Global/Regional Impacts on Present and Near-Future Climate Regimes in the Metropolitan Region of Belém, Eastern Amazon
Abstract
:1. Introduction
2. Material and Methods
3. Results
3.1. Annual Cycle and Seasonal Regimes
3.2. Observed and Simulated PREC and TEMP in the Present Climate
3.3. Landcover Changes and Impacts on Seasonal Regimes during the Present Climate
3.4. Projections of Future Scenarios Associated with Global Climate Change
4. Discussion and Conclusions
- Considering the local/municipal scale of Belém, the disorderly enhanced urban sprawl conditioned a warmer local climate with statistically significant positive trends in surface air temperature in both seasonal regimes, being much more intense in the DRY season;
- Taking into account the regional scale of the entire MRB, the forest vegetation suppression primarily led to the uncontrolled expansion of pasture/agriculture areas, whose environmental changes explained the monotonic increase trend in air temperature in the two seasonal regimes, with greater intensity in the DRY regime;
- In Belém and the entire MRB, there were no changes in the rainfall of the DRY period; however, a systematic intensification of the precipitation during the RAINY regime was clearly evidenced.
- Warmer climate conditions are expected to persist in the coming decades, with projections of an increase in mean air temperature reaching 1.5 °C in MRB and 1.3 °C in Belém during the DRY and 1 °C in the MRB and 0.9 °C in Belém during the RAINY regime;
- Regarding precipitation, the intensification of the RAINY season persists in the next two decades, with an increase of about 25% in the MRB and 14% in Belém. Future projections for the DRY regime do not point out significant changes.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Statistics | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1st Quartile | 11.4 | 12.8 | 13.6 | 13.5 | 8.5 | 4.6 | 3.8 | 3.0 | 3.2 | 3.3 | 3.2 | 6.7 |
Median | 12.7 | 15.0 | 15.4 | 15.3 | 9.6 | 7.1 | 5.1 | 4.3 | 4.3 | 4.4 | 4.3 | 8.5 |
3rd Quartile | 14.3 | 16.5 | 18.2 | 17.2 | 13.2 | 8.6 | 6.3 | 5.8 | 5.1 | 5.3 | 6.3 | 11.3 |
Mean | 12.7 | 15.6 | 16.0 | 15.4 | 10.2 | 6.8 | 5.2 | 4.4 | 4.4 | 4.3 | 5.1 | 9.0 |
Variance | 8.7 | 14.6 | 12.5 | 8.1 | 10.8 | 5.8 | 4.8 | 3.9 | 4.0 | 3.5 | 9.3 | 10.3 |
Stand. deviation | 2.9 | 3.8 | 3.5 | 2.8 | 3.3 | 2.4 | 2.2 | 2.0 | 2.0 | 1.9 | 3.0 | 3.2 |
Coeff. variation | 0.23 | 0.24 | 0.22 | 0.18 | 0.32 | 0.35 | 0.42 | 0.44 | 0.45 | 0.43 | 0.60 | 0.36 |
Bias | r | R2 | σn | |||||
---|---|---|---|---|---|---|---|---|
RAINY | DRY | RAINY | DRY | RAINY | DRY | RAINY | DRY | |
CRU | 1.01 | 0.10 | 0.91 | 0.84 | 0.82 | 0.70 | 0.91 | 0.60 |
CHIRPS | 1.85 | 0.36 | 0.77 | 0.86 | 0.59 | 0.74 | 0.72 | 0.92 |
CMORPH | 2.49 | 0.98 | 0.38 | 0.83 | 0.15 | 0.69 | 0.83 | 1.01 |
RegCM4 EMA | 6.51 | 1.61 | 0.16 | 0.35 | 0.05 | 0.12 | 0.37 | 0.26 |
RegCM4 TIE | 3.43 | 0.75 | 0.36 | 0.55 | 0.14 | 0.30 | 0.68 | 0.33 |
RegCM4 KFR | 3.57 | 0.39 | 0.31 | 0.48 | 0.10 | 0.23 | 0.93 | 0.75 |
Differences between the Means of Future and Present | p-Value | |||
---|---|---|---|---|
RAINY | DRY | RAINY | DRY | |
TEMP Belém (°C) | 0.90 1 | 1.32 1 | <0.0001 | <0.0001 |
TEMP MRB(°C) | 1.00 1 | 1.53 1 | <0.0001 | <0.0001 |
PREC Belém (mm) | 2.071 1 | 0.15 | <0.0001 | 0.498 |
PREC MRB (mm) | 3.403 1 | −0.19 | <0.0001 | 0.322 |
References
- Davidson, E.A.; de Araujo, A.C.; Artaxo, P.; Balch, J.K.; Brown, I.F.; Wofsy, S.C. The Amazon basin in transition. Nature 2012, 481, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Nobre, C.A.; Sampaio, G.; Borma, L.S.; Castilla-Rubio, J.C.; Silva, J.S.; Cardoso, M. The Fate of the Amazon Forests: Land-use and climate change risks and the need of a novel sustainable development paradigm. Proc. Natl. Acad. Sci. USA 2016, 113, 10759–10768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marengo, J.A.; Souza, C.; Thonicke, K.; Burton, C.; Halladay, K.; Betts, R.A.; Alves, L.M.; Soares, W.R. Changes in Climate and Land Use Over the Amazon Region: Current and Future Variability and Trends. Front. Earth Sci. 2018, 6, 228. [Google Scholar] [CrossRef]
