Skill and Intercomparison of Global Climate Models in Simulating Wind Speed, and Future Changes in Wind Speed over South Asian Domain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.1.1. Model Data (CMIP5)
2.1.2. Reference Data (ERA5)
2.2. Methodology
2.2.1. Relative Score (RS)
Climate Variable Scale | Method/Statistic | Assessment Criteria Statistic (ACS) | W |
---|---|---|---|
Daily mean | Perkins Skill Score (PSS) | Bias in PSS () | 0.5 |
Spatio-temporal variability | Empirical Orthogonal Function (EOF) analysis
| Empirical Orthogonal Function (EOF) analysis
| 1 |
Annual cycle | Statistical significance of positive ‘r’ | 1 | |
Annual mean | Statistical significance of bias | Percentage of statistically significant bias () | 0 |
Seasonal mean | 1 | ||
Annual mean trend | Mann-Kendall (MK) test Theil-Sen slope | Mean Absolute Bias of trend () | 1 |
Seasonal mean trend | 1 |
- = Relative Score of model for assessment criteria;
- = assessment criteria statistic value between model and reference data;
- = maximum assessment criteria statistic value for the assessment criteria statistic;
- = minimum assessment criteria statistic value for the assessment criteria statistic;
- = weighting factor;
- n = number of assessment criteria.
2.2.2. Percentage Change in Future Mean Wind Speed Projections
3. Results and Discussion
3.1. Skill of CMIP5 GCMs in Reproducing Wind Speed Climate
3.1.1. Daily Mean Wind Speed
3.1.2. Spatio-Temporal Variability
3.1.3. Annual Cycle
3.1.4. Seasonal Mean Wind Speed
- Pre-monsoon season (February–May)
- Monsoon season (June–September)
- Post-Monsoon season (October–January)
3.1.5. Seasonal Mean Wind Speed Trend
- Pre-monsoon seasonal trend
- Monsoon seasonal trend
- Post-monsoon seasonal trend
3.1.6. Annual Mean Wind Speed
3.1.7. Annual Mean Wind Speed Trend
3.2. Best Performing Models
3.3. Intercomparison of CMIP5 GCMs
3.4. Future Wind Speed Projections
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nabipour, N.; Mosavi, A.; Hajnal, E.; Nadai, L.; Shamshirband, S.; Chau, K.W. Modeling Climate Change Impact on Wind Power Resources Using Adaptive Neuro-Fuzzy Inference System. Eng. Appl. Comput. Fluid Mech. 2020, 14, 491–506. [Google Scholar] [CrossRef] [Green Version]
- Dobrynin, M.; Murawski, J.; Baehr, J.; Ilyina, T. Detection and Attribution of Climate Change Signal in Ocean Wind Waves. J. Clim. 2015, 28, 1578–1591. [Google Scholar] [CrossRef] [Green Version]
- Wallemacq, P.; Rowena, H. Economic Losses, Poverty and Disasters 1998–2017; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2018. [Google Scholar]
- Grabemann, I.; Weisse, R. Climate Change Impact on Extreme Wave Conditions in the North Sea: An Ensemble Study. Ocean Dyn. 2008, 58, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Hemer, M.A.; Fan, Y.; Mori, N.; Semedo, A.; Wang, X.L. Projected Changes in Wave Climate from a Multi-Model Ensemble. Nat. Clim. Chang. 2013, 3, 471–476. [Google Scholar] [CrossRef]
- Chowdhury, P.; Behera, M.R.; Reeve, D.E. Wave Climate Projections along the Indian Coast. Int. J. Climatol. 2019, 39, 4531–4542. [Google Scholar] [CrossRef] [Green Version]
- Mori, N.; Shimura, T.; Yasuda, T.; Mase, H. Multi-Model Climate Projections of Ocean Surface Variables under Different Climate Scenarios-Future Change of Waves, Sea Level and Wind. Ocean Eng. 2013, 71, 122–129. [Google Scholar] [CrossRef]
