roads: The East Bay Children’s Respiratory Health Study. Am. J. Respir. Crit. Care Med. 2004, 170, 520–526. [Google Scholar] [CrossRef] [Green Version]
- Filleul, L.; Rondeau, V.; Vandentorren, S.; Le Moual, N.; Cantagrel, A.; Annesi-Maesano, I.; Charpin, D.; Declercq, C.; Neukirch, F.; Paris, C.; et al. Twenty Five Year Mortality and Air Pollution: Results from the French PAARC Survey. Occup. Environ. Med. 2005, 62, 453–460. [Google Scholar] [CrossRef] [Green Version]
- Gauderman, W.J.; Avol, E.; Lurmann, F.; Kuenzli, N.; Gilliland, F.; Peters, J.; McConnell, R. Childhood Asthma and Exposure to Traffic and Nitrogen Dioxide. Epidemiology 2005, 16, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Beelen, R.; Hoek, G.; van den Brandt, P.A.; Goldbohm, R.A.; Fischer, P.; Schouten, L.J.; Jerrett, M.; Hughes, E.; Armstrong, B.; Brunekreef, B. Long-Term Effects of Traffic-Related Air Pollution on Mortality in a Dutch Cohort (NLCS-AIR Study). Environ. Health Perspect. 2008, 116, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Brauer, M.; Lencar, C.; Tamburic, L.; Koehoorn, M.; Demers, P.; Karr, C. A Cohort Study of Traffic-Related Air Pollution Impacts on Birth Outcomes. Environ. Health Perspect. 2008, 116, 680–686. [Google Scholar] [CrossRef] [Green Version]
- Querol, X.; Alastuey, a.; Pey, J.; Cusack, M.; Pérez, N.; Mihalopoulos, N.; Theodosi, C.; Gerasopoulos, E.; Kubilay, N.; Koçak, M. Variability in Regional Background Aerosols within the Mediterranean. Atmos. Chem. Phys. 2009, 9, 10153–10192. [Google Scholar] [CrossRef] [Green Version]
- Stefanski, R.; Sivakumar, M.V.K. Impacts of Sand and Dust Storms on Agriculture and Potential Agricultural Applications of a SDSWS. In Proceedings of the WMO/GEO Expert Meeting on an International Sand and Dust Storm Warning System OP Conference. Series: Earth and Environmental Science, Barcelona, Spain, 7–9 November 2007; Volume 7. [Google Scholar] [CrossRef]
- Griffin, D.W.; Kubilay, N.; Koçak, M.; Gray, M.A.; Borden, T.C.; Shinn, E.A. Airborne Desert Dust and Aeromicrobiology over the Turkish Mediterranean Coastline. Atmos. Environ. 2007, 41, 4050–4062. [Google Scholar] [CrossRef]
- Goudie, A.S. Desert Dust and Human Health Disorders. Environ. Int. 2013, 63, 101–113. [Google Scholar] [CrossRef] [PubMed]
- NA-ME-E. Northern Africa-Middle East-Europe Regional Center, Sand and Dust Storm Warning Advisory System. Available online: https://sds-was.aemet.es/ (accessed on 15 May 2020).
- Union Pacific CAFÉ. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Off. J. Eur. Union 2008. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:0001:0044:EN:PDF (accessed on 1 April 2022).
- EEA. Particulate Matter from Natural Sources and Related Reporting under the EU Air Quality Directive; Technical Report; EEA: Copenhagen, Denmark, 2012. [Google Scholar]
- Isaelevich, P.L.; Ganor, E.; Levin, Z.; Joseph, J.H. Annual variations of physical properties of desert dust over Israel. J. Geophys. Res. Atmos. 2003, 108, 4381. [Google Scholar] [CrossRef] [Green Version]
- Kubilay, N.; Cokacar, T.; Oguz, T. Optical Properties of Mineral Dust Outbreaks over the Northeastern Mediterranean. J. Geophys. Res. Atmos. 2003, 108, 4666. [Google Scholar] [CrossRef]
- Kubilay, N.; Oguz, T.; Koçak, M.; Torres, O. Ground-Based Assessment of Total Ozone Mapping Spectrometer (TOMS) Data for Dust Transport over the Northeastern Mediterranean. Glob. Biogeochem. Cycles 2005, 19, 1–9. [Google Scholar] [CrossRef]
- Kalivitis, N.; Gerasopoulos, E.; Vrekoussis, M.; Kouvarakis, G.; Kubilay, N.; Hatzianastassiou, N.; Vardavas, I.; Mihalopoulos, N. Dust Transport over the Eastern Mediterranean Derived from Total Ozone Mapping Spectrometer, Aerosol Robotic Network, and Surface Measurements. J. Geophys. Res. Atmos. 2007, 112, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Agacayak, T.; Kindap, T.; Unal, A.; Pozzoli, L.; Mallet, M.; Solmon, F. A Case Study for Saharan Dust Transport over Turkey via RegCM4.1 Model. Atmos. Res. 2015, 153, 392–403. [Google Scholar] [CrossRef]
- EARLINET. European Aerosol Research Lidar Network. Available online: https://www.earlinet.org/index.php?id=earlinet_homepage (accessed on 11 March 2017).
