Impacts of Different Land Use Scenarios on Future Global and Regional Climate Extremes
Abstract
:1. Introduction
2. Methods
2.1. Models and Experiments
2.2. Climate Extreme Indices
3. Results
3.1. Spatial Pattern of the Impact of Different Land Use Scenarios on Extreme Indices
3.2. Regional Contribution of Different Land Use Scenarios to Climate Extremes
3.3. Global Contribution of Different Land Use Scenarios to Climate Extremes
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahmood, R.; Pielke, R.A.; Hubbard, K.G.; Niyogi, D.; Dirmeyer, P.A.; McAlpine, C.; Carleton, A.M.; Hale, R.; Gameda, S.; Beltrán-Przekurat, A.; et al. Land Cover Changes and Their Biogeophysical Effects on Climate: Land cover changes and their biogeophysical effects on climate. Int. J. Climatol. 2014, 34, 929–953. [Google Scholar] [CrossRef] [Green Version]
- Pielke, R.A.; Pitman, A.; Niyogi, D.; Mahmood, R.; McAlpine, C.; Hossain, F.; Goldewijk, K.K.; Nair, U.; Betts, R.; Fall, S.; et al. Land Use/Land Cover Changes and Climate: Modeling Analysis and Observational Evidence. WIREs Clim. Chang. 2011, 2, 828–850. [Google Scholar] [CrossRef]
- Quesada, B.; Arneth, A.; Robertson, E.; de Noblet-Ducoudré, N. Potential Strong Contribution of Future Anthropogenic Land-Use and Land-Cover Change to the Terrestrial Carbon Cycle. Environ. Res. Lett. 2018, 13, 064023. [Google Scholar] [CrossRef]
- Lejeune, Q.; Seneviratne, S.I.; Davin, E.L. Historical Land-Cover Change Impacts on Climate: Comparative Assessment of LUCID and CMIP5 Multimodel Experiments. J. Clim. 2017, 30, 1439–1459. [Google Scholar] [CrossRef]
- Quesada, B.; Arneth, A.; de Noblet-Ducoudré, N. Atmospheric, Radiative, and Hydrologic Effects of Future Land Use and Land Cover Changes: A Global and Multimodel Climate Picture: Climatic Effects of Future LULCC. J. Geophys. Res. Atmos. 2017, 122, 5113–5131. [Google Scholar] [CrossRef] [Green Version]
- Boisier, J.P.; de Noblet-Ducoudré, N.; Pitman, A.J.; Cruz, F.T.; Delire, C.; van den Hurk, B.J.J.M.; van der Molen, M.K.; Müller, C.; Voldoire, A. Attributing the Impacts of Land-Cover Changes in Temperate Regions on Surface Temperature and Heat Fluxes to Specific Causes: Results from the First LUCID Set of Simulations: Biogeophysical Impacts of Lulcc. J. Geophys. Res. 2012, 117, D12116. [Google Scholar] [CrossRef]
- Lee, X.; Goulden, M.L.; Hollinger, D.Y.; Barr, A.; Black, T.A.; Bohrer, G.; Bracho, R.; Drake, B.; Goldstein, A.; Gu, L.; et al. Observed Increase in Local Cooling Effect of Deforestation at Higher Latitudes. Nature 2011, 479, 384–387. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, M.; Motesharrei, S.; Mu, Q.; Kalnay, E.; Li, S. Local Cooling and Warming Effects of Forests Based on Satellite Observations. Nat. Commun 2015, 6, 6603. [Google Scholar] [CrossRef] [Green Version]
