Understanding the Simulated Ammonia Increasing Trend from 2008 to 2015 over Europe with CHIMERE and Comparison with IASI Observations
Abstract
:1. Introduction
- an impact of meteorology,
- a misrepresentation in the reported NH3 emission trends,
- the reported decrease in anthropogenic SOx and NOx emissions [6]–precursors of sulfuric acid H2SO4 and nitric acid HNO3, respectively–providing less H2SO4 and HNO3 for neutralization of NH3 in the atmosphere.
2. Data Set/Tools
2.1. Chemistry Transport Model CHIMEREv2013b
2.2. IASI-v3R NH3 VCD
2.3. Time Series Analysis Method
3. Results
3.1. Spatial Variability and Seasonal Cycles of Simulated and Observed NH3 VCD
3.2. Trends of Simulated and Observed NH3 VCDs
3.2.1. Disparities between the Trends in EMEP Ammonia Emissions Reported by Countries
3.2.2. Strong Increase of Simulated European NH3 VCDs
3.2.3. Simulated NH3 VCD Increase Driven by NH3, SO2 and NOx Emissions
3.2.4. Comparison of the Simulated NH3 VCD Trends to the IASI-v3R Satellite Observations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erisman, J.W.; Bleeker, A.; Galloway, J.; Sutton, M.S. Reduced nitrogen in ecology and the environment. Environ. Pollut. 2007, 150, 140–149. [Google Scholar] [CrossRef] [Green Version]
- EEA European Environment Agency: Effects of Air Pollution on European Ecosystems-Past and Future Exposure of European Freshwater and Terrestrial Habitats to Acidifying and Eutrophying Air Pollutants; Technical Report. 2014. Available online: https://www.eea.europa.eu/publications/effects-of-air-pollution-on (accessed on 1 June 2021).
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Directive (EU) 2001/81/EC of the European Parliament and of the Council of 23 October 2001 on National Emission Ceilings for Certain Atmospheric Pollutants. 2001. Available online: https://eur-lex.europa.eu/eli/dir/2001/81/oj (accessed on 1 September 2021).
- Directive (EU) 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the Reduction of National Emissions of Certain Atmospheric Pollutants, Amending Directive 2003/35/EC and Repealing Directive 2001/81/EC. 2016. Available online: http://data.europa.eu/eli/dir/2016/2284/oj (accessed on 1 September 2021).
- EEA European Environment Agency: Air Quality in Europe—2020 Report. 2020. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2020-report (accessed on 1 September 2021).
- Von Bobrutzki, K.; Braban, C.F.; Famulari, D.; Jones, S.K.; Blackall, T.; Smith, T.E.L.; Blom, M.; Coe, H.; Gallagher, M.; Ghalaieny, M.; et al. Field inter-comparison of eleven atmospheric ammonia measurement techniques. Atmos. Meas. Technol. 2010, 3, 91–112. [Google Scholar] [CrossRef] [Green Version]
- Hertel, O.; Skjøth, C.A.; Reis, S.; Bleeker, A.; Harrison, R.M.; Cape, J.N.; Fowler, D.; Skiba, U.; Simpson, D.; Jickells, T.; et al. Governing processes for reactive nitrogen compounds in the European atmosphere. Biogeosciences 2012, 9, 4921–4954. [Google Scholar] [CrossRef] [Green Version]
- Flechard, C.R.; Nemitz, E.; Smith, R.I.; Fowler, D.; Vermeulen, A.T.; Bleeker, A.; Erisman, J.W.; Simpson, D.; Zhang, L.; Tang, Y.S.; et al. Dry deposition of reactive nitrogen to European ecosystems: A comparison of inferential models across the NitroEurope network. Atmos. Chem. Phys. 2011, 11, 2703–2728. [Google Scholar] [CrossRef] [Green Version]