- MPLNET. The NASA Micro-Pulse Lidar Network. Available online: https://mplnet.gsfc.nasa.gov/ (accessed on 12 March 2017).
- Amiridis, V.; Balis, D.S.; Kazadzis, S.; Bais, A.; Giannakaki, E.; Papayannis, A.; Zerefos, C. Four-Year Aerosol Observations with a Raman Lidar at Thessaloniki, Greece, in the Framework of European Aerosol Research Lidar Network (EARLINET). J. Geophys. Res. Atmos. 2005, 110, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hansell, R.A.; Liou, K.N.; Ou, S.C.; Tsay, S.C.; Ji, Q.; Reid, J.S. Remote Sensing of Mineral Dust Aerosol Using AERI during the UAE2: A Modeling and Sensitivty Study. J. Geophys. Res. Atmos. 2008, 113, 1–18. [Google Scholar] [CrossRef]
- Papayannis, A.; Amiridis, V.; Mona, L.; Tsaknakis, G.; Balis, D.; Bösenberg, J.; Chaikovski, A.; De Tomasi, F.; Grigorov, I.; Mattis, I.; et al. Systematic Lidar Observations of Saharan Dust over Europe in the Frame of EARLINET (2000–2002). J. Geophys. Res. Atmos. 2008, 113, D10204. [Google Scholar] [CrossRef] [Green Version]
- Mona, L.; Liu, Z.; Müller, D.; Omar, A.; Papayannis, A.; Pappalardo, G.; Sugimoto, N.; Vaughan, M. Lidar Measurements for Desert Dust Characterization: An Overview. Adv. Meteorol. 2012, 2012, 356265. [Google Scholar] [CrossRef]
- Di Biagio, C.; Formenti, P.; Balkanski, Y.; Caponi, L.; Cazaunau, M.; Pangui, E.; Journet, E.; Nowak, S.; Caquineau, S.; Andreae, O.M.; et al. Global Scale Variability of the Mineral Dust Long-Wave Refractive Index: A New Dataset of in Situ Measurements for Climate Modeling and Remote Sensing. Atmos. Chem. Phys. 2017, 17, 1901–1929. [Google Scholar] [CrossRef] [Green Version]
- Nisantzi, A.; Mamouri, R.E.; Ansmann, A.; Schuster, G.L.; Hadjimitsis, D.G. Middle East versus Saharan Dust Extinction-to-Backscatter Ratios. Atmos. Chem. Phys. 2015, 15, 7071–7084. [Google Scholar] [CrossRef] [Green Version]
- Sifakis, N.I.; Iossifidis, C.; Kontoes, C. CHRISTINE Code for High ResolutIon Satellite Mapping of Optical ThIckness and ÅNgstrom Exponent. Part II: First Application to the Urban Area of Athens, Greece and Comparison to Results from Previous Contrast-Reduction Codes. Comput. Geosci. 2014, 62, 142–149. [Google Scholar] [CrossRef]
- Kubilay, N.; Nickovic, S.; Moulin, C.; Dulac, F. An Illustration of the Transport and Deposition of Mineral Dust onto the Eastern Mediterranean. Atmos. Environ. 2000, 34, 1293–1303. [Google Scholar] [CrossRef]
- Moulin, C.; Dulac, F.; Lambert, C.E.; Chazette, P.; Jakowiak, I.; Chatenet, B.; Lavenu, F. Long-Term Daily Monitoring of Saharan Dust Load over Ocean Using Meteosat ISCCP-B2 Data. 2. Accuracy of the Method and Validation Using Sun Photometer Measurements. J. Geophys. Res. 1997, 102, 16959–16969. [Google Scholar] [CrossRef] [Green Version]
- Nabat, P.; Somot, S.; Mallet, M.; Chiapello, I.; Morcrette, J.J.; Solmon, F.; Szopa, S.; Dulac, F.; Collins, W.; Ghan, S.; et al. A 4-D Climatology (1979–2009) of the Monthly Tropospheric Aerosol Optical Depth Distribution over the Mediterranean Region from a Comparative Evaluation and Blending of Remote Sensing and Model Products. Atmos. Meas. Tech. 2013, 6, 1287–1314. [Google Scholar] [CrossRef] [Green Version]
