Large-Scale Meteorological Drivers of the Extreme Precipitation Event and Devastating Floods of Early-February 2021 in Semarang, Central Java, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Situ Data and ERA5
2.2. Satellite Data
2.3. Sea Surface Temperature Data
2.4. MCS Identification
2.5. HYSPLIT Model and Backward Trajectories
2.6. Water Vapor Transport and Moisture Flux Convergence
2.7. CENS and CS Indices
3. Results
3.1. Characteristics of Extreme Rainfall
3.2. Evolution of the Mesoscale Convective System (MCS)
3.3. Moisture Sources and Transport for Extreme Precipitation
3.4. Large-Scale Atmospheric Circulation Responsible for Extreme Precipitation
3.4.1. The Role of the Cross Equatorial Northerly Surge (CENS)
3.4.2. The Role of Low-Frequency Variability and Tropical Depression
4. Conclusions and Discussion
- Three large-scale meteorological drivers contributed to the flooding event triggered by the extreme rainfall over Semarang, namely: CENS, the low-frequency variability associated with La Nina and a tropical depression over the North of Australia;
- A strong and persistent CENS prior to and during the extreme event contributed significantly to the deep convection over Semarang. CENS drove the meridional (southward) low-level transport of moist air from the South China Sea towards the northern part of Java Island, which supported the development of the two MCSs that produced extreme precipitation over Semarang;
- The low-frequency variability associated with La Nina and the synoptic activity associated with the tropical depression contributed to the development of the zonal propagation of the MCS and the enhanced moisture over Semarang. They both play an important role in the eastward transport of moist air from the Indian Ocean to Semarang.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marfai, M.A.; King, L. Coastal flood management in Semarang, Indonesia. Environ. Geol. 2008, 55, 1507–1518. [Google Scholar] [CrossRef]
- antaranews.com. Semarang’s Flooding Caused by Extreme Rainfall, Tidal Flooding: Govt—ANTARA News—en.antaranews.com. Available online: https://en.antaranews.com/news/167488/semarangs-flooding-caused-by-extreme-rainfall-tidal-flooding-govt (accessed on 4 June 2022).
- Flood in Semarang and Three Alternative Solutions—Flows.hypotheses.org. Available online: https://flows.hypotheses.org/6071 (accessed on 3 June 2022).
- Gernowo, R.; Adi, K.; Yulianto, T.; Seniyatis, S.; Yatunnisa, A. Hazard mitigation with cloud model based rainfall and convective data. J. Phys. Conf. Ser. 2018, 1025, 012023. [Google Scholar] [CrossRef] [Green Version]
- Faridatussafura, N.; Wandala, A. Convective and microphysics parameterization impact on simulating heavy rainfall in Semarang (case study on February 12supth/sup, 2015). J. Phys. Conf. Ser. 2018, 1025, 012027. [Google Scholar] [CrossRef]
- Doswell, C.A. III Seeing supercells as heavy rain producers. In Proceedings of the 14th Conference on Hydrology, Dallas, TX, USA, 10–15 January 1998; pp. 73–79. [Google Scholar]
- Schumacher, R.S.; Johnson, R.H. Mesoscale processes contributing to extreme rainfall in a midlatitude warm-season flash flood. Mon. Weather Rev. 2008, 136, 3964–3986. [Google Scholar] [CrossRef]
- Hu, H.; Feng, Z.; Leung, L.Y.R. Linking flood frequency with mesoscale convective systems in the US. Geophys. Res. Lett. 2021, 48, e2021GL092546. [Google Scholar] [CrossRef]
- Nuryanto, D.E.; Pawitan, H.; Hidayat, R.; Aldrian, E. The occurrence of the typical mesoscale convective system with a flood-producing storm in the wet season over the Greater Jakarta area. Dyn. Atmos. Oceans 2021, 96, 101246. [Google Scholar] [CrossRef]
- Wu, P.; Hara, M.; Fudeyasu, H.; Yamanaka, M.D.; Matsumoto, J.; Syamsudin, F.; Sulistyowati, R.; Djajadihardja, Y.S. The Impact of Trans-equatorial Monsoon Flow on the Formation of Repeated Torrential Rains over Java Island. SOLA 2007, 3, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Trilaksono, N.J.; Otsuka, S.; Yoden, S.; Saito, K.; Hayashi, S. Dependence of Model-Simulated Heavy Rainfall on the Horizontal Resolution during the Jakarta Flood Event in January-February 2007. SOLA 2011, 7, 193–196. [Google Scholar] [CrossRef] [Green Version]