- Warner, J.X.; Dickerson, R.R.; Wei, Z.; Strow, L.L.; Wang, Y.; Liang, Q. Increased atmospheric ammonia over the world’s major agricultural areas detected from space. Geophys. Res. Lett. 2017, 44, 2875–2884. [Google Scholar] [CrossRef]
- Van Damme, M.; Clarisse, L.; Franco, B.; A Sutton, M.; Erisman, J.W.; Kruit, R.W.; van Zanten, M.; Whitburn, S.; Hadji-Lazaro, J.; Hurtmans, D.; et al. Global, regional and national trends of atmospheric ammonia derived from a decadal (2008–2018) satellite record. Environ. Res. Lett. 2021, 16, 055017. [Google Scholar] [CrossRef]
- Clarisse, L.; Shephard, M.; Dentener, F.; Hurtmans, D.; Cady-Pereira, K.; Karagulian, F.; Van Damme, M.; Clerbaux, C.; Coheur, P.-F. Satellitemonitoringofammonia:Acasestudyof the San Joaquin Valley. J. Geophys. Res. 2010, 115, D13302. [Google Scholar] [CrossRef] [Green Version]
- Clarisse, L.; Clerbaux, C.; Dentener, F.; Hurtmans, D.; Coheur, P. Global ammonia distribution derived from infrared satellite observations. Nat. Geosci. 2009, 2, 479–483. [Google Scholar] [CrossRef]
- Sutton, M.A.; Asman, W.A.H.; Ellermann, T.; Van Jaarsveld, J.A.; Acker, K.; Aneja, V.; Duyzer, J.; Horvath, L.; Paramonov, S.; Mitosinkova, M.; et al. Establishing the Link between Ammonia Emission Control and Measurements of Reduced Nitrogen Concentrations and Deposition. Environ Monit Assess 2003, 82, 149–185. [Google Scholar] [CrossRef]
- WichinkKruit, R.J.; Aben, J.; de Vries, W.; Sauter, F.; van der Swaluw, E.; van Zanten, M.C.; van Pul, W.A.J. Modelling trends in ammonia in the Netherlands over the period 1990–2014. Atmos. Environ. 2017, 154, 20–30. [Google Scholar] [CrossRef]
- Yu, F.; Nair, A.A.; Luo, G. Long-term trend of gaseous ammonia over the United States: Modeling and comparison with observations. J. Geophys. Res. Atmos. 2018, 123, 8315–8325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lachatre, M.; Fortems-Cheiney, A.; Foret, G.; Siour, G.; Dufour, G.; Clarisse, L.; Clerbaux, C.; Coheur, P.-F.; Van Damme, M.; Beekmann, M. The unintended consequence of SO2 and NO2 regulations over China: Increase of ammonia levels and impact on PM2.5 concentrations. Atmos. Chem. Phys. 2019, 19, 6701–6716. [Google Scholar] [CrossRef] [Green Version]
- Menut, L.; Bessagnet, B.; Khvorostyanov, D.; Beekmann, M.; Blond, N.; Colette, A.; Coll, I.; Curci, G.; Foret, G.; Hodzic, A.; et al. CHIMERE 2013: A model for regional atmospheric composition modelling. Geosci. Model Dev. 2013, 6, 981–1028. [Google Scholar] [CrossRef] [Green Version]
- Mailler, S.; Menut, L.; Khvorostyanov, D.; Valari, M.; Couvidat, F.; Siour, G.; Turquety, S.; Briant, R.; Tuccella, P.; Bessagnet, B.; et al. CHIMERE-2017: From urban to hemispheric chemistry-transport modeling. Geosci. Model Dev. 2017, 10, 2397–2423. [Google Scholar] [CrossRef] [Green Version]
- Menut, L.; Bessagnet, B.; Briant, R.; Cholakian, A.; Couvidat, F.; Mailler, S.; Pennel, R.; Siour, G.; Tuccella, P.; Turquety, S.; et al. The CHIMERE v2020r1 online chemistry-transport model. Geosci. Model Dev. 2021, 14, 6781–6811. [Google Scholar] [CrossRef]
- Marécal, V.; Peuch, V.-H.; Andersson, C.; Andersson, S.; Arteta, J.; Beekmann, M.; Benedictow, A.; Bergström, R.; Bessagnet, B.; Cansado, A.; et al. A regional air quality forecasting system over Europe: The MACC-II daily ensemble production. Geosci. Model Dev. 2015, 8, 2777–2813. [Google Scholar] [CrossRef] [Green Version]