- Hatzianastassiou, N.; Gkikas, A.; Mihalopoulos, N.; Torres, O.; Katsoulis, B.D. Natural versus Anthropogenic Aerosols in the Eastern Mediterranean Basin Derived from Multiyear TOMS and MODIS Satellite Data. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Özsoy, E.; Kubilay, N.; Nickovic, S.; Moulin, C. A Hemispheric Dust Storm Affecting the Atlantic and Mediterranean in April 1994: Analyses, Modeling, Ground-Based Measurements and Satellite Observations. J. Geophys. Res. 2001, 106, 18439–18460. [Google Scholar] [CrossRef] [Green Version]
- Koren, I.; Joseph, J.H.; Israelevich, P. Detection of dust plumes and their sources in northeastern Libya. Can. J. Remote Sens. 2003, 29, 792–796. [Google Scholar] [CrossRef]
- Marey, H.S.; Gille, J.C.; El-Askary, H.M.; Shalaby, E.A.; El-Raey, M.E. Aerosol climatology over Nile Delta based on MODIS, MISR and OMI satellite data. Atmos. Chem. Phys. 2011, 11, 10637–10648. [Google Scholar] [CrossRef] [Green Version]
- Alfaro-Contreras, R.; Zhang, J.; Reid, J.S.; Christopher, S. A Study of the Longer Term Variation of Aerosol Optical Thickness and Direct Shortwave Aerosol Radiative Effect Trends Using MODIS and CERES. Atmos. Chem. Phys. Discuss. 2017, 1–63. [Google Scholar] [CrossRef] [Green Version]
- Benas, N.; Beloconi, A.; Chrysoulakis, N. Estimation of Urban PM10 Concentration, Based on MODIS and MERIS/AATSR Synergistic Observations. Atmos. Environ. 2013, 79, 448–454. [Google Scholar] [CrossRef]
- Gkikas, A.; Hatzianastassiou, N.; Mihalopoulos, N.; Torres, O. Characterization of Aerosol Episodes in the Greater Mediterranean Sea Area from Satellite Observations (2000–2007). Atmos. Environ. 2016, 128, 286–304. [Google Scholar] [CrossRef]
- Russell, P.B.; Kacenelenbogen, M.; Livingston, J.M.; Hasekamp, O.P.; Burton, S.P.; Schuster, G.L.; Johnson, M.S.; Knobelspiesse, K.D.; Redemann, J.; Ramachandran, S.; et al. A Multiparameter Aerosol Classification Method and Its Application to Retrievals from Spaceborne Polarimetry. J. Geophys. Res. Atmos. 2014, 119, 9838–9863. [Google Scholar] [CrossRef]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Omar, A.H.; Winker, D.M.; Kittaka, C.; Vaughan, M.A.; Liu, Z.; Hu, Y.; Trepte, C.R.; Rogers, R.R.; Ferrare, R.A.; Lee, K.P.; et al. The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm. J. Atmos. Ocean. Technol. 2009, 26, 1994–2014. [Google Scholar] [CrossRef]
- Kim, M.-H.; Omar, A.H.; Tackett, J.L.; Vaughan, M.A.; Winker, D.M.; Trepte, C.R.; Hu, Y.; Liu, Z.; Poole, L.R.; Pitts, M.C.; et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos. Meas. Tech. 2018, 11, 6107–6135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tesche, M.; Ansmann, A.; Mueller, D.; Althausen, D.; Engelmann, R.; Freudenthaler, V.; Gross, S. Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008. J. Geophys. Res. Atmos. 2009, 114, D13202. [Google Scholar] [CrossRef]
- Tackett, J.L.; Winker, D.M.; Getzewich, B.J.; Vaughan, M.A.; Young, S.A.; Kar, J. CALIPSO lidar level 3 aerosol profile product: Version 3 algorithm design. Atmos. Meas. Tech. 2018, 11, 4129–4152. [Google Scholar] [CrossRef] [Green Version]