- De Noblet-Ducoudré, N.; Boisier, J.-P.; Pitman, A.; Bonan, G.B.; Brovkin, V.; Cruz, F.; Delire, C.; Gayler, V.; van den Hurk, B.J.J.M.; Lawrence, P.J.; et al. Determining Robust Impacts of Land-Use-Induced Land Cover Changes on Surface Climate over North America and Eurasia: Results from the First Set of LUCID Experiments. J. Clim. 2012, 25, 3261–3281. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Dirmeyer, P.A. The Relative Importance among Anthropogenic Forcings of Land Use/Land Cover Change in Affecting Temperature Extremes. Clim. Dyn. 2019, 52, 2269–2285. [Google Scholar] [CrossRef]
- Boysen, L.R.; Brovkin, V.; Arora, V.K.; Cadule, P.; de Noblet-Ducoudré, N.; Kato, E.; Pongratz, J.; Gayler, V. Global and Regional Effects of Land-Use Change on Climate in 21st Century Simulations with Interactive Carbon Cycle. Earth Syst. Dyn. 2014, 5, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Davies-Barnard, T.; Valdes, P.J.; Singarayer, J.S.; Pacifico, F.M.; Jones, C.D. Full Effects of Land Use Change in the Representative Concentration Pathways. Environ. Res. Lett. 2014, 9, 114014. [Google Scholar] [CrossRef] [Green Version]
- Brovkin, V.; Boysen, L.; Arora, V.K.; Boisier, J.P.; Cadule, P.; Chini, L.; Claussen, M.; Friedlingstein, P.; Gayler, V.; van den Hurk, B.J.J.M.; et al. Effect of Anthropogenic Land-Use and Land-Cover Changes on Climate and Land Carbon Storage in CMIP5 Projections for the Twenty-First Century. J. Clim. 2013, 26, 6859–6881. [Google Scholar] [CrossRef]
- Pitman, A.J.; de Noblet-Ducoudré, N.; Avila, F.B.; Alexander, L.V.; Boisier, J.-P.; Brovkin, V.; Delire, C.; Cruz, F.; Donat, M.G.; Gayler, V.; et al. Effects of Land Cover Change on Temperature and Rainfall Extremes in Multi-Model Ensemble Simulations. Earth Syst. Dyn. 2012, 3, 213–231. [Google Scholar] [CrossRef] [Green Version]
- Lejeune, Q.; Davin, E.L.; Gudmundsson, L.; Winckler, J.; Seneviratne, S.I. Historical Deforestation Locally Increased the Intensity of Hot Days in Northern Mid-Latitudes. Nat. Clim. Chang. 2018, 8, 386–390. [Google Scholar] [CrossRef]
- Avila, F.B.; Pitman, A.J.; Donat, M.G.; Alexander, L.V.; Abramowitz, G. Climate Model Simulated Changes in Temperature Extremes due to Land Cover Change: Changes in Climate Extremes due to Lulcc. J. Geophys. Res. 2012, 117, D04108. [Google Scholar] [CrossRef] [Green Version]
- Findell, K.L.; Berg, A.; Gentine, P.; Krasting, J.P.; Lintner, B.R.; Malyshev, S.; Santanello, J.A.; Shevliakova, E. The Impact of Anthropogenic Land Use and Land Cover Change on Regional Climate Extremes. Nat. Commun. 2017, 8, 989. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, H.; Wei, J.; Hua, W.; Sun, S.; Ma, H.; Li, X.; Li, J. Inconsistent Responses of Hot Extremes to Historical Land Use and Cover Change among the Selected CMIP5 Models. J. Geophys. Res. Atmos. 2018, 123, 3497–3512. [Google Scholar] [CrossRef]
- Christidis, N.; Stott, P.A.; Hegerl, G.C.; Betts, R.A. The Role of Land Use Change in the Recent Warming of Daily Extreme Temperatures: Land Use Change and Temperature Extremes. Geophys. Res. Lett. 2013, 40, 589–594. [Google Scholar] [CrossRef] [Green Version]
