Shelter Efficiency of Various Shelterbelt Configurations: A Wind Tunnel Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Materials
2.2. Data Analysis
3. Results
3.1. Analysis of the Shelter Efficiency of the Single Shelterbelt
3.1.1. Characteristics of the Wind Field of the Single Shelterbelt
3.1.2. Effective Protection Area of the Single Shelterbelt
3.2. Analysis of Shelter Efficiency of the Double Shelterbelts
3.2.1. Wind Field Characteristics of the Double Shelterbelts
3.2.2. Effective Protection Area of the Double Shelterbelts (behind “Shelterbelt 2”)
3.2.3. Effective Protection Ratio of Double Shelterbelts (between the Shelterbelts)
4. Discussion
5. Conclusions
- There are similarities and differences among the three types of protective forests in the S, D-P-VI, and D-M-VI shelterbelt configurations. The distributions of their airflow fields are similar and can be divided into the pre-forest deceleration region, acceleration region above the shelterbelt, strong canopy deceleration region, post-forest deceleration region, and post-forest recovery region. The difference between them is that the typical airflow field around each type of protection forest has a different distribution area and influence range, which greatly affects the effective protection range.
- In the existing shelterbelt configuration of Nursultan, the wind protection capacity of the S-type protective forest can be ordered as S-VI > S-VIII > S-IV > S-II. The wind protection capacity behind the double shelterbelts has the following order: D-P-VI > D-M-VI. The wind protection capacity between the double shelterbelt can be ordered as D-M-VI > D-P-VI. In terms of the shelter efficiency near the ground, the shelter efficiency of the D-M-VI-type shelterbelt is higher than that of the D-P-VI-type shelterbelt, given the same area. Under the same belt spacing, the shelter efficiency of the D-P-VI shelterbelt behind the shelterbelt is better than the D-M-VI shelterbelt, but the shelter efficiency of the D-M-VI shelterbelt between the two shelterbelts is better than that of the D-P-VI shelterbelt.
- D-M-V-type shelterbelts are suitable to be built in areas where seedlings or other low plants must be cultivated; D-M-II-IV shelterbelts are suitable for construction around the traffic trunk line. Around residential areas, D-P-VI shelterbelts are more suitable. Moreover, although the windbreak benefits of shelterbelts with the same configuration but different belt spacings (2H–8H) differ insignificantly, the greater the belt spacing, the higher the ecological benefit within a certain range, especially the snow-prevention benefit. Furthermore, to effectively reduce the effects of snowstorms and other natural disasters on Nursultan, shelterbelts should be constructed in the upwind direction (northeast) of the dominant wind direction in winter in the city.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosenberg, N.J. Microclimate: The Biological Environment; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Cornelis, W.; Gabriels, D. Optimal windbreak design for wind-erosion control. J. Arid Environ. 2005, 61, 315–332. [Google Scholar] [CrossRef]
- Guan, D. Aerodynamic Effects of Farmland Windbreak System. D; Institute of Applied Ecology, Chinese Academy of Sciences: Beijing, China, 1998. [Google Scholar]
- Ma, R.; Li, J.; Ma, Y.; Shan, L.; Li, X.; Wei, L. A wind tunnel study of the airflow field and shelter efficiency of mixed windbreaks. Aeolian Res. 2019, 41, 100544. [Google Scholar] [CrossRef]
