Large Amounts of Water Vapor Were Injected into the Stratosphere by the Hunga Tonga–Hunga Ha’apai Volcano Eruption
Abstract
:1. Introduction
- To quantify the magnitude of the stratospheric water vapor increase caused by the Tonga eruption;
- To evaluate the spatial and temporal extent of water vapor injected directly into the stratosphere as a result of the Tonga eruption.
2. Data and Methods
2.1. Data
2.2. Methodology
3. Results
4. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solomon, S.; Rosenlof, K.H.; Portmann, R.W.; Daniel, J.S.; Davis, S.M.; Sanford, T.J.; Plattner, G.K. Contributions of Stratospheric Water Vapor to Decadal Changes in the Rate of Global Warming. Science 2010, 327, 1219–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogel, B.; Feck, T.; Grooss, J.U. Impact of stratospheric water vapor enhancements caused by CH4 and H2O increase on polar ozone loss. J. Geophys. Res. Atmos. 2011, 116, 11. [Google Scholar] [CrossRef] [Green Version]
- Robrecht, S.; Vogel, B.; Grooß, J.-U.; Rosenlof, K.; Thornberry, T.; Rollins, A.; Krämer, M.; Christensen, L.; Müller, R. Mechanism of ozone loss under enhanced water vapour conditions in the mid-latitude lower stratosphere in summer. Atmos. Chem. Phys. 2019, 19, 5805–5833. [Google Scholar] [CrossRef] [Green Version]
- Shindell, D.T. Climate and ozone response to increased stratospheric water vapor. Geophys. Res. Lett. 2001, 28, 1551–1554. [Google Scholar] [CrossRef]
- Jensen, E.J.; Pan, L.L.; Honomichl, S.; Diskin, G.S.; Krämer, M.; Spelten, N.; Günther, G.; Hurst, D.F.; Fujiwara, M.; Vömel, H.; et al. Assessment of Observational Evidence for Direct Convective Hydration of the Lower Stratosphere. J. Geophys. Res. Atmos. 2020, 125, e2020JD032793. [Google Scholar] [CrossRef]
- Li, D.; Vogel, B.; Müller, R.; Bian, J.; Günther, G.; Ploeger, F.; Li, Q.; Zhang, J.; Bai, Z.; Vömel, H.; et al. Dehydration and low ozone in the tropopause layer over the Asian monsoon caused by tropical cyclones: Lagrangian transport calculations using ERA-Interim and ERA5 reanalysis data. Atmos. Chem. Phys. 2020, 20, 4133–4152. [Google Scholar] [CrossRef] [Green Version]
- Ueyama, R.; Jensen, E.J.; Pfister, L. Convective Influence on the Humidity and Clouds in the Tropical Tropopause Layer During Boreal Summer. J. Geophys. Res. Atmos. 2018, 123, 7576–7593. [Google Scholar] [CrossRef]
- Randel, W.J.; Wu, F.; Russell, J.M.; Roche, A.; Waters, J.W. Seasonal cycles and QBO variations in stratospheric CH4 and H2O observed in UARS HALOE data. J. Atmos. Sci. 1998, 55, 163–185. [Google Scholar] [CrossRef] [Green Version]
- Tao, M.; Konopka, P.; Ploeger, F.; Yan, X.; Wright, J.S.; Diallo, M.; Fueglistaler, S.; Riese, M. Multitimescale variations in modeled stratospheric water vapor derived from three modern reanalysis products. Atmos. Chem. Phys. 2019, 19, 6509–6534. [Google Scholar] [CrossRef] [Green Version]
- Tao, M.; Konopka, P.; Ploeger, F.; Riese, M.; Müller, R.; Volk, C.M. Impact of stratospheric major warmings and the quasi-biennial oscillation on the variability of stratospheric water vapor. Geophys. Res. Lett. 2015, 42, 4599–4607. [Google Scholar] [CrossRef] [Green Version]
- Glaze, L.S.; Baloga, S.M.; Wilson, L. Transport of atmospheric water vapor by volcanic eruption columns. J. Geophys. Res.-Atmos. 1997, 102, 6099–6108. [Google Scholar] [CrossRef]
- Murcray, D.G.; Murcray, F.J.; Barker, D.B.; Mastenbrook, H.J. Changes in Stratospheric Water Vapor Associated with the Mount St. Helens Eruption. Science 1981, 211, 823–824. [Google Scholar] [CrossRef] [PubMed]
