Characteristics of Fine Particulate Matter (PM2.5)-Bound n-Alkanes and Polycyclic Aromatic Hydrocarbons (PAHs) in a Hong Kong Suburban Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site and Sample Collection
2.2. Chemical Analysis
2.3. Risk Assessment
3. Results and Discussion
3.1. PAH (Polycyclic Aromatic Hydrocarbon) Concentrations, Seasonal Variations, and Potential Health Risks
3.2. n-Alkanes Concentrations and Seasonal Variations
3.3. Source Identification of PAHs and n-Alkanes
3.3.1. Diagnostic Ratios of PAHs and Their Relations with Gases and Major Water-Soluble Ions
3.3.2. Carbon Preference Index (CPI) and Contribution of Plant Wax
- For all n-alkanes measured: CPI = ∑(C17 − C39)/∑(C16 − C40).
- For anthropogenic n-alkanes: CPI1 = ∑(C17 − C25)/∑(16 − C24).
- For biogenic n-alkanes: CPI2 = ∑(C27 − C39)/∑(C26 − C38).
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vega, E.; Reyes, E.; Ruiz, H.; García, J.; Sánchez, G.; Martínez-Villa, G.; González, U.; Chow, J.C.; Watson, J.G. Analysis of PM2.5and PM10 in the Atmosphere of Mexico City during 2000–2002. J. Air Waste Manag. Assoc. 2004, 54, 786–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkataraman, C.; Reddy, C.K.; Josson, S.; Reddy, M.S. Aerosol size and chemical characteristics at Mumbai, India, during the INDOEX-IFP (1999). Atmos. Environ. 2002, 36, 1979–1991. [Google Scholar] [CrossRef]
- Wu, X.; Vu, T.V.; Shi, Z.; Harrison, R.M.; Liu, D.; Cen, K. Characterization and source apportionment of carbonaceous PM2.5 particles in China-A review. Atmos. Environ. 2018, 189, 187–212. [Google Scholar] [CrossRef]
- Joseph, A.E.; Unnikrishnan, S.; Kumar, R. Chemical characterization and mass closure of fine aerosol for different land use patterns in Mumbai city. Aerosol Air Qual. Res. 2012, 12, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.J.; Lee, S.C.; Chow, J.C.; Watson, J.G.; Ho, K.F.; Zhang, R.J.; Jin, Z.D.; Shen, Z.X.; Chen, G.C.; Kang, Y.M.; et al. Spatial and seasonal distributions of carbonaceous aerosols over China. J. Geophys. Res.-Atmos. 2007, 112, D22. [Google Scholar] [CrossRef] [Green Version]
- Kalberer, M.; Sax, M.; Samburova, V. Molecular Size Evolution of Oligomers in Organic Aerosols Collected in Urban Atmospheres and Generated in a Smog Chamber. Environ. Sci. Technol. 2006, 40, 5917–5922. [Google Scholar] [CrossRef]
- Ravindra, K.; Sokhi, R.; Van Grieken, R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar] [CrossRef] [Green Version]
- Tobiszewski, M.; Namieśnik, J. PAH diagnostic ratios for the identification of pollution emission sources. Environ. Pollut. 2012, 162, 110–1109. [Google Scholar] [CrossRef]
- Simoneit, B.R.T.; Mazurek, M.A. Organic matter of the troposphere—II. For Part I, see Simoneit et al. (1977). Natural background of biogenic lipid matter in aerosols over the rural western united states. Atmos. Environ. (1967) 1982, 16, 2139–2159. [Google Scholar] [CrossRef]