- Yorks, J.E.; McGill, M.; Rodier, S.; Vaughan, M.; Hu, Y.; Hlavka, D. Radiative Effects of African Dust and Smoke Observed from Clouds and the Earth’s Radiant Energy System (CERES) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) Data. J. Geophys. Res. Atmos. 2009, 114, 1–10. [Google Scholar] [CrossRef]
- Kabatas, B.; Unal, A.; Pierce, R.B.; Kindap, T.; Pozzoli, L. The Contribution of Saharan Dust in PM10 Concentration Levels in Anatolian Peninsula of Turkey. Sci. Total Environ. 2014, 488–489, 413–421. [Google Scholar] [CrossRef]
- Mamouri, R.E.; Ansmann, A. Estimated Desert-Dust Ice Nuclei Profiles from Polarization Lidar: Methodology and Case Studies. Atmos. Chem. Phys. 2015, 15, 3463–3477. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Han, Z. Aerosol Vertical Distribution over East China from RIEMS-Chem Simulation in Comparison with CALIPSO Measurements. Atmos. Environ. 2016, 143, 177–189. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Z.; Liu, Z.; Winker, D.; Trepte, C. A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements. J. Geophys. Res. Atmos. 2008, 113, 1–15. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.; Coakley., J.A., Jr.; Ackerman, S.A.; Charlson, R.J.; Colarco, P.R.; Flamant, P.; Fu, Q.; Hoff, R.; Kittaka, C.; et al. The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc. 2010, 91, 1211–1229. [Google Scholar] [CrossRef]
- Winker, D.M.; Tackett, J.L.; Getzewich, B.J.; Liu, Z.; Vaughan, M.A.; Rogers, R.R. The Global 3-D Distribution of Tropospheric Aerosols as Characterized by CALIOP. Atmos. Chem. Phys. 2013, 13, 3345–3361. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F. Climate Change Hot-Spots. Geophys. Res. Lett. 2006, 33, L08707. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Global Planet. Chang. 2008, 200863, 90–104. [Google Scholar] [CrossRef]
- Lelieveld, J.; Hadjinicolaou, P.; Kostopoulou, E.; Chenoweth, J.; El Maayar, M.; Giannakopoulos, C.; Hannides, C.; Lange, M.A.; Tanarhte, M.; Tyrlis, E.; et al. Climate change and impacts in the Eastern Mediterranean and the Middle East. Clim. Chang. 2012, 114, 667–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubilay, N.; Saydam, A.C. Trace Elements in Atmospheric Particulates over the Eastern Mediterranean; Concentrations, Sources, and Temporal Variability. Atmos. Environ. 1995, 29, 2289–2300. [Google Scholar] [CrossRef]
- Al-Momani, I.F.; Güllü, G.; Ölmez, I.; Eler, Ü.; Örtel, E.; Sirin, G.; Tuncel, G. Chemical Composition of Eastern Mediterranean Aerosol and Precipitation: Indications of Long-Range Transport. Pure Appl. Chem. 1997, 69, 41–46. [Google Scholar] [CrossRef]
- Güllü, G.H.; Ölmez, I.; Aygün, S.; Tuncel, G. Atmospheric Trace Element Concentrations over the Eastern Mediterranean Sea: Factors Affecting Temporal Variability. J. Geophys. Res. 1998, 103, 21943. [Google Scholar] [CrossRef]
- Holben, B.N.; Slutsker, T.I.E.I.; Tar, D.; Buis, J.P.; Setxerj, I.I.A.; Reagan, A.; Kaufman, J.Y.; Nakajima, T.; Lavenu, F.; Vemte, E.; et al. AERONET-A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- AERONET. Aerosol Robotic Network. Available online: https://aeronet.gsfc.nasa.gov/ (accessed on 22 January 2022).