- Terrenoire, E.; Bessagnet, B.; Rouïl, L.; Tognet, F.; Pirovano, G.; Létinois, L.; Beauchamp, M.; Colette, A.; Thunis, P.; Amann, M.; et al. High-resolution air quality simulation over Europe with the chemistry transport model CHIMERE. Geosci. Model Dev. 2015, 8, 21–42. [Google Scholar] [CrossRef] [Green Version]
- Fortems-Cheiney, A.; Dufour, G.; Hamaoui-Laguel, L.; Foret, G.; Siour, G.; Van Damme, M.; Meleux, F.; Coheur, P.-F.; Clerbaux, C.; Clarisse, L.; et al. Unaccounted variability in NH3 agricultural sources detected by IASI contributing to European spring haze episode. Geophys. Res. Lett. 2016, 43, 5475–5482. [Google Scholar] [CrossRef] [Green Version]
- Cholakian, A.; Beekmann, M.; Coll, I.; Ciarelli, G.; Colette, A. Biogenic secondary organic aerosol sensitivity to organic aerosol simulation schemes in climate projections. Atmos. Chem. Phys. 2019, 19, 13209–13226. [Google Scholar] [CrossRef] [Green Version]
- Ciarelli, G.; Theobald, M.R.; Vivanco, M.G.; Beekmann, M.; Aas, W.; Andersson, C.; Bergström, R.; Manders-Groot, A.; Couvidat, F.; Mircea, M.; et al. Trends of inorganic and organic aerosols and precursor gases in Europe: Insights from the EURODELTA multi-model experiment over the 1990–2010 period. Geosci. Model Dev. 2019, 12, 4923–4954. [Google Scholar] [CrossRef] [Green Version]
- Menut, L.; Bessanet, B.; Siour, G.; Mailler, S.; Pennel, R.; Cholakian, A. Impact of lockdown measures to combat COVID-19 on air quality over western Europe. Sci. Total Environ. 2020, 741, 140426. [Google Scholar] [CrossRef] [PubMed]
- Owens, R.G.; Hewson, T. ECMWF Forecast User Guide, Reading. 2018. Available online: https://software.ecmwf.int/wiki/display/FUG/Forecast+User+Guide (accessed on 1 September 2019).
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Vestreng, V.; Breivik, K.; Adams, M.; Wagner, A.; Goodwin, J.; Rozovskaya, O.; Oacyna, J. Inventory Review 2005-Emission Data Reported to CLRTAP and under the NEC Direc-Tive-Initial Review for HMs and POPs. In EMEP Status report; Norwegian Meteorological Institute: Oslo, Norway, 2005. [Google Scholar]
- Ebel, A.; Friedrich, R.; Rodhe, H. (Eds.) Tropospheric Modelling and Emission Estimation. Transport and Chemical Transformation of Pollutants in the Troposphere, chap. In GENEMIS: Assessment, Improvement, and Temporal and Spatial Disaggregation of European Emission Data; Springer: Berlin, Germany, 1997. [Google Scholar]
- Couvidat, F.; Bessagnet, B.; Garcia-Vivanco, M.; Real, E.; Menut, L.; Colette, A. Development of an inorganic and organic aerosol model (CHIMERE 2017β v1.0): Seasonal and spatial evaluation over Europe. Geosci. Model Dev. 2018, 11, 165–194. [Google Scholar] [CrossRef] [Green Version]
- Fortems-Cheiney, A.; Dufour, G.; Dufossé, K.; Couvidat, F.; Gilliot, J.-M.; Siour, G.; Beekmann, M.; Foret, G.; Meleux, F.; Clarisse, L.; et al. Do alternative inventories converge on the spatiotemporal representation of spring ammonia emissions in France? Atmos. Chem. Phys. 2020, 20, 13481–13495. [Google Scholar] [CrossRef]
- Hamaoui-Laguel, L.; Meleux, F.; Beekmann, M.; Bessagnet, B.; Genermont, S.; Cellier, P.; Letinois, L. Improving ammonia emissions in air quality modelling for France. Atmos. Environ. 2014, 92, 584–595. [Google Scholar] [CrossRef]