- Simoneit, B.R.T. Organic matter of the troposphere—III. Characterization and sources of petroleum and pyrogenic residues in aerosols over the western united states. Atmos. Environ. (1967) 1984, 18, 51–67. [Google Scholar] [CrossRef]
- Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.; Cass, G.R.; Simoneit, B.R.T. Sources of fine organic aerosol. 4. Particulate abrasion products from leaf surfaces of urban plants. Environ. Sci. Technol. 1993, 27, 2700–2711. [Google Scholar] [CrossRef]
- Lammel, G. Polycyclic Aromatic Compounds in the Atmosphere-A Review Identifying Research Needs. Polycycl. Aromat. Compd. 2015, 35, 316–329. [Google Scholar] [CrossRef]
- Wang, J.; Ho, S.S.H.; Ma, S.; Cao, J.; Dai, W.; Liu, S.; Shen, Z.; Huang, R.; Wang, G.; Han, Y. Characterization of PM2.5 in Guangzhou, China: Uses of organic markers for supporting source apportionment. Sci. Total Environ. 2016, 550, 961–971. [Google Scholar] [CrossRef]
- Wang, G.; Kawamura, K. Molecular Characteristics of Urban Organic Aerosols from Nanjing: A Case Study of A Mega-City in China. Environ. Sci. Technol. 2005, 39, 7430–7438. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-F.; He, L.-Y.; Hu, M.; Zhang, Y.-H. Annual variation of particulate organic compounds in PM2.5 in the urban atmosphere of Beijing. Atmos. Environ. 2006, 40, 2449–2458. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, J.; Zhao, J.; Xu, H.; Arimoto, R.; Wang, G.; Han, Y.; Shen, Z.; Li, G. n-Alkanes and polycyclic aromatic hydrocarbons in total suspended particulates from the southeastern Tibetan Plateau: Concentrations, seasonal variations, and sources. Sci. Total Environ. 2014, 470, 9–18. [Google Scholar] [CrossRef]
- Guo, H.; Lee, S.C.; Ho, K.F.; Wang, X.M.; Zou, S.C. Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmos. Environ. 2003, 37, 5307–5317. [Google Scholar] [CrossRef]
- Ho, K.F.; Lee, S.C. Identification of atmospheric volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds in Hong Kong. Sci. Total Environ. 2002, 289, 145–158. [Google Scholar] [CrossRef]
- Gao, Y.; Lee, S.-C.; Huang, Y.; Chow, J.C.; Watson, J.G. Chemical characterization and source apportionment of size-resolved particles in Hong Kong sub-urban area. Atmos. Res. 2016, 170, 112–122. [Google Scholar] [CrossRef]
- Ho, K.F.; Cao, J.J.; Lee, S.C.; Chan, C.K. Source apportionment of PM2.5 in urban area of Hong Kong. J. Hazard. Mater. 2006, 138, 73–85. [Google Scholar] [CrossRef]
- Ho, S.S.H.; Chow, J.C.; Watson, J.G.; Ting Ng, L.P.; Kwok, Y.; Ho, K.F.; Cao, J. Precautions for in-injection port thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) as applied to aerosol filter samples. Atmos. Environ. 2011, 45, 1491–1496. [Google Scholar] [CrossRef]
