Landfill Emissions of Methane Inferred from Unmanned Aerial Vehicle and Mobile Ground Measurements
Abstract
:1. Introduction
2. Methodology
2.1. Measurement Platforms
2.2. Inverse Modeling of Methane Emissions
2.3. Model Inversions of Mobile Laboratory Data
2.4. Drone Measurement Strategy
3. Results of Drone Monitoring
3.1. Facility A on 14 September 2021
3.2. Facility B on 28 September 2021
4. Discussion and Conclusions
- Mobile infrared cavity ringdown spectrometry;
- Drone-mounted tunable diode laser spectrometry;
- Drone-mounted meteorological sensors;
- Estimation of total emissions of methane based on flux plane measurements;
- Gaussian plume inverse modeling of distributed methane emissions.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Intergovernmental panel on climate change (IPCC). In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Zhang, J.; Han, G.; Mao, H.; Pei, Z.; Ma, X.; Jia, W.; Gong, W. The spatial and temporal distribution patterns of XCH4 in China: New observations from TROPOMI. Atmosphere 2022, 13, 177. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Basic Information about Landfill Gas. Available online: https://www.epa.gov/lmop/basic-information-about-landfill-gas#methane (accessed on 25 January 2022).
- Duren, R.; Thorpe, A.; Foster, K.T.; Rafiq, T.; Hopkins, F.M.; Yadav, V.; Bue, B.; Thompson, D.R.; Conley, S.; Colombi, N.; et al. California’s methane super-emitters. Nature 2019, 575, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Duren, R.; Thorpe, A.; McCubbin, I. The California Methane Survey; CEC-500-2020-047; California Energy Commission: Sacramento, CA, USA, 2020. [Google Scholar]
- Olaguer, E.P. The potential ozone impacts of landfills. Atmosphere 2021, 12, 877. [Google Scholar] [CrossRef]
- State of Michigan. Monitoring Data for Violating Monitors in Nonattainment Areas (2018–2020). Available online: https://www.michigan.gov/egle/-/media/Project/Websites/egle/Documents/Programs/AQD/State-Implementation-Plan/non-attainment/Ozone-monitors-2018-20-nonattainment-area.pdf (accessed on 20 May 2022).
- State of Michigan. Michigan Healthy Climate Plan. Available online: https://www.michigan.gov/documents/egle/Draft-MI-Healthy-Climate-Plan_745872_7.pdf (accessed on 25 January 2022).
- U.S. Environmental Protection Agency. Landfill Gas Emissions Model (LandGEM) Version 3.02 User’s Guide; EPA-454/R-03-004; Office of Research and Development: Washington, DC, USA, 2005.
- Górka, M.; Bezyk, Y.; Sówka, I. Assessment of GHG interactions in the vicinity of the municipal waste landfill site—Case study. Energies 2021, 14, 8259. [Google Scholar] [CrossRef]
- He, H.; Wu, T.; Qiu, Z.; Zhao, C.; Wang, S.; Yao, J.; Hong, J. Enhanced methane oxidation potential of landfill cover soil modified with aged refuse. Atmosphere 2022, 13, 802. [Google Scholar] [CrossRef]
- Bogner, J.E.; Spokas, K.A.; Chanton, J.P. Seasonal greenhouse gas emissions (methane, carbon dioxide, nitrous oxide) from engineered landfills: Daily, intermediate, and final California cover soils. J. Environ. Qual. 2011, 40, 1010–1020. [Google Scholar] [CrossRef]
- Xu, L.; Lin, X.; Amen, J.; Welding, K.; McDermitt, D. Impact of changes in barometric pressure on landfill methane emission. Glob. Biogeochem. Cycles 2014, 28, 679–695. [Google Scholar] [CrossRef]
- Jafari, N.H.; Stark, T.D.; Thalhamer, T. Progression of elevated temperatures in municipal solid waste landfills. J. Geotech. Geoenviron. Eng. 2017, 143, 05017004. [Google Scholar] [CrossRef]
- Reinhart, D.; Joslyn, R.; Emrich, C.T. Characterization of Florida, U.S. landfills with elevated temperatures. Waste Manag. 2020, 118, 55–61. [Google Scholar] [CrossRef]
- Schupp, S.; De la Cruz, F.B.; Cheng, Q.; Call, D.F.; Barlaz, M.A. Evaluation of the temperature range for biological activity in landfills experiencing elevated temperatures. ACS EST Eng. 2021, 1, 216–227. [Google Scholar] [CrossRef]
- Monster, J.; Kjeldsen, P.; Scheutz, C. Methodologies for measuring fugitive methane emissions from landfills—A review. Waste Manag. 2019, 87, 835–859. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Allen, G.; Pitt, J.R.; Ricketts, H.; Williams, P.I.; Helmore, J.; Finlayson, A.; Robinson, R.; Kabbabe, K.; Hollingsworth, P.; et al. A near-field Gaussian plume inversion flux quantification method, applied to unmanned aerial vehicle sampling. Atmosphere 2019, 10, 396. [Google Scholar] [CrossRef]
- Michigan-Ontario Ozone Source Experiment (MOOSE). Available online: https://www-air.larc.nasa.gov/missions/moose/index.html (accessed on 26 January 2022).
- State of Michigan. Annual Reports of Solid Waste Landfilled in Michigan. Available online: https://www.michigan.gov/egle/about/organization/materials-management/solid-waste/solid-waste-disposal-areas/annual-reports-of-solid-waste-landfilled-in-michigan (accessed on 17 May 2022).