- Wang, X.L.; Feng, Y.; Swail, V.R. Changes in Global Ocean Wave Heights as Projected Using Multimodel CMIP5 Simulations. Geophys. Res. Lett. 2014, 41, 1026–1034. [Google Scholar] [CrossRef]
- Perez, J.; Menendez, M.; Camus, P.; Mendez, F.J.; Losada, I.J. Statistical Multi-Model Climate Projections of Surface Ocean Waves in Europe. Ocean Model. 2015, 96, 161–170. [Google Scholar] [CrossRef]
- Tebaldi, C.; Knutti, R. The Use of the Multi-Model Ensemble in Probabilistic Climate Projections. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 2053–2075. [Google Scholar] [CrossRef]
- Li, D.; Feng, J.; Xu, Z.; Yin, B.; Shi, H.; Qi, J. Statistical Bias Correction for Simulated Wind Speeds Over CORDEX-East Asia. Earth Sp. Sci. 2019, 6, 200–211. [Google Scholar] [CrossRef]
- Morim, J.; Hemer, M.; Andutta, F.; Shimura, T.; Cartwright, N. Skill and Uncertainty in Surface Wind Fields from General Circulation Models: Intercomparison of Bias between AGCM, AOGCM and ESM Global Simulations. Int. J. Climatol. 2020, 40, 2659–2673. [Google Scholar] [CrossRef]
- Diallo, I.; Sylla, M.B.; Giorgi, F.; Gaye, A.T.; Camara, M. Multimodel GCM-RCM Ensemble-Based Projections of Temperature and Precipitation over West Africa for the Early 21st Century. Int. J. Geophys. 2012, 2012, 972896. [Google Scholar] [CrossRef] [Green Version]
- Thober, S.; Samaniego, L. Robust Ensemble Selection by Multivariate Evaluation of Extreme Precipitation and Temperature Characteristics. J. Geophys. Res. 2014, 119, 594–613. [Google Scholar] [CrossRef]
- Kulkarni, S.; Deo, M.C.; Ghosh, S. Evaluation of Wind Extremes and Wind Potential under Changing Climate for Indian Offshore Using Ensemble of 10 GCMs. Ocean Coast. Manag. 2016, 121, 141–152. [Google Scholar] [CrossRef]
- Kumar, D.; Mishra, V.; Ganguly, A.R. Evaluating Wind Extremes in CMIP5 Climate Models. Clim. Dyn. 2015, 45, 441–453. [Google Scholar] [CrossRef]
- De Winter, R.C.; Sterl, A.; Ruessink, B.G. Wind Extremes in the North Sea Basin under Climate Change: An Ensemble Study of 12 CMIP5 GCMs. J. Geophys. Res. Atmos. 2013, 118, 1601–1612. [Google Scholar] [CrossRef] [Green Version]
- Bhat, S.; Jain, P.; Deo, M.C. Application of Regional Climate Models for Coastal Design Parameters along India. J. Coast. Res. 2018, 35, 110–121. [Google Scholar] [CrossRef]
- Chowdhury, P.; Behera, M.R. Evaluation of CMIP5 and CORDEX Derived Wave Climate in Indian Ocean. Clim. Dyn. 2018, 52, 4463–4482. [Google Scholar] [CrossRef]
- Perez, J.; Menendez, M.; Mendez, F.J.; Losada, I.J. Evaluating the Performance of CMIP3 and CMIP5 Global Climate Models over the North-East Atlantic Region. Clim. Dyn. 2014, 43, 2663–2680. [Google Scholar] [CrossRef]
- Mohan, S.; Bhaskaran, P.K. Evaluation of CMIP5 Climate Model Projections for Surface Wind Speed over the Indian Ocean Region. Clim. Dyn. 2019, 53, 5415–5435. [Google Scholar] [CrossRef]
- Krishnan, A.; Bhaskaran, P.K. Skill Assessment of Global Climate Model Wind Speed from CMIP5 and CMIP6 and Evaluation of Projections for the Bay of Bengal. Clim. Dyn. 2020, 55, 2667–2687. [Google Scholar] [CrossRef]
- Raju, K.S.; Kumar, D.N. Review of Approaches for Selection and Ensembling of GCMS. J. Water Clim. Chang. 2020, 11, 577–599. [Google Scholar] [CrossRef]
- Srinivasa Raju, K.; Nagesh Kumar, D. Ranking General Circulation Models for India Using TOPSIS. J. Water Clim. Chang. 2015, 6, 288–299. [Google Scholar] [CrossRef] [Green Version]