- Nisbet, I.C.T.; LaGoy, P.K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef]
- Europe, W. Air quality guidelines for Europe. Eur. Ser. 2000, 3, 23. [Google Scholar]
- Gao, Y.; Ji, H. Characteristics of polycyclic aromatic hydrocarbons components in fine particle during heavy polluting phase of each season in urban Beijing. Chemosphere 2018, 212, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Cao, J.; Li, L.; Ho, S.S.H.; Wang, Q.; Zhu, C.; Wang, L. Characteristics and Source Identification of Polycyclic Aromatic Hydrocarbons and n-Alkanes in PM2.5 in Xiamen. Aerosol Air Qual. Res. 2018, 18, 1673–1683. [Google Scholar] [CrossRef]
- Li, J.; Zhang, G.; Li, X.D.; Qi, S.H.; Liu, G.Q.; Peng, X.Z. Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China. Sci. Total Environ. 2006, 355, 145–155. [Google Scholar] [CrossRef]
- Wang, J.; Ho, S.S.H.; Cao, J.; Huang, R.; Zhou, J.; Zhao, Y.; Xu, H.; Liu, S.; Wang, G.; Shen, Z.; et al. Characteristics and major sources of carbonaceous aerosols in PM2.5 from Sanya, China. Sci. Total Environ. 2015, 530, 110–119. [Google Scholar] [CrossRef]
- Liu, F.; Xu, Y.; Liu, J.; Liu, D.; Li, J.; Zhang, G.; Li, X.; Zou, S.; Lai, S. Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) to a coastal site of Hong Kong, South China. Atmos. Environ. 2013, 69, 265–272. [Google Scholar] [CrossRef]
- Moon, K.J.; Han, J.S.; Ghim, Y.S.; Kim, Y.J. Source apportionment of fine carbonaceous particles by positive matrix factorization at Gosan background site in East Asia. Environ. Int. 2008, 34, 654–664. [Google Scholar] [CrossRef]
- Vestenius, M.; Leppänen, S.; Anttila, P.; Kyllönen, K.; Hatakka, J.; Hellén, H.; Hyvärinen, A.-P.; Hakola, H. Background concentrations and source apportionment of polycyclic aromatic hydrocarbons in south-eastern Finland. Atmos. Environ. 2011, 45, 3391–3399. [Google Scholar] [CrossRef]
- Zheng, M.; Fang, M. Particle-associated Polycyclic Aromatic Hydrocarbons in the Atmosphere of Hong Kong. Water Air Soil Pollut. 2000, 117, 175–189. [Google Scholar] [CrossRef]
- Ma, Y.; Cheng, Y.; Qiu, X.; Lin, Y.; Cao, J.; Hu, D. A quantitative assessment of source contributions to fine particulate matter (PM2.5)-bound polycyclic aromatic hydrocarbons (PAHs) and their nitrated and hydroxylated derivatives in Hong Kong. Environ. Pollut. 2016, 219, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.-L.; Chen, X.-C.; Lui, K.-H.; Ho, S.S.-H.; Cao, J.-J.; Lee, S.-C.; Huang, H.; Ho, K.-F. Relationships between Outdoor and Personal Exposure of Carbonaceous Species and Polycyclic Aromatic Hydrocarbons (PAHs) in Fine Particulate Matter (PM2.5) at Hong Kong. Aerosol Air Qual. Res. 2017, 17, 666–679. [Google Scholar] [CrossRef]
- Liao, K.; Yu, J.Z. Abundance and sources of benzo[a]pyrene and other PAHs in ambient air in Hong Kong: A review of 20-year measurements (1997–2016). Chemosphere 2020, 259, 127518. [Google Scholar] [CrossRef]