- Trilaksono, N.J.; Otsuka, S.; Yoden, S. A Time-Lagged Ensemble Simulation on the Modulation of Precipitation over West Java in January–February 2007. Mon. Weather Rev. 2012, 140, 601–616. [Google Scholar] [CrossRef] [Green Version]
- Hidayat, R.; Kizu, S. Influence of the Madden—Julian Oscillation on Indonesian rainfall variability in austral summer. Int. J. Climatol. 2010, 30, 1816–1825. [Google Scholar] [CrossRef]
- Wu, P.; Arbain, A.A.; Mori, S.; Hamada, J.I.; Hattori, M.; Syamsudin, F.; Yamanaka, M.D. The Effects of an Active Phase of the Madden-Julian Oscillation on the Extreme Precipitation Event over Western Java Island in January 2013. SOLA 2013, 9, 79–83. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, F.R.; Lubis, S.W.; Setiawan, S. Impacts of the Madden—Julian oscillation on precipitation extremes in Indonesia. Int. J. Climatol. 2021, 41, 1970–1984. [Google Scholar] [CrossRef]
- Fathurochman, I.; Lubis, S.W.; Setiawan, S. Impact of Madden-Julian Oscillation (MJO) on global distribution of total water vapor and column ozone. IOP Conf. Ser. Earth Environ. Sci. 2017, 54, 012034. [Google Scholar] [CrossRef]
- Muhammad, F.R.; Lubis, S.W.; Setiawan, S. The Influence of Boreal Summer Madden-Julian Oscillation on Precipitation Extremes in Indonesia. arXiv 2021, arXiv:2112.00001. [Google Scholar]
- Lubis, S.W.; Jacobi, C. The modulating influence of convectively coupled equatorial waves (CCEWs) on the variability of tropical precipitation. Int. J. Climatol. 2015, 35, 1465–1483. [Google Scholar] [CrossRef]
- Lubis, S.W.; Respati, M.R. Impacts of convectively coupled equatorial waves on rainfall extremes in Java, Indonesia. Int. J. Climatol. 2021, 41, 2418–2440. [Google Scholar] [CrossRef]
- Latos, B.; Lefort, T.; Flatau, M.K.; Flatau, P.J.; Permana, D.S.; Baranowski, D.B.; Paski, J.A.; Makmur, E.; Sulystyo, E.; Peyrillé, P.; et al. Equatorial waves triggering extreme rainfall and floods in southwest Sulawesi, Indonesia. Mon. Weather Rev. 2021, 149, 1381–1401. [Google Scholar] [CrossRef]
- Peatman, S.C.; Schwendike, J.; Birch, C.E.; Marsham, J.H.; Matthews, A.J.; Yang, G.Y. A local-to-large scale view of Maritime Continent rainfall: Control by ENSO, MJO and equatorial waves. J. Clim. 2021, 34, 8933–8953. [Google Scholar] [CrossRef]
- Feng, T.; Yang, X.Q.; Yu, J.Y.; Huang, R. Convective Coupling in Tropical-Depression-Type Waves. Part I: Rainfall Characteristics and Moisture Structure. J. Atmos. Sci. 2020, 77, 3407–3422. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9— Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Liu, C.; Banzon, V.; Freeman, E.; Graham, G.; Hankins, B.; Smith, T.; Zhang, H.-M. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Clim. 2021, 34, 2923–2939. [Google Scholar] [CrossRef]
- Whitehall, K.; Mattmann, C.A.; Jenkins, G.; Rwebangira, M.; Demoz, B.; Waliser, D.; Kim, J.; Goodale, C.; Hart, A.; Ramirez, P.; et al. Exploring a graph theory based algorithm for automated identification and characterization of large mesoscale convective systems in satellite datasets. Earth Sci. Inform. 2015, 8, 663–675. [Google Scholar] [CrossRef]
- Putri, N.S.; Hayasaka, T.; Whitehall, K.D. The Properties of Mesoscale Convective Systems in Indonesia Detected Using the Grab ‘Em Tag ‘Em Graph ‘Em (GTG) Algorithm. J. Meteorol. Soc. Jpn. Ser. II 2017, 95, 391–409. [Google Scholar] [CrossRef] [Green Version]
- Nuryanto, D.E.; Pawitan, H.; Hidayat, R.; Aldrian, E. Characteristics of two mesoscale convective systems (MCSs) over the Greater Jakarta: Case of heavy rainfall period 15–18 January 2013. Geosci. Lett. 2019, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Chock, D.P.; Winkler, S.L. A particle grid air quality modeling approach: 2. Coupling with chemistry. J. Geophys. Res. 1994, 99, 1033–1041. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Draxler, R.R.; Hess, G.D. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- van Zomeren, J.; van Delden, A. Vertically integrated moisture flux convergence as a predictor of thunderstorms. Atmos. Res. 2007, 83, 435–445. [Google Scholar] [CrossRef]