- Sombroek, W. Spatial and Temporal Patterns of Amazon Rainfall. AMBIO J. Hum. Environ. 2001, 30, 388–396. [Google Scholar] [CrossRef]
- Paca, V.H.d.M.; Espinoza-Dávalos, G.E.; Moreira, D.M.; Comair, G. Variability of Trends in Precipitation across the Amazon River Basin Determined from the CHIRPS Precipitation Product and from Station Records. Water 2020, 12, 1244. [Google Scholar] [CrossRef]
- Nobre, C.A.; Sellers, P.J.; Shukla, J. Amazonian deforestation and regional climate change. J. Clim. 1991, 4, 957–988. [Google Scholar] [CrossRef] [Green Version]
- Nobre, P.; Malagutti, M.; Urbano, D.F.; de Almeida, R.A.F.; Giarolla, E. Amazon Deforestation and Climate Change in a Coupled Model Simulation. J. Clim. 2009, 22, 5686–5697. [Google Scholar] [CrossRef]
- Silva, M.E.S.; Pereira, G.; da Rocha, R.P. Local and remote climatic impacts due to land use degradation in the Amazon “Arc of Deforestation”. Theor. Appl. Climatol. 2016, 125, 609–623. [Google Scholar] [CrossRef]
- Alves, L.M.; Marengo, J.A.; Fu, R.; Bombardi, R.J. Sensitivity of Amazon Regional Climate to Deforestation. Am. J. Clim. Change 2017, 6, 75–98. [Google Scholar] [CrossRef] [Green Version]
- Gandu, A.; Cohen, J.; de Souza, J. Simulation of deforestation in eastern Amazonia using a high-resolution model. Theor. Appl. Climatol. 2004, 78, 123–135. [Google Scholar] [CrossRef]
- Mu, Y.; Jones, C. An observational analysis of precipitation and deforestation age in the Brazilian Legal Amazon. Atmos. Res. 2022, 271, 106122. [Google Scholar] [CrossRef]
- Llopart, M.; Reboita, M.S.; Coppola, E.; Giorgi, F.; Da Rocha, R.P.; De Souza, D.O. Land Use Change over the Amazon Forest and Its Impact on the Local Climate. Water 2018, 10, 149. [Google Scholar] [CrossRef] [Green Version]
- Ramos da Silva, R.; Werth, D.; Avissar, R. Regional impacts of future land-cover changes on the Amazon basin wet-season climate. J. Clim. 2008, 21, 1153–1170. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Met. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, J.M.; Jones, R.G.; Narisma, G.T.; Alves, L.M.; Amjad, M.; Gorodetskaya, I.V.; Grose, M.; Klutse, N.A.B.; Krakovska, S.; Li, J.; et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 1927–2058. [Google Scholar] [CrossRef]
- Llopart, M.; Coppola, E.; Giorgi, F.; Da Rocha, R.P.; Cuadra, S.V. Climate change impact on precipitation for the Amazon and La Plata basins. Clim. Chang. 2014, 125, 111–125. [Google Scholar] [CrossRef] [Green Version]
- Ambrizzi, T.; Reboita, M.S.; da Rocha, R.P.; Llopart, M. The state of the art and fundamental aspects of regional climate modeling in South America. Ann. N. Y. Acad. Sci. 2019, 1436, 98–120. [Google Scholar] [CrossRef]
- Borma, L.S.; Nobre, C.A.; Cardoso, M.F. 2.15—Response of the Amazon Tropical Forests to Deforestation, Climate, and Ex-tremes, and the Occurrence of Drought and Fire. In Climate Vulnerability; Roger, A.P., Ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 153–163. [Google Scholar] [CrossRef]
- Lima, G.N.; Lombardo, M. Urban climatology in Brazil: An analysis based on the methodology of the urban climate system. Environ. Conserv. J. 2019, 20, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Becker, B.K. Geopolítica da amazônia. Est. Avançados 2005, 19, 71–86. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, P.; Joyce, R.; Wu, S.; Yoo, S.; Yarosh, Y.; Sun, F.; Lin, R. Reprocessed, Bias-Corrected CMORPH Global High-Resolution Precipitation Estimates from 1998. J. Hydromet. 2017, 18, 1617–1641. [Google Scholar] [CrossRef]