- Gao, H.; Wu, B.; Zhang, Y.Q.; Ding, G.D. Wind Tunnel Test of Wind Speed Reduction of Caragana Korshinskii Coppice. J. Soil Water Conserv. 2010, 24, 44–47. [Google Scholar]
- Liang, H.R.; Wang, J.Y.; Dong, H.R.; Yang, W.B.; Lu, Q.; Zhao, A.G. Wind Velocity Field and Windbreak Effects in Two Types of Low Density and Belt-Scheme Sand-Break Forests. J. Ecol. 2010, 30, 568–578. [Google Scholar]
- Zhou, Q.Z.; Zhao, Y.; Gao, G.L.; Zhang, Y.; Cheng, Y.X. Wind Tunnel Simulation Experiment of Windbreak Effects of Shelterbelt Along Xining-Golmud Section of Qinghai-Tibet Railway. Ningxia Agric. For. Sci. Technol. 2018, 59, 4. [Google Scholar]
- Xu, L.S.; Mu, G.J.; Sun, L.; Ren, X.; Zhou, J. Effect of Shelterbelt on Dust Deposition at Surface Layer: A case study in Cele, Xinjiang, China. J. Desert Res. 2017, 37, 57–64. [Google Scholar]
- Zhou, Y.H.; Chen, Z.; Tong, X.; Zhuo, C.X.; Liu, H.Y.; Hao, B.E. The Windproof Effect of Caragana korshinskii with Different Porosity. J. Soil Water Conserv. China 2022, 5, 60–64. [Google Scholar]
- Li, X.Y.; Wang, K.J.; Gu, J.C.; Liu, Q.G.; C, Y. Windbreak Effect Model of Forest Belts with Different Structure. J. Desert Res. 2019, 39, 118–125. [Google Scholar]
- Tang, Y.L.; An, Z.S.; Zhang, K.C.; Tan, L.H. Wind Tunnel Simulation of Windbreak Effect of Single-row Shelter Belts of Different Structure. J. Desert Res. 2012, 32, 647–654. [Google Scholar]
- Cheng, H.; Liu, C.; Kang, L. Experimental study on the effect of plant spacing, number of rows and arrangement on the airflow field of forest belt in a wind tunnel. J. Arid Environ. 2020, 178, 104169. [Google Scholar] [CrossRef]
- Musick, H.B.; Gillette, D.A. Field evaluation of relationships between a vegetation structural parameter and sheltering against wind erosion. Land Degrad. Dev. 1990, 2, 87–94. [Google Scholar] [CrossRef]
- Cheng, H.; He, W.; Liu, C.; Zou, X.; Kang, L.; Chen, T.; Zhang, K. Transition model for airflow fields from single plants to multiple plants. Agric. For. Meteorol. 2018, 266–267, 29–42. [Google Scholar] [CrossRef]
- Wolfe, S.; Nickling, W.G. The protective role of sparse vegetation in wind erosion. Prog. Phys. Geogr. Earth Environ. 1993, 17, 50–68. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, K.; Liu, C.; Zou, X.; Kang, L.; Chen, T.; He, W.; Fang, Y. Wind tunnel study of airflow recovery on the lee side of single plants. Agric. For. Meteorol. 2018, 263, 362–372. [Google Scholar] [CrossRef]
- Gillies, J.A.; Lancaster, N.; Nickling, W.G.; Crawley, D.M. Field determination of drag forces and shear stress partitioning effects for a desert shrub (Sarcobatus vermiculatus, greasewood). J. Geophys. Res. Earth Surf. 2000, 105, 24871–24880. [Google Scholar] [CrossRef]
- Wu, T.; Yu, M.; Wang, G.; Wang, Z.; Duan, X.; Dong, Y.; Cheng, X. Effects of stand structure on wind speed reduction in a Metasequoia glyptostroboides shelterbelt. Agrofor. Syst. 2012, 87, 251–257. [Google Scholar] [CrossRef]
- Plate, E.J. The aerodynamics of shelter belts. Agric. Meteorol. 1971, 8, 203–222. [Google Scholar] [CrossRef]
- Raine, J.; Stevenson, D. Wind protection by model fences in a simulated atmospheric boundary layer. J. Wind Eng. Ind. Aerodyn. 1977, 2, 159–180. [Google Scholar] [CrossRef]
- Bitog, J.P.; Lee, I.-B.; Hwang, H.-S.; Shin, M.-H.; Hong, S.-W.; Seo, I.-H.; Kwon, K.-S.; Mostafa, E.; Pang, Z. Numerical simulation study of a tree windbreak. Biosyst. Eng. 2012, 111, 40–48. [Google Scholar] [CrossRef]