- Raju, K.S.; Kumar, D.N. Ranking of Global Climate Models for India Using Multicriterion Analysis. Clim. Res. 2014, 60, 103–117. [Google Scholar] [CrossRef]
- Saha, A.; Ghosh, S.; Sahana, A.S.; Rao, E.P. Failure of CMIP5 Climate Models in Simulating Post-1950 Decreasing Trend of Indian Monsoon. Geophys. Res. Lett. 2014, 41, 7323–7330. [Google Scholar] [CrossRef]
- Meher, J.K.; Das, L.; Akhter, J.; Benestad, R.E.; Mezghani, A. Performance of CMIP3 and CMIP5 GCMs to Simulate Observed Rainfall Characteristics over the Western Himalayan Region. J. Clim. 2017, 30, 7777–7799. [Google Scholar] [CrossRef]
- Rohini, P.; Rajeevan, M.; Mukhopadhay, P. Future Projections of Heat Waves over India from CMIP5 Models. Clim. Dyn. 2019, 53, 975–988. [Google Scholar] [CrossRef]
- Kumar, P.; Sarthi, P.P. Surface Temperature Evaluation and Future Projections Over India Using CMIP5 Models. Pure Appl. Geophys. 2019, 176, 5177–5201. [Google Scholar] [CrossRef]
- Lyu, K.; Zhang, X.; Church, J.A.; Hu, J. Evaluation of the Interdecadal Variability of Sea Surface Temperature and Sea Level in the Pacific in CMIP3 and CMIP5 Models. Int. J. Climatol. 2016, 36, 3723–3740. [Google Scholar] [CrossRef]
- Krishnan, A.; Bhaskaran, P.K. Performance of CMIP5 Wind Speed from Global Climate Models for the Bay of Bengal Region. Int. J. Climatol. 2020, 40, 3398–3416. [Google Scholar] [CrossRef]
- Mohan, S.; Bhaskaran, P.K. Evaluation and Bias Correction of Global Climate Models in the CMIP5 over the Indian Ocean Region. Environ. Monit. Assess. 2019, 191, 806. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, A.; Bhaskaran, P.K. CMIP5 Wind Speed Comparison between Satellite Altimeter and Reanalysis Products for the Bay of Bengal. Environ. Monit. Assess. 2019, 191, 554. [Google Scholar] [CrossRef]
- Barthelmie, R.J.; Pryor, S.C. Potential Contribution of Wind Energy to Climate Change Mitigation. Nat. Clim. Chang. 2014, 4, 684–688. [Google Scholar] [CrossRef]
- Chaurasiya, P.K.; Warudkar, V.; Ahmed, S. Wind Energy Development and Policy in India: A Review. Energy Strateg. Rev. 2019, 24, 342–357. [Google Scholar] [CrossRef]
- Yang, S.; Duan, S.; Fan, L.; Zheng, C.; Li, X.; Li, H.; Xu, J.; Wang, Q.; Feng, M. 10-Year Wind and Wave Energy Assessment in the North Indian Ocean. Energies 2019, 12, 3835. [Google Scholar] [CrossRef] [Green Version]
- Irfan, M.; Zhao, Z.Y.; Mukeshimana, M.C.; Ahmad, M. Wind energy development in South Asia: Status, potential and policies. In Proceedings of the 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 30–31 January 2019. [Google Scholar] [CrossRef]
- Aboobacker, V.M.; Vethamony, P.; Rashmi, R. “Shamal” Swells in the Arabian Sea and Their Influence along the West Coast of India. Geophys. Res. Lett. 2011, 38, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Shanas, P.R.; Sanil Kumar, V. Temporal Variations in the Wind and Wave Climate at a Location in the Eastern Arabian Sea Based on ERA-Interim Reanalysis Data. Nat. Hazards Earth Syst. Sci. Discuss. 2013, 1, 7239–7269. [Google Scholar] [CrossRef] [Green Version]
- Kumar, E.D.; Sannasiraj, S.A.; Sundar, V.; Polnikov, V.G. Wind-Wave Characteristics and Climate Variability in the Indian Ocean Region Using Altimeter Data. Mar. Geod. 2013, 36, 303–318. [Google Scholar] [CrossRef]