- Souza, C.M.Z.; Shimbo, J.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.M.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geoph. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Coppola, E.; Solmon, F.; Mariotti, L.; Sylla, M.B.; Bi, X.; Elguindi, N.; Diro, G.T.; Nair, V.; Giuliani, G.; et al. RegCM4: Model description and preliminary tests over multiple CORDEX domains. Clim. Res. 2012, 52, 7–29. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, R.E.; Henderson-Sellers, A.; Kennedy, P.J. Biosphere–Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Model; NCAR Technical Note NCAR/TN-3871STR; National Center for Atmospheric Research: Boulder, CO, USA, 1993; p. 72. [Google Scholar]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remot. Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Collins, W.J.; Bellouin, N.; Doutriaux-Boucher, M.; Gedney, N.; Halloran, P.; Hinton, T.; Hughes, J.; Jones, C.D.; Joshi, M.; Liddicoat, S.; et al. Development and evaluation of an Earth-System model—HadGEM2. Geosci. Model Dev. 2011, 4, 1051–1075. [Google Scholar] [CrossRef] [Green Version]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Keywan, R.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Change 2011, 109, 5. [Google Scholar] [CrossRef]
- Huszar, P.; Halenka, T.; Belda, M.; Zak, M.; Sindelarova, K.; Miksovsky, J. Regional climate model assessment of the urban land-surface forcing over central Europe. Atmos. Chem. Phys. 2014, 14, 12393–12413. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K.A.; Zivkovic-Rothman, M. Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci. 1999, 56, 1766–1782. [Google Scholar] [CrossRef] [Green Version]
- Anderson, C.J.; Arritt, R.W.; Kain, J.S. An Alternative Mass Flux Profile in the Kain–Fritsch Convective Parameterization and Its Effects in Seasonal Precipitation. J. Hydrometeorol. 2007, 8, 1128–1140. [Google Scholar] [CrossRef]
- Tiedtke, M. A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models. Mon. Weather. Rev. 1989, 117, 1779–1800. [Google Scholar] [CrossRef] [Green Version]
- Almeida, C.T.; Oliveira-Júnior, J.F.; Delgado, R.C.; Cubo, P.; Ramos, M.C. Spatiotemporal rainfall and temperature trends throughout the Brazilian Legal Amazon, 1973–2013. Int. J. Climatol. 2017, 37, 2013–2026. [Google Scholar] [CrossRef]
- Silva, P.E.; Silva, C.M.S.; Spyrides, M.H.C.; Andrade, L.M.B. Precipitation and air temperature extremes in the Amazon and northeast Brazil. Int. J. Climatol. 2019, 39, 579–595. [Google Scholar] [CrossRef]
- Souza, D.O.; Nascimento, M.G.; Alvala, R.C.S. Influência do crescimento urbano sobre o microclima de Manaus e Belém: Um estudo observacional. Rev. Brasil. Geogr. Fis. 2015, 8, 1109–1124. [Google Scholar] [CrossRef] [Green Version]
- Marengo, J.A. Inter-decadal variability and trends in rainfall in the Amazon basin. Theor. Appl. Climatol. 2004, 78, 79–96. [Google Scholar] [CrossRef]
- Satyamurty, P.; Castro, A.A.; Tota, J.; Gularte, J.J.S.; Manzi, A.O. Rainfall trends in the Brazilian Amazon in the past eight decades. Theor. Appl. Climatol. 2010, 99, 139–148. [Google Scholar] [CrossRef]
- Espinoza, J.C.; Ronchail, J.; Marengo, J.A.; Segura, H. Contrasting North–South changes in Amazon wet-day and dry-day frequency and related atmospheric features (1981–2017). Clim. Dyn. 2019, 52, 5413–5430. [Google Scholar] [CrossRef]
- Lira, B.R.P.; Lopes, L.N.A.; Chaves, J.R.; Santana, L.R.; Fernandes, L.L. Identificação de Homogeneidade, Tendência e Magnitude da Precipitação em Belém (Pará) entre 1968 e 2018. Anuário Inst. Geociências 2020, 43, 426–439. [Google Scholar] [CrossRef]
- De Souza, E.B.; Ferreira, D.B.S.; Guimarães, J.T.F.; Franco, V.S.; Azevedo, F.T.M.; Moraes, B.C.; Souza, P.J.O.P. Padrões climatológicos e tendências da precipitação nos regimes chuvoso e seco da Amazônia oriental. Rev. Brasil. Clim. 2017, 21, 81–93. [Google Scholar] [CrossRef]
- UNFCCC—United Nations Framework Convention on Climate Change. Glasgow Climate Pact. Available online: https://unfccc.int/documents/310475 (accessed on 21 January 2022).