- Dong, Z.; Luo, W.; Qian, G.; Wang, H. A wind tunnel simulation of the mean velocity fields behind upright porous fences. Agric. For. Meteorol. 2007, 146, 82–93. [Google Scholar] [CrossRef]
- Gao, H. Study on the Windbreak and Barrier Band Effect of the Low Profile Afforestation. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2010. [Google Scholar]
- Grant, P.F.; Nickling, W.G. Direct field measurement of wind drag on vegetation for application to windbreak design and modelling. Land Degrad. Dev. 1998, 9, 57–66. [Google Scholar] [CrossRef]
- Lee, S.-J.; Park, K.-C.; Park, C.-W. Wind tunnel observations about the shelter effect of porous fences on the sand particle movements. Atmos. Environ. 2002, 36, 1453–1463. [Google Scholar] [CrossRef]
- Minvielle, F.; Marticorena, B.; Gillette, D.; Lawson, R.; Thompson, R.; Bergametti, G. Relationship between the Aerodynamic Roughness Length and the Roughness Density in Cases of Low Roughness Density. Environ. Fluid Mech. 2003, 3, 249–267. [Google Scholar] [CrossRef]
- Brandle, J.R.; Hodges, L.; Zhou, X.H. Windbreaks in North American agricultural systems. Agrofor. Syst. 2004, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.B.; Li, W.; Dang, H.Z. Low Coverage of Sand Control: Principles, Patterns and Effects; Science Press: Beijing, China, 2016. [Google Scholar]
- Cui, Q.; Feng, Z.S.; Pfiz, M.; Veste, M.; Kuppers, M.; He, K.N.; Gao, J.R. Trade-Off Between Shrub Plantation and Wind-Breaking in the Arid Sandy Lands of Ningxia, China. Pak. J. Bot. 2012, 44, 1639–1649. [Google Scholar]
- Liu, C.; Zheng, Z.; Cheng, H.; Zou, X. Airflow around single and multiple plants. Agric. For. Meteorol. 2018, 252, 27–38. [Google Scholar] [CrossRef]
- Marshall, J. Drag measurements in roughness arrays of varying density and distribution. Agric. Meteorol. 1971, 8, 269–292. [Google Scholar] [CrossRef]
- Liu, J.; Kimura, R.; Miyawaki, M.; Kinugasa, T. Effects of plants with different shapes and coverage on the blown-sand flux and roughness length examined by wind tunnel experiments. CATENA 2020, 197, 104976. [Google Scholar] [CrossRef]
- Miri, A.; Dragovich, D.; Dong, Z. The response of live plants to airflow—Implication for reducing erosion. Aeolian Res. 2018, 33, 93–105. [Google Scholar] [CrossRef]
- Woodruff, N.P.; Zingg, A.W. Wind Tunnel Studies of Shelterbelt Models. J. For. 1953, 51, 173–178. [Google Scholar]
- Wu, X.; Zou, X.; Zhou, N.; Zhang, C.; Shi, S. Deceleration efficiencies of shrub windbreaks in a wind tunnel. Aeolian Res. 2015, 16, 11–23. [Google Scholar] [CrossRef]
- Van Thuyet, D.; Van Do, T.; Sato, T.; Hung, T.T. Effects of species and shelterbelt structure on wind speed reduction in shelter. Agrofor. Syst. 2014, 88, 237–244. [Google Scholar] [CrossRef]
- Judd, M.J.; Raupach, M.R.; Finnigan, J.J. A wind tunnel study of turbulent flow around single and multiple windbreaks, part I: Velocity fields. Bound.-Layer Meteorol. 1996, 80, 127–165. [Google Scholar] [CrossRef]
- Leenders, J.K.; van Boxel, J.H.; Sterk, G. The effect of single vegetation elements on wind speed and sediment transport in the Sahelian zone of Burkina Faso. Earth Surf. Process. Landf. 2007, 32, 1454–1474. [Google Scholar] [CrossRef]
- Ash, J.E.; Wasson, R.J. Vegetation and Sand Mobility in the Australian Desert Dunefield. Z. Geomorphol. 1983, 45, 7–25. [Google Scholar]
- Leenders, J.K.; Sterk, G.; Van Boxel, J.H. Modelling wind-blown sediment transport around single vegetation elements. Earth Surf. Process. Landf. 2011, 36, 1218–1229. [Google Scholar] [CrossRef]