- Doǧan, G.; Güllü, G.; Tuncel, G. Sources and Source Regions Effecting the Aerosol Composition of the Eastern Mediterranean. Microchem. J. 2008, 88, 142–149. [Google Scholar] [CrossRef]
- Gullu, G.; Olmez, I.; Tuncel, G. Source Apportionment of Trace Elements in the Eastern Mediterranean Atmosphere. J. Radioanal. Nucl. Chem. 2004, 259, 163–171. [Google Scholar] [CrossRef]
- Koçak, M.; Mihalopoulos, N.; Kubilay, N. Origin and Source Regions of PM10 in the Eastern Mediterranean Atmosphere. Atmos. Res. 2009, 92, 464–474. [Google Scholar] [CrossRef]
- Neophytou, A.M.; Yiallouros, P.; Coull, B.A.; Kleanthous, S.; Pavlou, P.; Pashiardis, S.; Dockery, D.W.; Koutrakis, P.; Laden, F. Particulate Matter Concentrations during Desert Dust Outbreaks and Daily Mortality in Nicosia, Cyprus. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Kopanakis, I.; Eleftheriadis, K.; Mihalopoulos, N.; Lykadis-Simantiris, N.; Katsivela, E.; Pentari, D.; Zarmpas, P.; Lazaridis, M. Physico-chemical characteristics of particulate matter in the Eastern Mediterranean. J. Atmos. Res. 2012, 106, 93–107. [Google Scholar] [CrossRef]
- Dimitriou, K.; Tsagkaraki, M.; Zarmpas, P.; Mihalopoulos, N. Impact of spatial and vertical distributions of air masses on PM10 chemical components at the Eastern Mediterranean–A seasonal approach. J. Atmos. Res. 2022, 266, 105974. [Google Scholar] [CrossRef]
- Saliba, N.A.; El Jam, F.; El Tayar, G.; Obeid, W.; Roumie, M. Origin and variability of particulate matter (PM10 and PM2.5) mass concentrations over an Eastern Mediterranean city. J. Atmos. Res. 2010, 97, 106–114. [Google Scholar] [CrossRef]
- Jaafar, M.; Baalbaki, R.; Mrad, R.; Daher, N.; Shihadeh, A.; Sioutas, C.; Saliba, N.A. Dust Episodes in Beirut and Their Effect on the Chemical Composition of Coarse and Fine Particulate Matter. Sci. Total Environ. 2014, 496, 75–83. [Google Scholar] [CrossRef]
- Tsiouri, V.; Kakosimos, K.E.; Kumar, P. Concentrations, Sources and Exposure Risks Associated with Particulate Matter in the Middle East Area—a Review. Air Qual. Atmos. Health 2015, 8, 67–80. [Google Scholar] [CrossRef]
- Trianti, S.M.; Samoli, E.; Rodopoulou, S.; Katsouyanni, K.; Papiris, S.A.; Karakatsani, A. Desert Dust Outbreaks and Respiratory Morbidity in Athens, Greece. Environ. Health. A Glob. Access Sci. Source. 2017, 16, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Krasnov, H.; Katra, I.; Koutrakis, P.; Friger, M.D. Contributions of dust stroms to PM10 levels in an urban arid environment. J. Air Waste Manag. Assoc. 2013, 64, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Hussein, T.; Li, X.; Bakri, Z.; Alastuey, A.; Arar, S.; Al-Hunaiti, A.; Viana, M.; Petäjä, T. Organic and Elemental Carbon in the Urban Background in an Eastern Mediterranean City. Atmosphere 2022, 13, 197. [Google Scholar] [CrossRef]
- Achilleos, S.; Mouzourides, P.; Kalivitis, N.; Katra, I. Spatio-temporal variability of desert dust storms in Eastern Mediterranean (Crete, Cyprus, Israel) between 2006 and 2017 using a uniform methodology. Sci. Total Environ. 2020, 714, 136693. [Google Scholar] [CrossRef] [PubMed]
- Gkikas, A.; Basart, S.; Hatzianastassiou, N.; Marinou, E.; Amiridis, V.; Kazadzis, S.; Pey, J.; Querol, X.; Jorba, O.; Gassó, S.; et al. Mediterranean intense desert dust outbreaks and their vertical structure based on remote sensing data. Atmos. Chem. Phys. 2016, 16, 8609–8642. [Google Scholar] [CrossRef] [Green Version]
- Prospero, J.M.; Lamb, P.J. African Droughts and Dust Transport to the Caribbean. Science 2003, 302, 1024–1027. [Google Scholar] [CrossRef]