- Yang, J.; Xu, W.; Cheng, H. Seasonal variations and sources of airborne polycyclic aromatic hydrocarbons (PAHs) in Chengdu, China. Atmosphere 2018, 9, 63. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Wang, T.; Wang, Z.; Li, W.; Xu, Z.; Wang, X.; Yuan, C.; Poon, C.N.; Louie, P.K.K.; Luk, C.W.Y.; et al. Photochemical evolution of organic aerosols observed in urban plumes from Hong Kong and the Pearl River Delta of China. Atmos. Environ. 2014, 88, 219–229. [Google Scholar] [CrossRef]
- Ohura, T.; Amagai, T.; Fusaya, M.; Matsushita, H. Spatial Distributions and Profiles of Atmospheric Polycyclic Aromatic Hydrocarbons in Two Industrial Cities in Japan. Environ. Sci. Technol. 2004, 38, 49–55. [Google Scholar] [CrossRef]
- Smith, D.; Harrison, R.M. Concentrations, trends and vehicle source profile of polynuclear aromatic hydrocarbons in the UK atmosphere. Atmos. Environ. 1996, 30, 2513–2525. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Li, P.-H.; Shou, Y.-P.; Li, T.; Yang, M.-M.; Wang, L.; Yue, J.-J.; Yi, X.-L.; Guo, L.-Q. Polycyclic aromatic hydrocarbons (PAHs) at high mountain site in North China: Concentration, source and health risk assessment. Aerosol Air Qual. Res. 2017, 17, 2867–2877. [Google Scholar] [CrossRef]
- Hong, Z.; Hong, Y.; Zhang, H.; Chen, J.; Xu, L.; Deng, J.; Du, W.; Zhang, Y.; Xiao, H. Pollution Characteristics and Source Apportionment of PM2.5-Bound n-Alkanes in the Yangtze River Delta, China. Aerosol Air Qual. Res. 2017, 17, 1985–1998. [Google Scholar] [CrossRef]
- Simoneit, B.R.T. Biomass burning-A review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 2002, 17, 129–162. [Google Scholar] [CrossRef]
- Simoneit, B.R.T. A review of biomarker compounds as source indicators and tracers for air pollution. Environ. Sci. Pollut. Res. 1999, 6, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Bush, R.T.; McInerney, F.A. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy. Geochim. Cosmochim. Acta 2013, 117, 161–179. [Google Scholar] [CrossRef]
- Flores, R.M.; Özdemir, H.; Ünal, A.; Tayanç, M. Distribution and sources of SVOCs in fine and coarse aerosols in the megacity of Istanbul. Atmos. Res. 2022, 271, 106100. [Google Scholar] [CrossRef]
- Kavouras, I.G.; Lawrence, J.; Koutrakis, P.; Stephanou, E.G.; Oyola, P. Measurement of particulate aliphatic and polynuclear aromatic hydrocarbons in Santiago de Chile: Source reconciliation and evaluation of sampling artifacts. Atmos. Environ. 1999, 33, 4977–4986. [Google Scholar] [CrossRef]
- Ren, L.; Fu, P.; He, Y.; Hou, J.; Chen, J.; Pavuluri, C.M.; Sun, Y.; Wang, Z. Molecular distributions and compound-specific stable carbon isotopic compositions of lipids in wintertime aerosols from Beijing. Sci. Rep. 2016, 6, 27481. [Google Scholar] [CrossRef] [Green Version]