- Anoop, T.R.; Kumar, V.S.; Shanas, P.R.; Johnson, G. Surface Wave Climatology and Its Variability in the North Indian Ocean Based on ERA-Interim Reanalysis. J. Atmos. Ocean. Technol. 2015, 32, 1372–1385. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.S.; Joseph, J.; Amrutha, M.M.; Jena, B.K.; Sivakholundu, K.M.; Dubhashi, K.K. Seasonal and Interannual Changes of Significant Wave Height in Shelf Seas around India during 1998–2012 Based on Wave Hindcast. Ocean Eng. 2018, 151, 127–140. [Google Scholar] [CrossRef]
- Zheng, C.W.; Pan, J.; Li, C.Y. Global Oceanic Wind Speed Trends. Ocean Coast. Manag. 2016, 129, 15–24. [Google Scholar] [CrossRef]
- Yang, S.; Li, Z.; Yu, J.Y.; Hu, X.; Dong, W.; He, S. El Niño-Southern Oscillation and Its Impact in the Changing Climate. Natl. Sci. Rev. 2018, 5, 840–857. [Google Scholar] [CrossRef]
- Sinha, M.; Jha, S.; Chakraborty, P. Indian Ocean Wind Speed Variability and Global Teleconnection Patterns. Oceanologia 2020, 62, 126–138. [Google Scholar] [CrossRef]
- Xie, S.P.; Deser, C.; Vecchi, G.A.; Collins, M.; Delworth, T.L.; Hall, A.; Hawkins, E.; Johnson, N.C.; Cassou, C.; Giannini, A.; et al. Towards Predictive Understanding of Regional Climate Change. Nat. Clim. Chang. 2015, 5, 921–930. [Google Scholar] [CrossRef]
- Seemanth, M.; Bhowmick, S.A.; Kumar, R.; Sharma, R. Sensitivity Analysis of Dissipation Parameterizations in a Third-Generation Spectral Wave Model, WAVEWATCH III for Indian Ocean. Ocean Eng. 2016, 124, 252–273. [Google Scholar] [CrossRef]
- Wu, L.; Qin, J.; Wu, T.; Li, X. Trends in Global Ocean Surface Wave Characteristics as Represented in the ERA-Interim Wave Reanalysis for 1979–2010. J. Mar. Sci. Technol. 2018, 23, 2–9. [Google Scholar] [CrossRef]
- Wang, X.L.; Swail, V.R.; Cox, A. Dynamical versus Statistical Downscaling Methods for Ocean Wave Heights. Int. J. Climatol. 2009, 30, 317–332. [Google Scholar] [CrossRef]
- Jain, P.; Deo, M.C. Climate change impact on design waves using climate models. In Proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018); Murali, K., Sriram, V., Samad, A., Saha, N., Eds.; Springer Singapore: Singapore, 2019; pp. 783–794. [Google Scholar]
- Muhammed Naseef, T.; Sanil Kumar, V. Climatology and Trends of the Indian Ocean Surface Waves Based on 39-Year Long ERA5 Reanalysis Data. Int. J. Climatol. 2019, 40, 979–1006. [Google Scholar] [CrossRef]
- Kulkarni, S.; Deo, M.C.; Ghosh, S. Performance of the CORDEX Regional Climate Models in Simulating Offshore Wind and Wind Potential. Theor. Appl. Climatol. 2018, 135, 1449–1464. [Google Scholar] [CrossRef]
- Parker, K.; Hill, D.F. Evaluation of Bias Correction Methods for Wave Modeling Output. Ocean Model. 2017, 110, 52–65. [Google Scholar] [CrossRef]
- Li, H.; Sheffield, J.; Wood, E.F. Bias Correction of Monthly Precipitation and Temperature Fields from Intergovernmental Panel on Climate Change AR4 Models Using Equidistant Quantile Matching. J. Geophys. Res. Atmos. 2010, 115, D10. [Google Scholar] [CrossRef]
- Perkins, S.E.; Pitman, A.J.; Holbrook, N.J.; McAneney, J. Evaluation of the AR4 Climate Models’ Simulated Daily Maximum Temperature, Minimum Temperature, and Precipitation over Australia Using Probability Density Functions. J. Clim. 2007, 20, 4356–4376. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods. Biometrika 1957, 44, 107–116. [Google Scholar] [CrossRef]