- Mueller, N.D.; Butler, E.E.; McKinnon, K.A.; Rhines, A.; Tingley, M.; Holbrook, N.M.; Huybers, P. Cooling of US Midwest Summer Temperature Extremes from Cropland Intensification. Nat. Clim. Chang. 2016, 6, 317–322. [Google Scholar] [CrossRef] [Green Version]
- Thiery, W.; Visser, A.J.; Fischer, E.M.; Hauser, M.; Hirsch, A.L.; Lawrence, D.M.; Lejeune, Q.; Davin, E.L.; Seneviratne, S.I. Warming of Hot Extremes Alleviated by Expanding Irrigation. Nat. Commun. 2020, 11, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, X.; Tang, J.; Wang, S.; Fu, C. Impact of Future Land Use and Land Cover Change on Temperature Projections over East Asia. Clim Dyn. 2019, 52, 6475–6490. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, A.L.; Guillod, B.P.; Seneviratne, S.I.; Beyerle, U.; Boysen, L.R.; Brovkin, V.; Davin, E.L.; Doelman, J.C.; Kim, H.; Mitchell, D.M.; et al. Biogeophysical Impacts of Land-Use Change on Climate Extremes in Low-Emission Scenarios: Results from HAPPI-Land. Earth’s Future 2018, 6, 396–409. [Google Scholar] [CrossRef] [PubMed]
- Sy, S.; Quesada, B. Anthropogenic Land Cover Change Impact on Climate Extremes during the 21st Century. Environ. Res. Lett. 2020, 15, 034002. [Google Scholar] [CrossRef]
- Perugini, L.; Caporaso, L.; Marconi, S.; Cescatti, A.; Quesada, B.; de Noblet-Ducoudré, N.; House, J.I.; Arneth, A. Biophysical Effects on Temperature and Precipitation due to Land Cover Change. Environ. Res. Lett. 2017, 12, 053002. [Google Scholar] [CrossRef]
- Hirsch, A.L.; Wilhelm, M.; Davin, E.L.; Thiery, W.; Seneviratne, S.I. Can Climate-effective Land Management Reduce Regional Warming? J. Geophys. Res. Atmos. 2017, 122, 2269–2288. [Google Scholar] [CrossRef]
- Boysen, L.R.; Brovkin, V.; Pongratz, J.; Lawrence, D.M.; Lawrence, P.; Vuichard, N.; Peylin, P.; Liddicoat, S.; Hajima, T.; Zhang, Y.; et al. Global Climate Response to Idealized Deforestation in CMIP6 Models. Biogeosciences 2020, 17, 5615–5638. [Google Scholar] [CrossRef]
- Cherubini, F.; Huang, B.; Hu, X.; Tölle, M.H.; Strømman, A.H. Quantifying the Climate Response to Extreme Land Cover Changes in Europe with a Regional Model. Environ. Res. Lett. 2018, 13, 074002. [Google Scholar] [CrossRef]
- Hu, X.; Huang, B.; Cherubini, F. Impacts of Idealized Land Cover Changes on Climate Extremes in Europe. Ecol. Indic. 2019, 104, 626–635. [Google Scholar] [CrossRef]
- Popp, A.; Calvin, K.; Fujimori, S.; Havlik, P.; Humpenöder, F.; Stehfest, E.; Bodirsky, B.L.; Dietrich, J.P.; Doelmann, J.C.; Gusti, M.; et al. Land-Use Futures in the Shared Socio-Economic Pathways. Glob. Environ. Chang. 2017, 42, 331–345. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, D.M.; Hurtt, G.C.; Arneth, A.; Brovkin, V.; Calvin, K.V.; Jones, A.D.; Jones, C.D.; Lawrence, P.J.; de Noblet-Ducoudré, N.; Pongratz, J.; et al. The Land Use Model Intercomparison Project (LUMIP) Contribution to CMIP6:Rationale and Experimental Design. Geosci. Model Dev. 2016, 9, 2973–2998. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Ziehn, T.; Chamberlain, M.A.; Law, R.M.; Lenton, A.; Bodman, R.W.; Dix, M.; Stevens, L.; Wang, Y.-P.; Srbinovsky, J. The Australian Earth System Model: ACCESS-ESM1.5. J. South. Hemisph. Earth Syst. Sci. 2020, 70, 193. [Google Scholar] [CrossRef]