- Mayaud, J.R.; Wiggs, G.F.; Bailey, R.M. Characterizing turbulent wind flow around dryland vegetation. Earth Surf. Process. Landf. 2016, 41, 1421–1436. [Google Scholar] [CrossRef] [Green Version]
- Mayaud, J.R.; Wiggs, G.F.; Bailey, R.M. Dynamics of skimming flow in the wake of a vegetation patch. Aeolian Res. 2016, 22, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.-T.; Fan, Q.; Huang, Z.-L. Wind speed acceleration around a single low solid roughness in atmospheric boundary layer. Sci. Rep. 2019, 9, 12002. [Google Scholar] [CrossRef]
- Miri, A.; Davidson-Arnott, R. The effectiveness of a single Tamarix tree in reducing aeolian erosion in an arid region. Agric. For. Meteorol. 2021, 300, 108324. [Google Scholar] [CrossRef]
- Belcher, S.E.; Jerram, N.; Hunt, J.C.R. Adjustment of a turbulent boundary layer to a canopy of roughness elements. J. Fluid Mech. 2003, 488, 369–398. [Google Scholar] [CrossRef] [Green Version]
- A Kabanova, S.; Zenkova, Z.N.; A Danchenko, M. Regional risks of artificial forestation in the steppe zone of Kazakhstan (case study of the green belt of Astana). IOP Conf. Ser. Earth Environ. Sci. 2018, 211. [Google Scholar] [CrossRef]
- Zheng, Z.H.; Lei, J.Q.; Li, S.Y.; Wang, H.F.; Fan, J.L. Test and Evaluation of Wind Flow Characteristics of a Portable Wind Tunnel. J. Desert Res. 2012, 32, 1551–1558. [Google Scholar]
- Wu, Z. Geomorphology of Wind-Drift Sands and Their Controlled Engineering; Science Press: Beijing, China, 2003; pp. 332–403. (In Chinese) [Google Scholar]
- Ding, G. Wind Sand Physics, 2nd ed.; China Forestry Press: Beijing, China, 2010. [Google Scholar]
- White, B.R. Laboratory Simulation of Aeolian Sand Transport and Physical Modeling of Flow Around Dunes. Ann. Arid Zone 1996, 35, 187–213. [Google Scholar]
- Zhang, W.; Kang, J.-H.; Lee, S.-J. Tracking of saltating sand trajectories over a flat surface embedded in an atmospheric boundary layer. Geomorphology 2007, 86, 320–331. [Google Scholar] [CrossRef]
- Latif Bhutto, S.; Miri, A.; Zhang, Y.; Danish, A.B.; Cao, Q.Q.; Xin, Z.M.; Xiao, H.J. Experimental Study on the Effect of Four Single Shrubs on Aeolian Erosion in a Wind Tunnel. CATENA 2022, 212, 106097. [Google Scholar] [CrossRef]
- Bao, Y. Windbreak Effects of Shelterbelt in Oases Based on Wind Velocity Flow Field. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2015. [Google Scholar]
- Le, N.D.; Zidek, J.V. Statistical Analysis of Environmental Space-Time Processes; Springer: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Vigiak, O.; Sterk, G.; Warren, A.; Hagen, L.J. Spatial modeling of wind speed around windbreaks. CATENA 2003, 52, 273–288. [Google Scholar] [CrossRef]
- Finnigan, J. Turbulence in Plant Canopies. Annu. Rev. Fluid Mech. 2000, 32, 519–571. [Google Scholar] [CrossRef]
- Ma, R.; Wang, J.; Qu, J.; Liu, H. Effectiveness of shelterbelt with a non-uniform density distribution. J. Wind Eng. Ind. Aerodyn. 2010, 98, 767–771. [Google Scholar] [CrossRef]
- Dong, Z. Research on Farmland Wind-Sand Disaster of Oasis and Its Control Mechanism in Ulan Buh Desert. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2004. [Google Scholar]
- Yang, T.T.; Chai, H.Q.; Yao, G.Z.; Ding, G.D. Study on Wind Breaking and Sand Blocking Effects of Farmland Shelterbelts in Ulan Buh Desert Oasis. For. Resour. Manag. 2006, 6, 42–45. [Google Scholar]
- Qu, M. The Effect of the Shelterbelt Structural Integrity on the Wind Fields of Farmland Shelterbelt Network in the Yellow River Floodplain; Shandong Agricultural University: Taian, China, 2015. [Google Scholar]
