Application of the Gaussian Model for Monitoring Scenarios and Estimation of SO2 Atmospheric Emissions in the Salamanca Area, Bajío, Mexico
Abstract
:1. Introduction
2. Gaussian Model Application (Simulation Method)
3. Study Area
4. The Gaussian Model
- The stack is a point source of emission.
- The terrain where the dispersion of pollutants takes place is flat.
- The pollutant flow is incompressible.
- Turbulent flows are related to the gradients of the average concentrations.
- Pollutant diffusion is passive.
- Longitudinal diffusion and molecular diffusion are minimal and can be neglected.
- Both lateral and vertical wind speeds are considered to be zero.
- The location of the emission chimney, EC, stack is rural, according to its geographic coordinates and the shortest distance to the population.
- It is assumed that the transport of pollutants occurs in a straight line, instantaneously, in the wind direction.
5. The Origin of the Data
6. Meteorological Data and SO2 Concentration Data
7. Results
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Etchie, T.O.; Etchie, A.T.; Adewuyi, G.O.; Pillarisetti, A.; Sivanesan, S.; Krishnamurthi, K.; Arora, N.K. The gains in life expectancy by ambient PM2.5 pollution reductions in localities in Nigeria. Environ. Pollut. 2018, 236, 146–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molepo, K.M.; Abiodun, B.J.; Magoba, R.N. The transport of PM10 over Cape Town during high pollution episodes. Atmos. Environ. 2019, 213, 116–132. [Google Scholar] [CrossRef] [Green Version]
- Matus, P. Contaminación atmosférica: La composición química incide en su riesgo. Rev. Médica De Chile 2017, 145, 7–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salini, G.A.; Medina, E.J. Estudio sobre la dinámica del material particulado PM10 emitido en Cochabamba, Bolivia. Rev. Interam. De Contam. Ambient. 2017, 33, 437–448. [Google Scholar] [CrossRef] [Green Version]
- Borrego, C.; Ginja, J.; Cuotinho, M.; Ribeiro, C.; Karatzas, K.; Simouis, T. Assessment of air quality microsensors versus reference methods: The EuNetAir Joint Exercise - Part II. Atmos. Environ. 2018, 193, 127–142. [Google Scholar] [CrossRef]
- WHO. Air Pollution. Obtenido de WHO Global Ambient Air Quality Database (Update 2018). Available online: https://www.who.int/airpollution/data/cities/en/ (accessed on 20 July 2019).
- CEMDA. Los Derechos Humanos y la Calidad de Aire en México; Hewlett Fundation: Ciudad de México, México, 2016. [Google Scholar]
- GREENPEACE. El aire que respiro. In El Estado de la Calidad del Aire; Obtenido de Greenpeace México A.C.: Ciudad de México, México, 2018; Available online: https://storage.googleapis.com/planet4-mexico-stateless/2018/11/ff412966-ff412966-aire_que_respiro_ok_emr.pdf (accessed on 11 November 2018).
- Ubilla, C.; Yohannssen, K. Contaminación atmosférica. Efectos en la salud respiratoria en el niño. Rev. Médica Condes 2017, 28, 111–118. [Google Scholar] [CrossRef]
- Pacsi, S. Análisis temporal y espacial de la calidad del aire determinado por material particulado PM10 y PM2,5 en Lima Metropolitana. Rev. An. Científicos 2016, 77, 273–283. [Google Scholar] [CrossRef]
- SEMARNAT. Comisión Federal Para la Protección Contra Riesgos Sanitarios. Obtenido de Clasificación de los Contaminantes del Aire Ambiente. Available online: https://www.gob.mx/cofepris/acciones-y-programas/2-clasificacion-de-los-contaminantes-del-aire-ambiente (accessed on 31 December 2017).
- SMAOT. Calidad del Aire. In Obtenido de Inventario 2017 de Emisiones de Contaminantes Criterio; Grandeza de Mexico: Guanajuato, Mexico, 2017; Available online: https://smaot.guanajuato.gob.mx/sitio/calidad-del-aire/4/Inventario-de-Emisiones-de-Contaminantes-Criterio (accessed on 16 October 2019).