- Hattori, M.; Mori, S.; Matsumoto, J. The Cross-Equatorial Northerly Surge over the Maritime Continent and Its Relationship to Precipitation Patterns. J. Meteorol. Soc. Jpn. 2011, 89A, 27–47. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, R.S.; Johnson, R.H. Synoptic disturbances over the equatorial South China Sea and western maritime continent during boreal winter. Mon. Weather Rev. 2005, 133, 489–503. [Google Scholar]
- Song, F.; Feng, Z.; Leung, L.R.; Pokharel, B.; Wang, S.Y.S.; Chen, X.; Sakaguchi, K.; Wang, C.C. Crucial Roles of Eastward Propagating Environments in the Summer MCS Initiation Over the U.S. Great Plains. J. Geophys. Res. Atmos. 2021, 126, e2021JD034991. [Google Scholar] [CrossRef]
- Hu, H.; Leung, L.R.; Feng, Z. Early warm-season mesoscale convective systems dominate soil moisture precipitation feedback for summer rainfall in central United States. Proc. Natl. Acad. Sci. USA 2021, 118, e2105260118. [Google Scholar] [CrossRef]
- Saufina, E.; Trismidianto; Risyanto; Fathrio, I.; Harjupa, W. Impact of cross equatorial northerly surge (CENS) on Jakarta heavy rainfall and its interaction with tropical cyclone (Case study: 18-25 February 2020). AIP Conf. Proc. 2021, 2366, 050002. [Google Scholar] [CrossRef]
- Hamada, J.I.; Mori, S.; Kubota, H.; Yamanaka, M.D.; Haryoko, U.; Lestari, S.; Sulistyowati, R.; Syamsudin, F. Interannual Rainfall Variability over Northwestern Jawa and its Relation to the Indian Ocean Dipole and El Niño-Southern Oscillation Events. SOLA 2012, 8, 69–72. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, F.R.; Lubis, S.W.; Tiarni, I.; Setiawan, S. Influence of the Indian Ocean Dipole (IOD) on Convectively Coupled Kelvin and Mixed Rossby-Gravity Waves. IOP Conf. Ser. Earth Environ. Sci. 2019, 284, 012012. [Google Scholar] [CrossRef]
- Baranowski, D.B.; Flatau, M.K.; Flatau, P.J.; Karnawati, D.; Barabasz, K.; Labuz, M.; Latos, B.; Schmidt, J.M.; Paski, J.A.I.; Marzuki. Social-media and newspaper reports reveal large-scale meteorological drivers of floods on Sumatra. Nat. Commun. 2020, 11, 2503. [Google Scholar] [CrossRef]
Data on Pressure Level | Surface Data | |
---|---|---|
Parameters | ||
Temperature (K) | ||
Zonal component of wind (m/s) | ||
Meridional component of wind (m/s) | ||
Vertical velocity (Pa/s) | ||
Relative humidity (%) | 2m temperature (K) | |
Specific humidity (kg/kg) | Surface pressure (hPa) | |
Geopotential height (m) | Sea surface temperature (K) | |
Potential vorticity (Km/kg s) |
Physical Characteristics | Criteria |
---|---|
(BT10.4) | ≤243 K |
Size | ≥10,000 km2 |
Duration | Size and temperature definition must be met for a period of ≥3 h |
Initiation | Size and temperature definition are first satisfied |
Termination | Size and temperature definition are no longer satisfied |
Mature | Minimum mean of cloud temperature definition must be met |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hermawan, E.; Lubis, S.W.; Harjana, T.; Purwaningsih, A.; Risyanto; Ridho, A.; Andarini, D.F.; Ratri, D.N.; Widyaningsih, R. Large-Scale Meteorological Drivers of the Extreme Precipitation Event and Devastating Floods of Early-February 2021 in Semarang, Central Java, Indonesia. Atmosphere 2022, 13, 1092. https://doi.org/10.3390/atmos13071092
Hermawan E, Lubis SW, Harjana T, Purwaningsih A, Risyanto, Ridho A, Andarini DF, Ratri DN, Widyaningsih R. Large-Scale Meteorological Drivers of the Extreme Precipitation Event and Devastating Floods of Early-February 2021 in Semarang, Central Java, Indonesia. Atmosphere. 2022; 13(7):1092. https://doi.org/10.3390/atmos13071092
Chicago/Turabian StyleHermawan, Eddy, Sandro W. Lubis, Teguh Harjana, Anis Purwaningsih, Risyanto, Ainur Ridho, Dita Fatria Andarini, Dian Nur Ratri, and Retno Widyaningsih. 2022. "Large-Scale Meteorological Drivers of the Extreme Precipitation Event and Devastating Floods of Early-February 2021 in Semarang, Central Java, Indonesia" Atmosphere 13, no. 7: 1092. https://doi.org/10.3390/atmos13071092
APA StyleHermawan, E., Lubis, S. W., Harjana, T., Purwaningsih, A., Risyanto, Ridho, A., Andarini, D. F., Ratri, D. N., & Widyaningsih, R. (2022). Large-Scale Meteorological Drivers of the Extreme Precipitation Event and Devastating Floods of Early-February 2021 in Semarang, Central Java, Indonesia. Atmosphere, 13(7), 1092. https://doi.org/10.3390/atmos13071092