- Mann, H.B. Non-Parametric Test Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Kulkarni, A.; Von Storch, H. Monte Carlo Experiments on the Effect of Serial Correlation on the Mann-Kendall Test of Trend. Meteorol. Z. 1995, 4, 82–85. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. Applicability of Prewhitening to Eliminate the Influence of Serial Correlation on the Mann-Kendall Test. Water Resour. Res. 2002, 38, 1–4. [Google Scholar] [CrossRef]
- Wang, F.; Shao, W.; Yu, H.; Kan, G.; He, X.; Zhang, D.; Ren, M.; Wang, G. Re-Evaluation of the Power of the Mann-Kendall Test for Detecting Monotonic Trends in Hydrometeorological Time Series. Front. Earth Sci. 2020, 8, 1–12. [Google Scholar] [CrossRef]
- Stouffer, R.J.; Eyring, V.; Meehl, G.A.; Bony, S.; Senior, C.; Stevens, B.; Taylor, K.E. CMIP5 Scientific Gaps and Recommendations for CMIP6. Bull. Am. Meteorol. Soc. 2017, 98, 95–105. [Google Scholar] [CrossRef]
- Müller, W.A.; Jungclaus, J.H.; Mauritsen, T.; Baehr, J.; Bittner, M.; Budich, R.; Bunzel, F.; Esch, M.; Ghosh, R.; Haak, H.; et al. A Higher-Resolution Version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). J. Adv. Model. Earth Syst. 2018, 10, 1383–1413. [Google Scholar] [CrossRef]
- Dix, M.; Vohralik, P.; Bi, D.; Rashid, H.; Marsland, S.; O’Farrell, S.; Uotila, P.; Hirst, T.; Kowalczyk, E.; Sullivan, A.; et al. The ACCESS Coupled Model: Documentation of Core CMIP5 Simulations and Initial Results. Aust. Meteorol. Oceanogr. J. 2013, 63, 83–99. [Google Scholar] [CrossRef]
- Bi, D.; Dix, M.; Marsland, S.J.; O’Farrell, S.; Rashid, H.; Uotila, P.; Hirst, A.C.; Kowalczyk, E.; Golebiewski, M.; Sullivan, A.; et al. The ACCESS Coupled Model: Description, Control Climate and Preliminary Validation. Aust. Meteorol. Oceanogr. J. 2013, 63, 41–64. [Google Scholar] [CrossRef]
- Zha, J.; Wu, J.; Zhao, D.; Fan, W. Future Projections of the Near-Surface Wind Speed over Eastern China Based on CMIP5 Datasets. Clim. Dyn. 2020, 54, 2361–2385. [Google Scholar] [CrossRef]
- Chylek, P.; Li, J.; Dubey, M.; Wang, M. Observed and Model Simulated 20th Century Arctic Temperature Variability: Canadian Earth System Model CanESM2. Atmos. Chem. Phys. Discuss. 2011, 11, 22893–22907. [Google Scholar] [CrossRef]
- Martin, G.M.; Bellouin, N.; Collins, W.J.; Culverwell, I.D.; Halloran, P.R.; Hardiman, S.C.; Hinton, T.J.; Jones, C.D.; McDonald, R.E.; McLaren, A.J.; et al. The HadGEM2 Family of Met Office Unified Model Climate Configurations. Geosci. Model Dev. 2011, 4, 723–757. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, S.; Hajima, T.; Sudo, K.; Nagashima, T.; Takemura, T.; Okajima, H.; Nozawa, T.; Kawase, H.; Abe, M.; Yokohata, T.; et al. MIROC-ESM 2010: Model Description and Basic Results of CMIP5-20c3m Experiments. Geosci. Model Dev. 2011, 4, 845–872. [Google Scholar] [CrossRef] [Green Version]
- Collins, W.J.; Bellouin, N.; Doutriaux-Boucher, M.; Gedney, N.; Halloran, P.; Hinton, T.; Hughes, J.; Jones, C.D.; Joshi, M.; Liddicoat, S.; et al. Development and Evaluation of an Earth-System Model—HadGEM2. Geosci. Model Dev. 2011, 4, 1051–1075. [Google Scholar] [CrossRef] [Green Version]
- Dunne, J.P.; John, J.G.; Shevliakova, S.; Stouffer, R.J.; Krasting, J.P.; Malyshev, S.L.; Milly, P.C.D.; Sentman, L.T.; Adcroft, A.J.; Cooke, W.; et al. GFDL’s ESM2 Global Coupled Climate-Carbon Earth System Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics. J. Clim. 2013, 26, 2247–2267. [Google Scholar] [CrossRef] [Green Version]