Summer | Autumn | Winter | Spring | Annual | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Average | S.D. | Average | S.D. | Average | S.D. | Average | S.D. | Average | S.D. | ||
3-ring | AC | 0.05 | 0.03 | 0.06 | 0.02 | 0.10 | 0.05 | 0.07 | 0.02 | 0.07 | 0.03 |
3-ring | ACE | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
3-ring | Flo | 0.04 | 0.02 | 0.05 | 0.01 | 0.06 | 0.02 | 0.04 | 0.01 | 0.05 | 0.02 |
3-ring | Phe | 0.27 | 0.11 | 0.21 | 0.08 | 0.39 | 0.14 | 0.23 | 0.05 | 0.27 | 0.12 |
3-ring | Ant | 0.12 | 0.02 | 0.16 | 0.07 | 0.17 | 0.04 | 0.16 | 0.04 | 0.16 | 0.05 |
4-ring | Flu | 0.37 | 0.14 | 0.29 | 0.13 | 0.56 | 0.24 | 0.31 | 0.07 | 0.38 | 0.18 |
4-ring | Pyr | 0.18 | 0.08 | 0.16 | 0.06 | 0.29 | 0.13 | 0.15 | 0.03 | 0.20 | 0.10 |
4-ring | BaA | 0.03 | 0.02 | 0.04 | 0.02 | 0.06 | 0.02 | 0.03 | 0.00 | 0.04 | 0.02 |
4-ring | Chr | 0.15 | 0.07 | 0.21 | 0.13 | 0.25 | 0.09 | 0.17 | 0.02 | 0.20 | 0.10 |
5-ring | BbF | 0.09 | 0.03 | 0.18 | 0.09 | 0.17 | 0.06 | 0.09 | 0.02 | 0.14 | 0.08 |
5-ring | BkF | 0.09 | 0.04 | 0.17 | 0.12 | 0.19 | 0.05 | 0.09 | 0.03 | 0.14 | 0.09 |
5-ring | BaF | 0.03 | 0.01 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.01 | 0.03 | 0.02 |
5-ring | BeP | 0.07 | 0.02 | 0.21 | 0.15 | 0.19 | 0.07 | 0.09 | 0.03 | 0.15 | 0.13 |
5-ring | BaP | 0.02 | 0.01 | 0.05 | 0.02 | 0.12 | 0.15 | 0.03 | 0.01 | 0.05 | 0.08 |
5-ring | Per | 0.03 | 0.01 | 0.03 | 0.01 | 0.04 | 0.03 | 0.03 | 0.01 | 0.03 | 0.01 |
6-ring | IcdP | 0.02 | 0.02 | 0.07 | 0.04 | 0.05 | 0.02 | 0.03 | 0.02 | 0.05 | 0.03 |
5-ring | DahA | 0.01 | 0.00 | 0.02 | 0.01 | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.01 |
6-ring | BghiP | 0.04 | 0.01 | 0.13 | 0.11 | 0.09 | 0.04 | 0.05 | 0.03 | 0.08 | 0.07 |
7-ring | Cor | nd | nd | 0.07 | 0.02 | 0.11 | 0.00 | 0.08 | 0.03 | 0.08 | 0.02 |
∑PAH | 1.62 | 0.64 | 2.15 | 1.13 | 2.90 | 1.19 | 1.67 | 0.43 | 2.57 | 2.53 |
Summer | Autumn | Winter | Spring | Annual | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Average | S.D. | Average | S.D. | Average | S.D. | Average | S.D. | Average | S.D. | |
n-pentadecane (C15) | 0.43 | 0.07 | 0.47 | 0.22 | 0.52 | 0.26 | 0.49 | 0.15 | 0.48 | 0.18 |
n-hexadecane (C16) | 0.49 | 0.11 | 0.76 | 0.41 | 0.70 | 0.24 | 0.80 | 0.31 | 0.70 | 0.31 |
n-heptadecane (C17) | 0.67 | 0.12 | 0.74 | 0.23 | 0.85 | 0.25 | 1.13 | 0.80 | 0.85 | 0.45 |
n-octadecane (C18) | 0.92 | 0.13 | 1.40 | 0.18 | 1.34 | 0.61 | 1.32 | 0.46 | 1.27 | 0.41 |
n-nonadecane (C19) | 1.11 | 0.38 | 1.67 | 0.74 | 1.74 | 0.52 | 1.50 | 0.85 | 1.53 | 0.66 |
n-icosane (C20) | 0.90 | 0.37 | 1.09 | 0.47 | 0.98 | 0.47 | 1.38 | 0.64 | 1.10 | 0.50 |
n-heneicosane (C21) | 1.75 | 1.30 | 2.09 | 0.92 | 2.03 | 1.58 | 3.26 | 2.12 | 2.30 | 1.54 |
n-docosane (C22) | 2.85 | 2.17 | 4.04 | 2.24 | 3.24 | 2.81 | 6.21 | 4.21 | 4.13 | 3.06 |