- Instituto de Ecología del Estado. Informe de Estado y Tendencia; IEE: Guanajuato, México, 2016. [Google Scholar]
- CEPAL; ONU; SEMARNAT. Evaluación de las Externalidades Ambientales de la Generación Termoeléctrica en México; SEMARNAT: Ciudad de México, México, 2004. [Google Scholar]
- Instituto Para la Salud Geo Ambiental. El Dióxido de Azufre; 2020. Available online: https://www.saludgeoambiental.org/dioxido-azufre-so2?gclid=Cj0KCQiA8dH-BRD_ARIsAC24umaweBsq3109-VP_QODT9EtDklh9gYOPGgpeacfzs2N-PT8exkUjC8MaAjXIEALw_wcB (accessed on 5 January 2020).
- Ziberth, J.; Cedilnik, J.; Praznikar, J. Particulate matter (PM10) patterns in Europe: An exploratory data analysis using non-negative matrix factorization. Atmos. Environ. 2016, 132, 217–228. [Google Scholar] [CrossRef]
- Economic Commission for Latin America and the Caribbean (ECLAC). Economic Survey of Latin America and the Caribbean; (LC/G.2619-P); ECLAC United Nation Publication: Santiago, Chile, 2014. [Google Scholar]
- INECC. Informe Nacional de Calidad del Aire 2017, México. Coordinación General de Contaminación y Salud Ambiental, Dirección de Investigación de Calidad del Aire y Contaminantes Climáticos; INECC: Ciudad de México, México, 2018. [Google Scholar]
- Granados, A.S. Avances en el Análisis y Diseño de Chimeneas Industriales; UNAM: Ciudad de México, México, 2018. [Google Scholar]
- Legislación Ambiental. Norma Mexicana, Calidad del Aire. Estimación de la altura efectiva de chimenea y de la dispersión de contaminantes-método de prueba. Obtenido De Cent. De Calid. Ambient. 2020. Available online: http://legismex.mty.itesm.mx/normas/aa/aa107.pdf (accessed on 12 December 2020).
- Pereira-Peláez, D. Simulación de la dispersión de contaminantes en la atmósfera de una planta de generación de electricidad a biomasa. Acta Nova 2017, 8, 376–396. [Google Scholar]
- Trosic, T.; Filipcic, A. Multiple Linear Regression (MLR) model simulation of hourly PM10 concentrations during sea breeze events in the Split area. Naše More 2017, 64, 77–85. [Google Scholar] [CrossRef]
- Wang, C.Y.; Hsu, C. How critical is geometrical confinement? Analysis of spatially and temporally resolved particulate matter removal with an electrostatic precipitator. RSC Adv. 2018, 8, 30925–30931. [Google Scholar] [CrossRef] [Green Version]
- McKercher, G.R.; Salmond, J.A.; Vanos, J.K. Characteristics and applications of small, portable gaseous air pollution monitors. Environ. Pollut. 2017, 223, 102–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, M.; Kundu, S.; Satish, M. Dispersion model evaluation of PM2.5, NOX, and SO2 from point and. Atmos. Pollut. Res. 2013, 4, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Amable, I.; Méndez, J.; Bello, B.; Benítez, B.; Escobar, L.; Zamora, R. Influencia de los contaminantes atmosféricos sobre la salud. Rev. Médica Electrónica 2017, 39, 2470–3610. [Google Scholar]
- Kelly, J.T.; Jang, C.J.; Timin, B.; Gantt, B.; Reff, A.; Zhu, Y.; Long, S.; Hanna, A. A system for developing and projecting PM2.5 spatial fields to correspond to just meeting national ambient air quality standards. Atmos. Environ. X2 2019, 2, 100019. [Google Scholar] [CrossRef] [PubMed]
- Alimissis, A.; Philippopoulos, K.; Tzanis, C.G.; Deligiorgi, D. Spatial estimation of urban air pollution with the use of artificial neural network models. Atmos. Environ. 2018, 191, 205–213. [Google Scholar] [CrossRef]
- Cruz-López, C.A. Implementación de un Modelo de Dispersión Atmosférica y Cálculo de Dosis en la Liberación de Efluentes Radiactivos en el Centro Nuclear. Tesis; IPN: Ciudad de México, México, 2015. [Google Scholar]
- INEGI. INEGI. 2017. Available online: http://www.inegi.org.mx/ (accessed on 12 December 2020).
- ONU HABITAT. Available online: http://infonavit.janium.com/janium/Documentos/57878.pdf (accessed on 11 August 2016).