- Amiridis, V.; Wandinger, U.; Marinou, E.; Giannakaki, E.; Tsekeri, A.; Basart, S.; Kazadzis, S.; Gkikas, A.; Taylor, M.; Baldasano, J.; et al. Optimizing CALIPSO Saharan Dust Retrievals. Atmos. Chem. Phys. 2013, 13, 12089–12106. [Google Scholar] [CrossRef] [Green Version]
- Amiridis, V.; Marinou, E.; Tsekeri, A.; Wandinger, U.; Schwarz, A.; Giannakaki, E.; Mamouri, R.; Kokkalis, P.; Binietoglou, I.; Solomos, S.; et al. LIVAS: A 3-D Multi-Wavelength Aerosol/Cloud Database Based on CALIPSO and EARLINET. Atmos. Chem. Phys. 2015, 15, 7127–7153. [Google Scholar] [CrossRef] [Green Version]
- Georgoulias, A.K.; Alexandri, G.; Kourtidis, K.A.; Lelieveld, J.; Zanis, P.; Pöschl, U.; Levy, R.; Amiridis, V.; Marinou, E.; Tsikerdekis, A. Spatiotemporal Variability and Contribution of Different Aerosol Types to the Aerosol Optical Depth over the Eastern Mediterranean. Atmos. Chem. Phys. 2016, 16, 13853–13884. [Google Scholar] [CrossRef] [Green Version]
- Marinou, E.; Amiridis, V.; Binietoglou, I.; Tsikerdekis, A.; Solomos, S.; Proestakis, E.; Konsta, D.; Papagiannopoulos, N.; Tsekeri, A.; Vlastou, G.; et al. Three-Dimensional Evolution of Saharan Dust Transport towards Europe Based on a 9-Year EARLINET-Optimized CALIPSO Dataset. Atmos. Chem. Phys. 2017, 17, 5893–5919. [Google Scholar] [CrossRef] [Green Version]
- Proestakis, E.; Amiridis, V.; Marinou, E.; Georgoulias, A.K.; Solomos, S.; Kazadzis, S.; Chimot, J.; Che, H.; Alexandri, G.; Binietoglou, I.; et al. Nine-Year Spatial and Temporal Evolution of Desert Dust Aerosols over South and East Asia as Revealed by CALIOP. Atmos. Chem. Phys. 2018, 18, 1337–1362. [Google Scholar] [CrossRef] [Green Version]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Çiner, A. Türkiye ’nin Güncel Buzulları ve Geç Kuvaterner Buzul Çttkelİeri * Recent Glaciers and Late Quaternary Glacial Deposits of Turkey. Geol. Bull. Turkey 2003, 46, 55–78. [Google Scholar]
- Koren, I.; Kaufman, Y.J.; Washington, R.; Todd, M.C.; Rudich, Y.; Martins, J.V.; Rosenfeld, D. The Bodélé Depression: A Single Spot in the Sahara That Provides Most of the Mineral Dust to the Amazon Forest. Environ. Res. Lett. 2006, 1. [Google Scholar] [CrossRef]
- Schepanski, K.; Knippertz, P. Soudano-Saharan depressions and their importance for precipitation and dust: A new perspective on a classical synoptic concept. Int. J. Climatol. 2011, 137, 1431–1445. [Google Scholar] [CrossRef] [Green Version]
- TSI. Address Based Population Statistics. Available online: https://data.tuik.gov.tr/Kategori/GetKategori?p=Nufus-ve-Demografi-109 (accessed on 11 October 2021).
- UNDP. World Population Prospects 2019. Available online: https://population.un.org/wpp/ (accessed on 1 October 2021).
- Winker, D.M.; Hunt, W.H.; McGill, M.J. Initial Performance Assessment of CALIOP. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, M.A.; Powell, K.A.; Kuehn, R.E.; Young, S.A.; Winker, D.M.; Hostetler, C.A.; Hunt, W.H.; Liu, Z.; Mcgill, M.J.; Getzewich, B.J. Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements. J. Atmos. Ocean. Technol. 2009, 26, 2034–2050. [Google Scholar] [CrossRef]
- Omar, A.; Tackett, J.; Kim, M.H.; Vaughan, M.; Kar, J.; Trepte, C.; Winker, D. Enhancements to the Caliop Aerosol Subtyping and Lidar Ratio Selection Algorithms for Level II Version 4. EPJ Web Conf. 2018, 176, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Müller, D.; Ansmann, A.; Mattis, I.; Tesche, M.; Wandinger, U.; Althausen, D.; Pisani, G. Aerosol-Type-Dependent Lidar Ratios Observed with Raman Lidar. J. Geophys. Res. Atmos. 2007, 112, 1–11. [Google Scholar] [CrossRef]