- Xia, T.; Catalan, J.; Hu, C.; Batterman, S. Development of a mobile platform for monitoring gaseous, particulate and greenhouse gas (GHG) pollutants. Environ. Monit. Assess. 2021, 193, 7. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. AERMOD: Description of Model Formulation; EPA-600/R-05/047; Office of Air Quality Planning and Standards: Research Triangle Park, NC, USA, 2004.
- Lan, X.; Talbot, R.; Laine, P.; Torres, A. Characterizing fugitive methane emissions in the Barnett Shale area using a mobile laboratory. Environ. Sci. Technol. 2015, 49, 8139–8146. [Google Scholar] [CrossRef]
- Olaguer, E.P.; Robinson, A.; Kilmer, S.; Haywood, J.; Lehner, D. Ethylene oxide exposure attribution and emissions quantification based on ambient air measurements near a sterilization facility. Int. J. Environ. Res. Public Health 2019, 17, 42. [Google Scholar] [CrossRef]
- Figueroa, V.K.; Mackie, K.R.; Guarriello, N.; Cooper, C.D. A robust method for estimating landfill methane emissions. J. Air Waste Manag. Assoc. 2009, 59, 925–935. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. User’s Guide for AERSURFACE Tool; EPA-454/B-20-008; Office of Air Quality Planning and Standards: Research Triangle Park, NC, USA, 2020.
- Shah, A.; Pitt, J.R.; Ricketts, H.; Leen, J.B.; Williams, P.I.; Kabbabe, K.; Gallagher, M.W.; Allen, G. Testing the near-field Gaussian plume inversion flux quantification technique using unmanned aerial vehicle sampling. Atmos. Meas. Tech. 2020, 13, 1467–1484. [Google Scholar] [CrossRef]
- Carbon Mapper: Accelerating Local Climate Action, Globally. Available online: https://carbonmapper.org (accessed on 26 January 2022).
- Galfalk, M.; Paledal, S.N.; Bastviken, D. Sensitive drone mapping of methane emissions without the need for supplementary ground-based measurements. ACS Earth Space Chem. 2021, 5, 2668–2676. [Google Scholar] [CrossRef]
- Corbett, A.; Smith, B. A Study of a miniature TDLAS system onboard two unmanned aircraft to independently quantify methane emissions from oil and gas production assets and other industrial emitters. Atmosphere 2022, 13, 804. [Google Scholar] [CrossRef]
- Ali, N.B.H.; Abichou, T.; Green, R. Comparing estimates of fugitive landfill methane emissions using inverse plume modeling obtained with Surface Emission Monitoring (SEM), Drone Emission Monitoring (DEM), and Downwind Plume Emission Monitoring (DWPEM). J. Air Waste Manag. Assoc. 2020, 70, 410–424. [Google Scholar]
- Kormi, T.; Ali, N.B.H.; Abichou, T.; Green, R. Estimation of landfill methane emissions using stochastic search methods. Atmos. Pollut. Res. 2017, 8, 597–605. [Google Scholar] [CrossRef]
- Pasquill, F.; Smith, F.B. Atmospheric Diffusion; Ellis Harwood: Chichester, UK, 1983. [Google Scholar]
- Olaguer, E.P.; Stutz, J.; Erickson, M.H.; Hurlock, S.C.; Cheung, R.; Tsai, C.; Colosimo, S.F.; Festa, J.; Wijesinghe, A.; Neish, B.S. Real time measurement of transient event emissions of air toxics by tomographic remote sensing in tandem with mobile monitoring. Atmos. Environ. 2017, 150, 220–228. [Google Scholar] [CrossRef]
- United Nations. COP26: Together for Our Planet. Available online: https://www.un.org/en/climatechange/cop26 (accessed on 30 May 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olaguer, E.P.; Jeltema, S.; Gauthier, T.; Jermalowicz, D.; Ostaszewski, A.; Batterman, S.; Xia, T.; Raneses, J.; Kovalchick, M.; Miller, S.; et al. Landfill Emissions of Methane Inferred from Unmanned Aerial Vehicle and Mobile Ground Measurements. Atmosphere 2022, 13, 983. https://doi.org/10.3390/atmos13060983
Olaguer EP, Jeltema S, Gauthier T, Jermalowicz D, Ostaszewski A, Batterman S, Xia T, Raneses J, Kovalchick M, Miller S, et al. Landfill Emissions of Methane Inferred from Unmanned Aerial Vehicle and Mobile Ground Measurements. Atmosphere. 2022; 13(6):983. https://doi.org/10.3390/atmos13060983
Chicago/Turabian StyleOlaguer, Eduardo P., Shelley Jeltema, Thomas Gauthier, Dustin Jermalowicz, Arthur Ostaszewski, Stuart Batterman, Tian Xia, Julia Raneses, Michael Kovalchick, Scott Miller, and et al. 2022. "Landfill Emissions of Methane Inferred from Unmanned Aerial Vehicle and Mobile Ground Measurements" Atmosphere 13, no. 6: 983. https://doi.org/10.3390/atmos13060983
APA StyleOlaguer, E. P., Jeltema, S., Gauthier, T., Jermalowicz, D., Ostaszewski, A., Batterman, S., Xia, T., Raneses, J., Kovalchick, M., Miller, S., Acevedo, J., Lamb, J., Benya, J., Wendling, A., & Zhu, J. (2022). Landfill Emissions of Methane Inferred from Unmanned Aerial Vehicle and Mobile Ground Measurements. Atmosphere, 13(6), 983. https://doi.org/10.3390/atmos13060983