- Google Earth. Localización de Salamanca, Gto. 2020. Available online: https://earth.google.com/web/@20.56991452,101.17962351,1711.86259827a,3811.42382427d,35y,0h,0t,0r.34 (accessed on 12 December 2020).
- Molano, L.G.; Díaz, C.J. Análisis y verificación del modelo gaussiano de dispersión: Métodos teóricos y experimentales. Rev. De Investig. 2019, 12, 31–43. [Google Scholar] [CrossRef]
- SMAOT. Datos Históricos de la Calidad del Aire. 2020. Available online: https://smaot.guanajuato.gob.mx/sitio/seica/historicos/salamanca (accessed on 12 December 2020).
- Li, P.; Peng, L.; Yao, X.; Cui, S.; Hu, Y.; Yuo, C.; Chi, T. Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation. Environ. Pollut. 2017, 231, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Zambrano, M.E. Análisis de Dispersión de Contaminantes Emitidos por Motores Que Utilizan Petróleo Crudo Como Combustible; Health Universitat de Barcelona: Informe Barcelona, España, 2017. [Google Scholar]
- Madrazo, J.; Clappier, A.; Belalcazar, L.C.; Cuesta, O.; Contreras, H.; Golay, F. Screening differences between a local inventory and the Emissions Database for Global Atmospheric Research (EDGAR). Sci. Total Environ. 2018, 631–632, 934–941. [Google Scholar] [CrossRef] [PubMed]
Pollutant | WHO Guideline Value µg/m3 | Period Used for the Assessment (h) | Indicator NOMs (Mexico) µg/m3 | NOM (Official Mexican Standard, Official Journal of the Federation, DOF 2010) |
---|---|---|---|---|
SO2 | 20 on 24 h | 24 | 288 on 24 h | |
66 annual average | NOM-022-SSA1-2010 | |||
500 on 0.166 h | 8 | 524 on a daily average (must not be exceeded twice a year) |
Variable | Choices |
---|---|
Direction | |
Wind | Persistence |
Turbulence | |
Ground roughness | |
Urban areas | |
Topography | Coast areas |
Rugged terrain | |
Presence of buildings and obstacles | |
A = Extremely Unstable | |
B = Unstable | |
Atmospheric Stability | C = Slightly Unstable |
Coefficient (ASC) | D = Neutral |
E = Slightly stable | |
F = Stable |
ASC | σy | σz |
---|---|---|
A | 0.22𝑥 (1 + 0.0001x) −1/2 | 0.20x |
B | 0.16𝑥 (1 + 0.0001x) −1/2 | 0.12x |
C | 0.11𝑥 (1 + 0.0001x) −1/2 | 0.08𝑥 (1 + 0.0002x) −1/2 |
D | 0.08𝑥 (1 + 0.0001x) −1/2 | 0.06𝑥 (1 + 0.0015x) −1/2 |
E | 0.06𝑥 (1 + 0.0001x) −1/2 | 0.03𝑥 (1 + 0.003x) −1 |
F | 0.04𝑥 (1 + 0.0001x) −1/2 | 0.016𝑥 (1 + 0.0003x) −1 |
ASC | Coefficient p | |
---|---|---|
Urban | Rural | |
A | 0.15 | 0.07 |
B | 0.15 | 0.07 |
C | 0.2 | 0.1 |
D | 0.25 | 0.15 |
E | 0.3 | 0.35 |
F | 0.3 | 0.35 |
Correction Factor | ASC |
---|---|
1.15 | A |
1.15 | B |
1.1 | C |
1 | D |
0.85 | E |
0.85 | F |
V(m/s) (10 m) | Sunstroke during the Day | Cloud Cover Overnight | |||
---|---|---|---|---|---|
Strong | Moderate | Little | Few Clouds | Without Clouds | |
2 | A | A–B | B | ||
2–3 | A–B | B | C | E | F |
3–5 | B | B–C | C | D | E |
5–6 | C | C–D | D | D | D |
6 | C | D | D | D | D |
Figure | Scenario | V (m/s) | T (°C) | ASC | Schedule | Chimney |
---|---|---|---|---|---|---|
8 | 1 | 2.4 | 24.2 | A | day | 1, 2, 3 and 4 |
9 | 2 | 2.4 | 24.2 | B | day | 1, 2, 3 and 4 |
10 | 3 | 2.4 | 24.2 | C | day | 1, 2, 3 and 4 |
11 | 6 | 8.4 | 24.2 | C | day | 1, 2, 3 and 4 |