- Mamouri, R.E.; Ansmann, A.; Nisantzi, A.; Kokkalis, P.; Schwarz, A.; Hadjimitsis, D. Low Arabian Dust Extinction-to-Backscatter Ratio. Geophys. Res. Lett. 2013, 40, 4762–4766. [Google Scholar] [CrossRef]
- Córdoba-jabonero, C.; Adame, J.A.; Campbell, J.R.; Cuevas, E.; Díaz, P.; Expósito, F.; Gil-ojeda, M. Lidar Ratio Derived for Pure Dust Aerosols: Multi-Year Micro Pulse Lidar Observations in a Saharan Dust-Influenced Region. In Proceedings of the 27th International Laser Radar Conference(ILRC 27), New York City, NY, USA, 7 June 2016; Article Number 23017. pp. 1–4. [Google Scholar] [CrossRef] [Green Version]
- Ricaud, P.; Sic, B.; El Amraoui, L.; Attié, J.L.; Zbinden, R.; Huszar, P.; Szopa, S.; Parmentier, J.; Jaidan, N.; Michou, M.; et al. Impact of the Asian Monsoon Anticyclone on the Variability of Mid-to-Upper Tropospheric Methane above the Mediterranean Basin. Atmos. Chem. Phys. 2014, 14, 11427–11446. [Google Scholar] [CrossRef] [Green Version]
- Young, S. Uncertainty Analysis for Particulate Backscatter, Extinction and Optical Depth Retrievals Reported in the CALIPSO Level 2, Version 3 Data Release; No. 1, 3–7. Atmos. Meas. Tech. 2010, 11, 5701–5727. [Google Scholar] [CrossRef] [Green Version]
- Georgoulias, A.K.; Alexandri, G.; Kourtidis, K.A.; Lelieveld, J.; Zanis, P.; Amiridis, V. Differences between the MODIS Collection 6 and 5.1 Aerosol Datasets over the Greater Mediterranean Region. J. Geophys. Res. Atmos. 2016, 147, 310–319. [Google Scholar] [CrossRef]
- Sayer, A.M.; Munchak, L.A.; Hsu, N.C.; Levy, R.C.; Bettenhausen, C.; Jeong, M.-J. MODIS Collection 6 aerosol products: Comparison between aqua’s e-deep blue, dark target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos. 2014, 119, 13965–13989. [Google Scholar] [CrossRef]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A Seasonal-Trend Decomposition Procedure Based on Loess. J. Off Stat. 1990, 6, 3–73. [Google Scholar]
- Alpert, P.; Osetinsky, I.; Ziv, B.; Shafir, H. A New Seasons Definition Based on Classified Daily Synoptic Systems: An Example for the Eastern Mediterranean. Int. J. Climatol. 2004, 24, 1013–1021. [Google Scholar] [CrossRef]
- Alpert, P.; Neeman, B.U.; Shay-El, Y. Intermonthly Variability of Cyclone Tracks in the Mediterranean. J. Clim. 1990, 3, 1474. [Google Scholar] [CrossRef] [Green Version]
- Alpert, P.; Abramsky, R.; Neeman, B. The prevailing summer synoptic system in Israel―Subtropical high, not Persian Trough. Isr. J. Earth-Sci. 1990, 39, 93. [Google Scholar]
- Dayan, U.; Rodnizki, J. The temporal behavior of the atmospheric boundary layer in Israel. J. Appl. Meteorol. 1999, 38, 830. [Google Scholar] [CrossRef]
- Mona, L.; Papagiannopoulos, N.; Basart, S.; Baldasano, J.; Binietoglou, I.; Cornacchia, C.; Pappalardo, G. EARLINET dust observations vs. BSC-DREAM8b modeled profiles: 12-year-long systematic comparison at Potenza, Italy. Atmos. Chem. Phys. 2014, 14, 8781–8793. [Google Scholar] [CrossRef] [Green Version]
- Georgoulias, A.K.; Marinou, E.; Tsekeri, A.; Proestakis, E.; Akritidis, D.; Alexandri, D.; Zanis, P.; Balis, D.; Marenco, F.; Tesche, M.; et al. A First Case Study on CCN Concentrations from Spaceborne Lidar Observations. Remote Sens. 2020, 12, 1557. [Google Scholar] [CrossRef]
- Karami, S.; Hamzeh, N.H.; Alam, K.; Ranjbar, A. The study of rare frontal dust storm with snow and rain fall: Model results and ground measurements. J. Atmos. Sol. Terr. Phys. 2020, 197, 105149. [Google Scholar] [CrossRef]