- Sioris, C.E.; Malo, A.; McLinden, C.A.; D’Amours, R. Direct injection of water vapor into the stratosphere by volcanic eruptions. Geophys. Res. Lett. 2016, 43, 7694–7700. [Google Scholar] [CrossRef]
- Schwartz, M.J.; Read, W.G.; Santee, M.L.; Livesey, N.J.; Froidevaux, L.; Lambert, A.; Manney, G.L. Convectively injected water vapor in the North American summer lowermost stratosphere. Geophys. Res. Lett. 2013, 40, 2316–2321. [Google Scholar] [CrossRef]
- McCormick, M.P.; Thomason, L.W.; Trepte, C.R. Atmospheric effects of the Mt Pinatubo eruption. Nature 1995, 373, 399–404. [Google Scholar] [CrossRef]
- Pitari, G.; Mancini, E. Short-term climatic impact of the 1991 volcanic eruption of Mt. Pinatubo and effects on atmospheric tracers. Nat. Hazards Earth Syst. Sci. 2002, 2, 91–108. [Google Scholar] [CrossRef] [Green Version]
- Bates, S.; Carlowicz, M. Tonga Volcano Plume Reached the Mesosphere. Available online: https://earthobservatory.nasa.gov/images/149474/tonga-volcano-plume-reached-the-mesosphere (accessed on 21 April 2022).
- Kubota, T.; Saito, T.; Nishida, K. Global fast-traveling tsunamis driven by atmospheric Lamb waves on the 2022 Tonga eruption. Science 2022. [Google Scholar] [CrossRef] [PubMed]
- Matoza, R.S.; Fee, D.; Assink, J.D.; Iezzi, A.M.; Green, D.N.; Kim, K.; Toney, L.; Lecocq, T.; Krishnamoorthy, S.; Lalande, J.-M.; et al. Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga. Science 2022. [Google Scholar] [CrossRef]
- Yuen, D.A.; Scruggs, M.A.; Spera, F.J.; Zheng, Y.; Hu, H.; McNutt, S.R.; Thompson, G.; Mandli, K.; Keller, B.R.; Wei, S.S.; et al. Under the surface: Pressure-induced planetary-scale waves, volcanic lightning, and gaseous clouds caused by the submarine eruption of Hunga Tonga-Hunga Ha’apai volcano. Earthq. Res. Adv. 2022, 100134. [Google Scholar] [CrossRef]
- Livesey, N.J.; Read, W.G.; Wagner, P.A.; Froidevaux, L.; Lambert, A.; Manney, G.L.; Valle, L.F.M.; Pumphrey, H.C.; Santee, M.L.; Schwartz, M.J.; et al. Earth Observing System (EOS), Aura Microwave Limb Sounder (MLS), Version 4.2 x Level 2 and Level 3 Data Quality and Description Document, Version 4.2 x-4.0, D-33509; Technical Report; Jet Propulsion Laboratory: Pasadena, CA, USA, 2020. Available online: http://mls.jpl.nasa.gov/ (accessed on 20 April 2022).
- Vömel, H.; Barnes, J.E.; Forno, R.N.; Fujiwara, M.; Hasebe, F.; Iwasaki, S.; Kivi, R.; Komala, N.; Kyrö, E.; Leblanc, T.; et al. Validation of Aura Microwave Limb Sounder water vapor by balloon-borne Cryogenic Frost point Hygrometer measurements. J. Geophys. Res. 2007, 112, D24S37. [Google Scholar] [CrossRef] [Green Version]
- Bian, J.; Pan, L.L.; Paulik, L.; Vömel, H.; Chen, H.; Lu, D. In situ water vapor and ozone measurements in Lhasa and Kunming during the Asian summer monsoon. Geophys. Res. Lett. 2012, 39, L19808. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Vogel, B.; Bian, J.; Müller, R.; Pan, L.L.; Günther, G.; Bai, Z.; Li, Q.; Zhang, J.; Fan, Q.; et al. Impact of typhoons on the composition of the upper troposphere within the Asian summer monsoon anticyclone: The SWOP campaign in Lhasa 2013. Atmos. Chem. Phys. 2017, 17, 4657–4672. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Bian, J.; Li, D.; Bai, Z.; Li, Q.; Zhang, J.; Wang, H.; Zheng, X.; Hurst, D.F.; Vömel, H. Mixing characteristics within the tropopause transition layer over the Asian summer monsoon region based on ozone and water vapor sounding data. Atmos. Res. 2022, 271, 106093. [Google Scholar] [CrossRef]