- Wu, T.; Lu, Y.; Fang, Y.; Xin, X.; Li, L.; Li, W.; Jie, W.; Zhang, J.; Liu, Y.; Zhang, L.; et al. The Beijing Climate Center Climate System Model (BCC-CSM): The Main Progress from CMIP5 to CMIP6. Geosci. Model Dev. 2019, 12, 1573–1600. [Google Scholar] [CrossRef] [Green Version]
- Swart, N.C.; Cole, J.N.S.; Kharin, V.V.; Lazare, M.; Scinocca, J.F.; Gillett, N.P.; Anstey, J.; Arora, V.; Christian, J.R.; Hanna, S.; et al. The Canadian Earth System Model Version 5 (CanESM5.0.3). Geosci. Model Dev. 2019, 12, 4823–4873. [Google Scholar] [CrossRef] [Green Version]
- Danabasoglu, G.; Lamarque, J.-F.; Bacmeister, J.; Bailey, D.A.; DuVivier, A.K.; Edwards, J.; Emmons, L.K.; Fasullo, J.; Garcia, R.; Gettelman, A.; et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. 2020, 12, e2019MS001916. [Google Scholar] [CrossRef] [Green Version]
- Cherchi, A.; Fogli, P.G.; Lovato, T.; Peano, D.; Iovino, D.; Gualdi, S.; Masina, S.; Scoccimarro, E.; Materia, S.; Bellucci, A.; et al. Global Mean Climate and Main Patterns of Variability in the CMCC-CM2 Coupled Model. J. Adv. Model. Earth Syst. 2019, 11, 185–209. [Google Scholar] [CrossRef] [Green Version]
- Séférian, R.; Nabat, P.; Michou, M.; Saint-Martin, D.; Voldoire, A.; Colin, J.; Decharme, B.; Delire, C.; Berthet, S.; Chevallier, M.; et al. Evaluation of CNRM Earth System Model, CNRM-ESM2-1: Role of Earth System Processes in Present-Day and Future Climate. J. Adv. Model. Earth Syst. 2019, 11, 4182–4227. [Google Scholar] [CrossRef] [Green Version]
- Boucher, O.; Servonnat, J.; Albright, A.L.; Aumont, O.; Balkanski, Y.; Bastrikov, V.; Bekki, S.; Bonnet, R.; Bony, S.; Bopp, L.; et al. Presentation and Evaluation of the IPSL-CM6A-LR Climate Model. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002010. [Google Scholar] [CrossRef]
- Mauritsen, T.; Bader, J.; Becker, T.; Behrens, J.; Bittner, M.; Brokopf, R.; Brovkin, V.; Claussen, M.; Crueger, T.; Esch, M.; et al. Developments in the MPI-M Earth System Model Version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2. J. Adv. Model. Earth Syst. 2019, 11, 998–1038. [Google Scholar] [CrossRef] [Green Version]
- Seland, Ø.; Bentsen, M.; Seland Graff, L.; Olivié, D.; Toniazzo, T.; Gjermundsen, A.; Debernard, J.B.; Gupta, A.K.; He, Y.; Kirkevåg, A.; et al. The Norwegian Earth System Model, NorESM2—Evaluation of TheCMIP6 DECK and Historical Simulations. Clim. Earth Syst. Model. 2020. preprint. [Google Scholar] [CrossRef] [Green Version]