- Dunne, J.P.; John, J.G.; Adcroft, A.J.; Griffies, S.M.; Hallberg, R.W.; Shevliakova, E.; Stouffer, R.J.; Cooke, W.; Dunne, K.A.; Harrison, M.J.; et al. GFDL’s ESM2 Global Coupled Climate-Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics. J. Clim. 2012, 25, 6646–6665. [Google Scholar] [CrossRef] [Green Version]
- Dufresne, J.L.; Foujols, M.A.; Denvil, S.; Caubel, A.; Marti, O.; Aumont, O.; Balkanski, Y.; Bekki, S.; Bellenger, H.; Benshila, R.; et al. Climate Change Projections Using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Clim. Dyn. 2013, 40, 2123–2165. [Google Scholar] [CrossRef]
- Boucher, O.; Servonnat, J.; Albright, A.L.; Aumont, O.; Balkanski, Y.; Bastrikov, V.; Bekki, S.; Bonnet, R.; Bony, S.; Bopp, L.; et al. Presentation and Evaluation of the IPSL-CM6A-LR Climate Model. J. Adv. Model. Earth Syst. 2020, 12, 1–52. [Google Scholar] [CrossRef]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. RCP4.5: A Pathway for Stabilization of Radiative Forcing by 2100. Clim. Change 2011, 109, 77–94. [Google Scholar] [CrossRef] [Green Version]
- Rogelj, J.; Meinshausen, M.; Knutti, R. Global Warming under Old and New Scenarios Using IPCC Climate Sensitivity Range Estimates. Nat. Clim. Chang. 2012, 2, 248–253. [Google Scholar] [CrossRef]
Model ID | Model Acronym | Model | Institution | |
---|---|---|---|---|
0 | ERA5 | Fifth-generation European Research Agency | 0.25 × 0.25 | |
1 | ACCESS1.0 | Australian Community Climate and Earth System Simulator | Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia, and Bureau of Meteorology (BOM), Australia | 1.25 × 1.875 |
2 | ACCESS1.3 | Australian Community Climate and Earth System Simulator | Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia, and Bureau of Meteorology (BOM), Australia | 1.25 × 1.875 |
3 | BCC-CSM1.1 -M | Beijing Climate Center Climate System Model with Moderate resolution | Beijing Climate Center, China Meteorological Administration | 1.1215 × 1.125 |
4 | BNU-ESM | Beijing Normal University Earth System Model | College of Global Change and Earth System Science (GCESS), Beijing Normal University | 2.7906 × 2.8125 |
5 | CanCM4 | Canadian Coupled Global Climate Model | Canadian Centre for Climate Modelling and Analysis (CCCma) | 2.8125 × 2.8125 |
6 | CanESM2 | Canadian Earth System Model | Canadian Centre for Climate Modelling and Analysis (CCCma) | 2.8125 × 2.8125 |
7 | CMCC-CM | CMCC Climate Model | Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC) | 0.7484 × 0.75 |
8 | CMCC-CMS | CMCC Climate Model with a resolved Stratosphere | Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC) | 1.8653 × 1.875 |
9 | CNRM-CM5 | CNRM coupled global climate model | Centre National de Recherches Meteorologiques and Centre Europeen de Recherche et Formation Avancees en Calcul Scientifique (CNRM-CERFACS) | 1.4008 × 1.40625 |
10 | CSIRO-Mk3.6.0 | CSIRO Mark 3.6.0 model | Commonwealth Scientific and Industrial Research Organisation in collaboration with the Queensland Climate Change Centre of Excellence (CSIRO-QCCCE) | 1.875 × 1.875 |
11 | FGOALS-s2 | Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 | Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG-IAP) | 1.6590 × 2.8125 |
12 | GFDL-CM3 | GFDL Coupled Model version 3 | Geophysical Fluid Dynamics Laboratory (GFDL) | 2.0 × 2.5 |
13 | GFDL-ESM2G | GFDL Earth System Model, an isopycnal model using the Generalized Ocean Layer Dynamics (GOLD) code base | Geophysical Fluid Dynamics Laboratory (GFDL) | 2.0225 × 2.5 |