n-tricosane (C23) | 7.23 | 8.08 | 12.47 | 8.55 | 10.45 | 8.86 | 17.77 | 10.85 | 12.20 | 9.35 |
n-tetracosane (C24) | 5.36 | 4.69 | 11.22 | 5.06 | 10.99 | 6.52 | 11.37 | 4.98 | 9.98 | 5.57 |
n-pentacosane (C25) | 7.55 | 4.67 | 14.75 | 8.28 | 11.93 | 4.79 | 14.48 | 4.78 | 12.48 | 6.29 |
n-hexacosane (C26) | 4.87 | 2.95 | 7.82 | 4.77 | 9.47 | 5.37 | 6.78 | 4.05 | 7.36 | 4.47 |
n-heptacosane (C27) | 8.34 | 3.78 | 12.24 | 5.79 | 12.07 | 4.65 | 10.70 | 4.22 | 11.00 | 4.70 |
n-octacosane (C28) | 4.15 | 2.26 | 6.10 | 3.30 | 6.87 | 3.44 | 4.85 | 2.16 | 5.57 | 2.90 |
n-nonacosane (C29) | 10.36 | 3.94 | 12.17 | 3.24 | 13.04 | 3.21 | 13.20 | 5.22 | 12.27 | 3.85 |
n-triacontane (C30) | 3.27 | 1.44 | 4.95 | 2.01 | 4.88 | 1.31 | 4.67 | 1.30 | 4.51 | 1.61 |
n-hentriacotane (C31) | 6.47 | 2.58 | 8.62 | 2.70 | 9.43 | 2.63 | 8.42 | 3.83 | 8.32 | 2.97 |
n-dotriacontane (C32) | 1.51 | 0.99 | 2.12 | 1.27 | 2.42 | 0.45 | 1.74 | 0.75 | 1.98 | 0.94 |
n-tritriactotane (C33) | 1.73 | 1.04 | 2.37 | 0.78 | 2.61 | 0.54 | 2.16 | 0.75 | 2.25 | 0.79 |
n-tetratriactoane (C34) | 1.09 | 1.03 | 1.30 | 0.69 | 2.07 | 0.58 | 1.06 | 0.27 | 1.39 | 0.75 |
n-pentatriacontane (C35) | 1.14 | 1.10 | 1.35 | 0.81 | 2.69 | 0.65 | 1.13 | 0.23 | 1.56 | 0.93 |
n-alkanes | 72.18 | 22.76 | 109.76 | 47.97 | 110.33 | 41.29 | 114.43 | 44.30 | 103.21 | 41.92 |
Summer | Autumn | Winter | Spring | Annual | |
---|---|---|---|---|---|
CPI | 1.80 (1.52−2.15) | 1.71 (1.50−1.98) | 1.58 (1.35−1.82) | 1.87 (1.43−2.29) | 1.74 (1.35−2.29) |
CPI1 | 1.78 (1.30−2.10) | 1.68 (1.44−2.22) | 1.60 (1.49−1.77) | 1.83 (1.70−1.98) | 1.72 (1.30−2.22) |
CPI2 | 1.94 (1.51−2.64) | 1.76 (1.35−2.24) | 1.58 (1.25−1.88) | 1.92 (1.08−2.60) | 1.79 (1.08−2.64) |
%wax | 45% (34−54%) | 43% (34−51%) | 37% (28−47%) | 47% (31−59%) | 43% (28−59%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Ling, Z.; Zhang, Z.; Lee, S. Characteristics of Fine Particulate Matter (PM2.5)-Bound n-Alkanes and Polycyclic Aromatic Hydrocarbons (PAHs) in a Hong Kong Suburban Area. Atmosphere 2022, 13, 980. https://doi.org/10.3390/atmos13060980
Gao Y, Ling Z, Zhang Z, Lee S. Characteristics of Fine Particulate Matter (PM2.5)-Bound n-Alkanes and Polycyclic Aromatic Hydrocarbons (PAHs) in a Hong Kong Suburban Area. Atmosphere. 2022; 13(6):980. https://doi.org/10.3390/atmos13060980
Chicago/Turabian StyleGao, Yuan, Zhenhao Ling, Zhuozhi Zhang, and Shuncheng Lee. 2022. "Characteristics of Fine Particulate Matter (PM2.5)-Bound n-Alkanes and Polycyclic Aromatic Hydrocarbons (PAHs) in a Hong Kong Suburban Area" Atmosphere 13, no. 6: 980. https://doi.org/10.3390/atmos13060980
APA StyleGao, Y., Ling, Z., Zhang, Z., & Lee, S. (2022). Characteristics of Fine Particulate Matter (PM2.5)-Bound n-Alkanes and Polycyclic Aromatic Hydrocarbons (PAHs) in a Hong Kong Suburban Area. Atmosphere, 13(6), 980. https://doi.org/10.3390/atmos13060980