- Baldocchi, D.; Meyers, T.P. Turbulence structure in a deciduous forest. Bound. Layer Meteorol. 1988, 43, 345–364. [Google Scholar] [CrossRef]
- Hesp, P.A.; Dong, Y.; Cheng, H.; Booth, J.L. Wind flow and sedimentation in artificial vegetation: Field and wind tunnel experiments. Geomorphology 2019, 337, 165–182. [Google Scholar] [CrossRef]
- Sun, H. Forestry in Arid Areas; China Forestry Press: Beijing, China, 1995. [Google Scholar]
- Zhang, Y.H.; Kang, C.Z.; Liu, S.Z.; Tang, J.N.; Wei, L.Y. Windbreak Effect of Picea mongolica Farmland Shelterbelt with Different Configuration. J. Desert Res. 2017, 37, 859–866. [Google Scholar]
- Torshizi, M.R.; Miri, A.; Davidson-Arnott, R. Sheltering effect of a multiple-row Tamarix windbreak—A field study in Niatak, Iran. Agric. For. Meteorol. 2020, 287, 107937. [Google Scholar] [CrossRef]
- Sai, K.; Zhao, Y.Y.; Bao, Y.F.; Liu, C.M.; Ding, G.D.; Gao, G.L. Wind-Tunnel Tests Study of Shelter Effects of Deciduous Farmland Shelterbelts in Arid and Semi-Arid Areas. Trans. Chin. Soc. Agric. Eng. 2021, 37, 157–165. [Google Scholar]
- Bitog, J.P.; Lee, I.-B.; Hwang, H.-S.; Shin, M.-H.; Hong, S.-W.; Seo, I.-H.; Mostafa, E.; Pang, Z. A wind tunnel study on aerodynamic porosity and windbreak drag. For. Sci. Technol. 2011, 7, 8–16. [Google Scholar] [CrossRef]
- Gandemer, J. The aerodynamic characteristics of windbreaks, resulting in empirical design rules. J. Wind Eng. Ind. Aerodyn. 1981, 7, 15–36. [Google Scholar] [CrossRef]
- Williams, L.J.; Paquette, A.; Cavender-Bares, J.; Messier, C.; Reich, P. Spatial complementarity in tree crowns explains overyielding in species mixtures. Nat. Ecol. Evol. 2017, 1, 63. [Google Scholar] [CrossRef]
- Isbell, F.; Gonzalez, A.; Loreau, M.; Cowles, F.I.J.; Díaz, S.; Hector, A.; Mace, G.M.; Wardle, D.A.; O’Connor, M.I.; Duffy, J.E.; et al. Linking the influence and dependence of people on biodiversity across scales. Nature 2017, 546, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Chen, Y.; Castro-Izaguirre, N.; Baruffol, M.; Brezzi, M.; Lang, A.; Li, Y.; Härdtle, W.; Von Oheimb, G.; Yang, X.; et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 2018, 362, 80–83. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z. Analysis and Research on the Design of Highway Snow-Preventing Forest. Transp. Energy Conserv. Environ. Prot. 2021, 17, 101–104. [Google Scholar]
- Bao, Y.F.; Ding, G.D.; Zhao, Y.Y.; Gao, G.L.; Feng, S.S. Study on Distribution Pattern and Optimal Parameters of Shelterbelt in Gale and Snow Disasters. J. Northeast Agric. Univ. 2012, 43, 109–115. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, Y.; Li, S.; Askar, A.; Wang, H. Shelter Efficiency of Various Shelterbelt Configurations: A Wind Tunnel Study. Atmosphere 2022, 13, 1022. https://doi.org/10.3390/atmos13071022
Li H, Wang Y, Li S, Askar A, Wang H. Shelter Efficiency of Various Shelterbelt Configurations: A Wind Tunnel Study. Atmosphere. 2022; 13(7):1022. https://doi.org/10.3390/atmos13071022
Chicago/Turabian StyleLi, Huiliang, Yongdong Wang, Shengyu Li, Aikedai Askar, and Haifeng Wang. 2022. "Shelter Efficiency of Various Shelterbelt Configurations: A Wind Tunnel Study" Atmosphere 13, no. 7: 1022. https://doi.org/10.3390/atmos13071022
APA StyleLi, H., Wang, Y., Li, S., Askar, A., & Wang, H. (2022). Shelter Efficiency of Various Shelterbelt Configurations: A Wind Tunnel Study. Atmosphere, 13(7), 1022. https://doi.org/10.3390/atmos13071022