- Cruz, J.A.; McDermott, F.; Turrero, M.J.; Edwards, R.L.; Martín-Chivelet, J. Strong links between Saharan dust fluxes, monsoon strength, and North Atlantic Climate during the last 5000 years. Sci. Adv. 2021, 7, eabe6102. [Google Scholar] [CrossRef] [PubMed]
- Klingmüller, K.; Pozzer, A.; Metzger, S.; Stenchikov, G.L.; Lelieveld, J. Aerosol optical trend over the Middle East. Atmos. Chem. Phys. 2016, 16, 5063–5073. [Google Scholar] [CrossRef] [Green Version]
- Dündar, C. Büyük Akdeniz Havzasında Kum ve Toz Fırtınalarının İncelenmesi ve Türkiye’yi Etkileyen Toz Kaynak Bölgelerinin Belirlenmesi. Ph.D. Thesis, Hacettepe University Graduate School of Science and Engineering, Ankara, Turkey, 2019. [Google Scholar]
- Solomos, S.; Ansmann, A.; Mamouri, R.-E.; Binietoglou, I.; Patlakas, P.; Marinou, E.; Amiridis, V. Remote sensing and modeling analysis of the extreme dust storm hitting the Middle East and eastern Mediterranean in September 2015. Atmos. Chem. Phys. 2017, 17, 4063–4079. [Google Scholar] [CrossRef] [Green Version]
Season | DOD ± Std | Max. DOD | DR (%) | DCH ± Std | Min. DCH | DTH ± Std | Max. DTH | |
---|---|---|---|---|---|---|---|---|
Broader Domain 25–45° N and 20–50° E | NDJ | 0.05 ± 0.08 | 1.35 | 38.36 | 1.40 ± 0.51 | 0.37 | 2.29 ± 0.57 | 4.12 |
FMA | 0.12 ± 0.19 | 2.47 | 66.58 | 1.86 ± 0.53 | 0.44 | 3.18 ± 0.68 | 5.85 | |
MJJ | 0.14 ± 0.20 | 2.58 | 71.22 | 2.01 ± 0.53 | 0.82 | 3.58 ± 0.76 | 5.73 | |
ASO | 0.10 ± 0.13 | 1.79 | 55.47 | 1.81 ± 0.59 | 0.54 | 3.25± 0.81 | 5.61 | |
Western (1) 25–45° N and 20–30° E | NDJ | 0.03 ± 0.06 | 0.81 | 29.94 | 1.23 ± 0.40 | 0.47 | 2.07 ± 0.51 | 3.97 |
FMA | 0.08 ± 0.12 | 2.47 | 51.88 | 1.69 ± 0.37 | 0.70 | 2.91 ± 0.56 | 5.59 | |
MJJ | 0.07 ± 0.08 | 1.02 | 50.16 | 1.74 ± 0.36 | 0.82 | 3.09 ± 0.48 | 4.34 | |
ASO | 0.05 ± 0.06 | 0.88 | 35.37 | 1.45 ± 0.30 | 0.61 | 2.65 ± 0.39 | 4.35 | |
Central (2) 25–45° N and 30–40° E | NDJ | 0.05 ± 0.07 | 0.69 | 38.32 | 1.37 ± 0.44 | 0.37 | 2.25 ± 0.49 | 3.78 |
FMA | 0.09 ± 0.14 | 1.67 | 59.67 | 1.84 ± 0.52 | 0.44 | 3.11 ± 0.64 | 5.07 | |
MJJ | 0.09 ± 0.12 | 1.70 | 59.29 | 1.91 ± 0.48 | 0.96 | 3.38 ± 0.63 | 4.95 | |
ASO | 0.08 ± 0.10 | 1.79 | 48.94 | 1.74 ± 0.52 | 0.54 | 3.11 ± 0.70 | 4.99 | |
Eastern (3) 25–45° N and 40–50° E | NDJ | 0.07 ± 0.10 | 1.35 | 44.94 | 1.59 ± 0.63 | 0.50 | 2.54 ± 0.63 | 4.12 |
FMA | 0.20 ± 0.25 | 2.13 | 80.19 | 2.06 ± 0.63 | 0.71 | 3.51 ± 0.71 | 5.85 | |
MJJ | 0.27 ± 0.27 | 2.58 | 85.96 | 2.37 ± 0.52 | 1.49 | 4.28 ± 0.60 | 5.73 | |
ASO | 0.18 ± 0.16 | 1.76 | 71.98 | 2.23 ± 0.61 | 1.23 | 3.98 ± 0.66 | 5.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aslanoğlu, S.Y.; Proestakis, E.; Gkikas, A.; Güllü, G.; Amiridis, V. Dust Climatology of Turkey as a Part of the Eastern Mediterranean Basin via 9-Year CALIPSO-Derived Product. Atmosphere 2022, 13, 733. https://doi.org/10.3390/atmos13050733
Aslanoğlu SY, Proestakis E, Gkikas A, Güllü G, Amiridis V. Dust Climatology of Turkey as a Part of the Eastern Mediterranean Basin via 9-Year CALIPSO-Derived Product. Atmosphere. 2022; 13(5):733. https://doi.org/10.3390/atmos13050733
Chicago/Turabian StyleAslanoğlu, S. Yeşer, Emmanouil Proestakis, Antonis Gkikas, Gülen Güllü, and Vassilis Amiridis. 2022. "Dust Climatology of Turkey as a Part of the Eastern Mediterranean Basin via 9-Year CALIPSO-Derived Product" Atmosphere 13, no. 5: 733. https://doi.org/10.3390/atmos13050733
APA StyleAslanoğlu, S. Y., Proestakis, E., Gkikas, A., Güllü, G., & Amiridis, V. (2022). Dust Climatology of Turkey as a Part of the Eastern Mediterranean Basin via 9-Year CALIPSO-Derived Product. Atmosphere, 13(5), 733. https://doi.org/10.3390/atmos13050733