- Vömel, H.; Tatjana, N.; Ruud, D.; Michael, S. An update on the uncertainties of water vapor measurements using cryogenic frost point hygrometers. Atmos. Meas. Tech. 2016, 9, 3755–3768. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Munoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Yan, X.L.; Wright, J.S.; Zheng, X.D.; Livesey, N.J.; Vomel, H.; Zhou, X.J. Validation of Aura MLS retrievals of temperature, water vapour and ozone in the upper troposphere and lower-middle stratosphere over the Tibetan Plateau during boreal summer. Atmos. Meas. Tech. 2016, 9, 3547–3566. [Google Scholar] [CrossRef] [Green Version]
- Danielsen, E.F. Trajectories of the Mount St. Helens Eruption Plume. Science 1981, 211, 819–821. [Google Scholar] [CrossRef] [PubMed]
- Carey, S.; Sigurdsson, H.; Gardner, J.E.; Criswell, W. Variations in column height and magma discharge during the May 18, 1980 eruption of Mount St. Helens. J. Volcanol. Geotherm. Res. 1990, 43, 99–112. [Google Scholar] [CrossRef]
- Rutherford, M.J.; Sigurdsson, H.; Carey, S.; Davis, A. The May 18, 1980, eruption of Mount St. Helens: 1. Melt composition and experimental phase equilibria. J. Geophys. Res. 1985, 90, 2929–2947. [Google Scholar] [CrossRef]
- Butchart, N. The Brewer–Dobson circulation. Rev. Geophys. 2014, 52, 157–184. [Google Scholar] [CrossRef]
- Plumb, R.A. Stratospheric transport. J. Meteorol. Soc. Jpn. 2002, 80, 793–809. [Google Scholar] [CrossRef] [Green Version]
- Tegtmeier, S.; Rex, M.; Wohltmann, I.; Krüger, K. Relative importance of dynamical and chemical contributions to Arctic wintertime ozone. Geophys. Res. Lett. 2008, 35, L17801. [Google Scholar] [CrossRef] [Green Version]
- Lubis, S.W.; Silverman, V.; Matthes, K.; Harnik, N.; Omrani, N.-E.; Wahl, S. How does downward planetary wave coupling affect polar stratospheric ozone in the Arctic winter stratosphere? Atmos. Chem. Phys. 2017, 17, 2437–2458. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, F.; Li, J.; Duan, Y.; Zhu, C.; He, J. Potential Impact of Tonga Volcano Eruption on Global Mean Surface Air Temperature. J. Meteorol. Res. 2022, 36, 1–5. [Google Scholar] [CrossRef]
- Zuo, M.; Zhou, T.; Man, W.; Chen, X.; Liu, J.; Liu, F.; Gao, C. Volcanoes and Climate: Sizing up the Impact of the Recent Hunga Tonga-Hunga Ha’apai Volcanic Eruption from a Historical Perspective. Adv. Atmos. Sci. 2022. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Li, D.; Bai, Z.; Tao, M.; Bian, J. Large Amounts of Water Vapor Were Injected into the Stratosphere by the Hunga Tonga–Hunga Ha’apai Volcano Eruption. Atmosphere 2022, 13, 912. https://doi.org/10.3390/atmos13060912
Xu J, Li D, Bai Z, Tao M, Bian J. Large Amounts of Water Vapor Were Injected into the Stratosphere by the Hunga Tonga–Hunga Ha’apai Volcano Eruption. Atmosphere. 2022; 13(6):912. https://doi.org/10.3390/atmos13060912
Chicago/Turabian StyleXu, Jingyuan, Dan Li, Zhixuan Bai, Mengchu Tao, and Jianchun Bian. 2022. "Large Amounts of Water Vapor Were Injected into the Stratosphere by the Hunga Tonga–Hunga Ha’apai Volcano Eruption" Atmosphere 13, no. 6: 912. https://doi.org/10.3390/atmos13060912
APA StyleXu, J., Li, D., Bai, Z., Tao, M., & Bian, J. (2022). Large Amounts of Water Vapor Were Injected into the Stratosphere by the Hunga Tonga–Hunga Ha’apai Volcano Eruption. Atmosphere, 13(6), 912. https://doi.org/10.3390/atmos13060912