14 | GFDL-ESM2M | GDFL Earth System Model with Modular Ocean Model 4 | Geophysical Fluid Dynamics Laboratory (GFDL) | 2.0225 × 2.5 |
15 | HadGEM2-AO | Hadley Centre Global Environment Model 2 Atmosphere-Ocean | National Institute of Meteorological Research/Korea Meteorological Administration (NIMR/KMA) | 1.250 × 1.875 |
16 | HadGEM2-CC | Hadley Centre Global Environment Model 2 Carbon cycle | Met Office Hadley Centre | 1.250 × 1.875 |
17 | HadGEM2-ES | Hadley Centre Global Environment Model 2 Earth System | Met Office Hadley Centre | 1.250 × 1.875 |
18 | INM-CM4 | INM Climate Model 4 | Institute for Numerical Mathematics of the Russian Academy of Sciences (INM) | 1.5 × 2.0 |
19 | IPSL-CM5A-LR | IPSL Coupled Model version 5A-Low resolution | Institut Pierre-Simon Laplace (IPSL) | 1.875 × 3.750 |
20 | IPSL-CM5A-MR | IPSL Coupled Model version 5A Mid resolution | Institut Pierre-Simon Laplace (IPSL) | 1.2676 × 2.500 |
21 | IPSL-CM5B-LR | IPSL Coupled Model-version 5B new atmospheric physics at low resolution | Institut Pierre-Simon Laplace (IPSL) | 1.875 × 3.750 |
22 | MIROC4h | Model for Interdisciplinary Research on Climate version 4 with high resolution | Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology | 0.5616 × 0.5625 |
23 | MIROC5 | Model for Interdisciplinary Research on Climate 5 | Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology | 1.4008 × 1.4063 |
24 | MIROC-ESM | MIROC Earth System Model | Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology | 2.7906 × 2.8125 |
25 | MIROC-ESM-CHEM | MIROC Earth System Model, atmospheric chemistry coupled version | Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology | 2.7906 × 2.8125 |
26 | MPI-ESM-LR | MPI Earth System Model Low Resolution | Max Planck Institute for Meteorology (MPI-M) | 1.875 × 1.875 |
27 | MPI-ESM-MR | MPI Earth System Model Mixed Resolution | Max Planck Institute for Meteorology (MPI-M) | Approximately 1.875 × 1.875 |
28 | MRI-CGCM3 | MRI Coupled Atmosphere-Ocean General Circulation Model, version 3 | Meteorological Research Institute (MRI) | 1.12148 × 1.125 |
29 | MME_CMIP5 | Multi-Model Ensemble mean of all twenty-eight CMIP5 GCMs | 0.25 × 0.25 | |
30 | MME-3_ (27, 10 and 13) | Multi-Model Ensemble mean of top 3 performed CMIP5 GCMs (Model with ID 27, 10 and 13) over ocean | 0.25 × 0.25 | |
31 | MME-3_ (1, 27 and 15) | Multi-Model Ensemble mean of top 3 performed CMIP5 GCMs (Model with ID 1, 27 and 15) over land | 0.25 × 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakku, N.K.G.; Behera, M.R. Skill and Intercomparison of Global Climate Models in Simulating Wind Speed, and Future Changes in Wind Speed over South Asian Domain. Atmosphere 2022, 13, 864. https://doi.org/10.3390/atmos13060864
Lakku NKG, Behera MR. Skill and Intercomparison of Global Climate Models in Simulating Wind Speed, and Future Changes in Wind Speed over South Asian Domain. Atmosphere. 2022; 13(6):864. https://doi.org/10.3390/atmos13060864
Chicago/Turabian StyleLakku, Naresh K. G., and Manasa R. Behera. 2022. "Skill and Intercomparison of Global Climate Models in Simulating Wind Speed, and Future Changes in Wind Speed over South Asian Domain" Atmosphere 13, no. 6: 864. https://doi.org/10.3390/atmos13060864
APA StyleLakku, N. K. G., & Behera, M. R. (2022). Skill and Intercomparison of Global Climate Models in Simulating Wind Speed, and Future Changes in Wind Speed over South Asian Domain. Atmosphere, 13(6), 864. https://doi.org/10.3390/atmos13060864