- Campos, T.T.L.O.B.; Mota, M.A.S.; Santos, S.R.Q. Eventos extremos de precipitação em Belém-PA: Uma revisão de notícias históricas de jornais. Rev. Amb. Água 2015, 10, 182–194. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, J.V.; Cohen, J.C.P.; Pimentel, M.; Tourinho, H.L.Z.; Lôbo, M.A.; Sodré, G.; Abdala, A. Urban climate and environmental perception about climate change in Belém, Pará, Brazil. Urban Clim. 2020, 31, 100579. [Google Scholar] [CrossRef]
FOR | PAG | URB | ||||
---|---|---|---|---|---|---|
RAINY | DRY | RAINY | DRY | RAINY | DRY | |
TEMP Belém | −0.68 1 | −0.86 1 | 0.42 | 0.55 | 0.72 1 | 0.88 1 |
TEMP MRB | −0.67 1 | −0.79 1 | 0.64 1 | 0.75 1 | 0.68 1 | 0.86 1 |
PREC Belém | −0.46 2 | −0.22 | 0.42 2 | 0.34 | 0.37 | 0.11 |
PREC MRB | −0.33 | −0.01 | 0.31 | 0.02 | 0.42 2 | −0.03 |
Kendall τ | p-Value | Sen’s Slope | ||||
---|---|---|---|---|---|---|
RAINY | DRY | RAINY | DRY | RAINY | DRY | |
TEMP Belém | 0.527 1 | 0.663 1 | <0.0001 | <0.0001 | 0.031 | 0.045 |
TEMP MRB | 0.480 1 | 0.701 1 | <0.0001 | <0.0001 | 0.046 | 0.073 |
PREC Belém | 0.371 1 | 0.114 | 0.002 | 0.334 | 0.110 | 0.018 |
PREC MRB | 0.316 1 | −0.019 | 0.009 | 0.881 | 0.098 | −0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutierrez, C.B.B.; de Souza, E.B.; Gutierrez, D.M.G. Global/Regional Impacts on Present and Near-Future Climate Regimes in the Metropolitan Region of Belém, Eastern Amazon. Atmosphere 2022, 13, 1077. https://doi.org/10.3390/atmos13071077
Gutierrez CBB, de Souza EB, Gutierrez DMG. Global/Regional Impacts on Present and Near-Future Climate Regimes in the Metropolitan Region of Belém, Eastern Amazon. Atmosphere. 2022; 13(7):1077. https://doi.org/10.3390/atmos13071077
Chicago/Turabian StyleGutierrez, Carlos B. B., Everaldo B. de Souza, and Dione M. G. Gutierrez. 2022. "Global/Regional Impacts on Present and Near-Future Climate Regimes in the Metropolitan Region of Belém, Eastern Amazon" Atmosphere 13, no. 7: 1077. https://doi.org/10.3390/atmos13071077
APA StyleGutierrez, C. B. B., de Souza, E. B., & Gutierrez, D. M. G. (2022). Global/Regional Impacts on Present and Near-Future Climate Regimes in the Metropolitan Region of Belém, Eastern Amazon. Atmosphere, 13(7), 1077. https://doi.org/10.3390/atmos13071077