- Sellar, A.A.; Jones, C.G.; Mulcahy, J.P.; Tang, Y.; Yool, A.; Wiltshire, A.; O’Connor, F.M.; Stringer, M.; Hill, R.; Palmieri, J.; et al. UKESM1: Description and Evaluation of the U.K. Earth System Model. J. Adv. Model. Earth Syst. 2019, 11, 4513–4558. [Google Scholar] [CrossRef] [Green Version]
- van Vuuren, D.P.; Kriegler, E.; O’Neill, B.C.; Ebi, K.L.; Riahi, K.; Carter, T.R.; Edmonds, J.; Hallegatte, S.; Kram, T.; Mathur, R.; et al. A New Scenario Framework for Climate Change Research: Scenario Matrix Architecture. Clim. Chang. 2014, 122, 373–386. [Google Scholar] [CrossRef] [Green Version]
- Pitman, A.J.; de Noblet-Ducoudré, N.; Cruz, F.T.; Davin, E.L.; Bonan, G.B.; Brovkin, V.; Claussen, M.; Delire, C.; Ganzeveld, L.; Gayler, V.; et al. Uncertainties in Climate Responses to Past Land Cover Change: First Results from the LUCID Intercomparison Study. Geophys. Res. Lett. 2009, 36, L14814. [Google Scholar] [CrossRef] [Green Version]
Experiment | Experiment Forcings | Experiment Description | Years |
---|---|---|---|
historical | Historical with all forcings | CMIP6 historical simulation | 1850–2014 |
ssp126 | Projection with SSP1-2.6 scenario | CMIP6 low forcing scenario projection based on SSP1-2.6 | 2015–2100 |
ssp126-ssp370Lu | SSP1-2.6 with SSP3-7.0 land use | Same as ssp126 except for use of SSP3-7.0 land use scenario | 2015–2100 |
ssp370 | Projection with SSP3-7.0 scenario | CMIP6 high forcing scenario projection based on SSP3-7.0 | 2015–2100 |
ssp370-ssp126Lu | SSP3-7.0 with SSP1-2.6 land use | Same as ssp370 except for use of SSP1-2.6 land use scenario | 2015–2100 |
Model | Horizontal Resolution (Lat × Lon) | Dynamic Vegetation | Number of Plant Functional Types (PFT) | References |
---|---|---|---|---|
ACCESS-ESM1-5 | 1.2° × 1.9° | No | 9 | [33] |
BCC-CSM2-MR | 1.1° × 1.1° | No | 15 | [34] |
CanESM5 | 2.8° × 2.8° | Yes | 9 | [35] |
CESM2 | 1.0° × 1.0° | Yes | 15 | [36] |
CMCC-ESM2 | 0.9° × 1.25° | Yes | 16 | [37] |
CNRM-ESM2-1 | 1.4° × 1.4° | Yes | 9 | [38] |
IPSL-CM6A-LR | 1.9° × 3.8° | No | 15 | [39] |
MPI-ESM1-2-LR | 1.9° × 1.9° | Yes | 12 | [40] |
NorESM2-LM | 1.9° × 2.5° | No | 15 | [41] |
UKESM1-0-LL | 1.3° × 1.9° | Yes | 13 | [42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, T.; Wu, J.; Kang, X.; Yuan, M.; Duan, L. Impacts of Different Land Use Scenarios on Future Global and Regional Climate Extremes. Atmosphere 2022, 13, 995. https://doi.org/10.3390/atmos13060995
Hong T, Wu J, Kang X, Yuan M, Duan L. Impacts of Different Land Use Scenarios on Future Global and Regional Climate Extremes. Atmosphere. 2022; 13(6):995. https://doi.org/10.3390/atmos13060995
Chicago/Turabian StyleHong, Tao, Junjie Wu, Xianbiao Kang, Min Yuan, and Lian Duan. 2022. "Impacts of Different Land Use Scenarios on Future Global and Regional Climate Extremes" Atmosphere 13, no. 6: 995. https://doi.org/10.3390/atmos13060995
APA StyleHong, T., Wu, J., Kang, X., Yuan, M., & Duan, L. (2022). Impacts of Different Land Use Scenarios on Future Global and Regional Climate Extremes. Atmosphere, 13(6), 995. https://doi.org/10.3390/atmos13060995