12 | 7 | 8.4 | 24.2 | D | day | 1, 2, 3 and 4 |
13 | 8 | 8.4 | 19.5 | D | night | 1, 2, 3 and 4 |
Parameter | Symbols | Units | smokestacks | ||
---|---|---|---|---|---|
1 | 2 and 3 | 4 | |||
Emission rate | Q | g/s | 871 | 871 | 871 |
Coefficient of dispersion in the Y axis a | σy | ||||
Coefficient of dispersion in the Z axis a | σz | ||||
Wind speed * | U | m/s | 2.4 | 2.4 | 2.4 |
Atmospheric temperature * | Ta | °K | 295 | 295 | 295 |
Atmospheric pressure * | P | mbar | 831 | 831 | 831 |
Pollutant outlet temperature * | Ts | °K | 438.5 | 432.1 | 431 |
Pollutant outlet velocity * | vs | m/s | 22.8 | 29.1 | 28.5 |
Smokestacks diameter | D | m | 4.5 | 3.9 | 3.4 |
Smokestacks height | h | m | 64.6 | 51.2 | 49.7 |
Boom lift height a | ΔH | m | |||
Effective height a | H | m | |||
Concentration **a | C | g/m3 |
Conditions | Distance (m) and Concentration (C) by Smokestack | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Setting | V (m/s) | T (°C) | ASC | Schedule | d (m) | 2 and 3 | d (m) | 1 | d (m) | 4 |
1 | 2.4 | 24.2 | A | Day | 900 | 551 | 1000 | 490 | 700 | 355 |
2 | 2.4 | 24.2 | B | Day | 1500 | 467 | 1500 | 413 | 1300 | 301 |
3 | 2.4 | 24.2 | C | Day | 3000 | 409 | 2000 | 368 | 3000 | 280 |
4 | 2.4 | 19.5 | E | Night | ||||||
5 | 2.4 | 19.5 | F | Night | ||||||
6 | 8.4 | 24.2 | C | Day | 1000 | 659 | 1100 | 506 | 900 | 380 |
7 | 8.4 | 24.2 | D | Day | 2000 | 413 | 3000 | 285 | 1500 | 242 |
8 | 8.4 | 19.5 | D | Night | 2000 | 412 | 3000 | 285 | 3000 | 280 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Violante Gavira, A.E.; Sosa González, W.E.; Pali Casanova, R.d.J.; Yam Cervantes, M.A.; Aguilar Vega, M.; Chacha Coto, J.; Zavala Loría, J.d.C.; Dzul López, L.A.; García Villena, E. Application of the Gaussian Model for Monitoring Scenarios and Estimation of SO2 Atmospheric Emissions in the Salamanca Area, Bajío, Mexico. Atmosphere 2022, 13, 874. https://doi.org/10.3390/atmos13060874
Violante Gavira AE, Sosa González WE, Pali Casanova RdJ, Yam Cervantes MA, Aguilar Vega M, Chacha Coto J, Zavala Loría JdC, Dzul López LA, García Villena E. Application of the Gaussian Model for Monitoring Scenarios and Estimation of SO2 Atmospheric Emissions in the Salamanca Area, Bajío, Mexico. Atmosphere. 2022; 13(6):874. https://doi.org/10.3390/atmos13060874
Chicago/Turabian StyleViolante Gavira, Amanda Enrriqueta, Wadi Elim Sosa González, Ramón de Jesús Pali Casanova, Marcial Alfredo Yam Cervantes, Manuel Aguilar Vega, Javier Chacha Coto, José del Carmen Zavala Loría, Luis Alonso Dzul López, and Eduardo García Villena. 2022. "Application of the Gaussian Model for Monitoring Scenarios and Estimation of SO2 Atmospheric Emissions in the Salamanca Area, Bajío, Mexico" Atmosphere 13, no. 6: 874. https://doi.org/10.3390/atmos13060874
APA StyleViolante Gavira, A. E., Sosa González, W. E., Pali Casanova, R. d. J., Yam Cervantes, M. A., Aguilar Vega, M., Chacha Coto, J., Zavala Loría, J. d. C., Dzul López, L. A., & García Villena, E. (2022). Application of the Gaussian Model for Monitoring Scenarios and Estimation of SO2 Atmospheric Emissions in the Salamanca Area, Bajío, Mexico. Atmosphere, 13(6), 874. https://doi.org/10.3390/atmos13060874