- Nenes, A.; Pandis, S.N.; Pilinis, C. ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat. Geochem. 1998, 4, 123–152. [Google Scholar] [CrossRef]
- Azouz, N. Comparison of spatial patterns of ammonia concentration and dry deposition flux between a regional Eulerian chemistry-transport model and a local Gaussian plume model. Air Qual. Atmos. Health 2019, 12, 719–729. [Google Scholar] [CrossRef]
- Szopa, S.; Foret, G.; Menut, L.; Cozic, A. Impact of large-scale circulation on European summer surface ozone: Consequences for modeling. Atmos. Environ. 2008, 43, 1189–1195. [Google Scholar] [CrossRef]
- Clerbaux, C.; Boynard, A.; Clarisse, L.; George, M.; Hadji-Lazaro, J.; Herbin, H.; Hurtmans, D.; Pommier, M.; Razavi, A.; Turquety, S.; et al. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder. Atmos. Chem. Phys. 2009, 9, 6041–6054. [Google Scholar] [CrossRef] [Green Version]
- Whitburn, S.; Van Damme, M.; Clarisse, L.; Bauduin, S.; Heald, C.L.; Hadji-Lazaro, J.; Hurtmans, D.; Zondlo, M.A.; Clerbaux, C.; Coheur, P.-F. A flexible and robust neural network IASI-NH3 retrieval algorithm. J. Geophys. Res. Atmos. 2016, 121, 6581–6599. [Google Scholar] [CrossRef]
- Van Damme, M.; Whitburn, S.; Clarisse, L.; Clerbaux, C.; Hurtmans, D.; Coheur, P.-F. Version 2 of the IASI NH3 neural network retrieval algorithm: Near-real-time and reanalysed datasets. Atmos. Meas. Technol. 2017, 10, 4905–4914. [Google Scholar] [CrossRef] [Green Version]
- Franco, B.; Clarisse, L.; Stavrakou, T.; Müller, J.F.; Van Damme, M.; Whitburn, S.; Hadji-Lazaro, J.; Hurtmans, D.; Taraborrelli, D.; Clerbaux, C.; et al. A general framework for global retrievals of trace gases from IASI: Application to methanol, formic acid, and PAN. J. Geophys. Res. Atmos. 2018, 123, 13963–13984. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q J R Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Viatte, C.; Wang, T.; Van Damme, M.; Dammers, E.; Meleux, F.; Clarisse, L.; Shephard, M.W.; Whitburn, S.; Coheur, P.F.; Cady-Pereira, K.E.; et al. Atmospheric ammonia variability and link with particulate matter formation: A case study over the Paris area. Atmos. Chem. Phys. 2020, 20, 577–596. [Google Scholar] [CrossRef] [Green Version]
- Marais, E.A.; Pandey, A.K.; Van Damme, M.; Clarisse, L.; Coheur, P.F.; Shephard, M.W.; Cady-Pereira, K.E.; Misselbrook, T.; Zhu, L.; Luo, G.; et al. UK ammonia emissions estimated with satellite observations and GEOS-Chem. J. Geophys. Res. Atmos. 2021, 126, e2021JD035237. [Google Scholar] [CrossRef]
- Dufour, G.; Hauglustaine, D.; Zhang, Y.; Eremenko, M.; Cohen, Y.; Gaudel, A.; Siour, G.; Lachatre, M.; Bense, A.; Bessagnet, B.; et al. Recent ozone trends in the Chinese free troposphere: Role of the local emission reductions and meteorology. Atmos. Chem. Phys. 2021, 21, 16001–16025. [Google Scholar] [CrossRef]
- Van Damme, M.; Clarisse, L.; Heald, C.L.; Hurtmans, D.; Ngadi, Y.; Clerbaux, C.; Dolman, A.J.; Erisman, J.W.; Coheur, P.F. Global distributions, time series and error characterization of atmospheric ammonia (NH3) from IASI satellite observations. Atmos. Chem. Phys. 2014, 14, 2905–2922. [Google Scholar] [CrossRef] [Green Version]
- Skjøth, C.A.; Hertel, O.; Gyldenkærne, S.; Ellerman, T. Implementing a dynamical ammonia emission parameterization in thelarge-scale air pollution model ACDEP. J. Geophys. Res. 2004, 109, D06306. [Google Scholar] [CrossRef]
- Ramanantenasoa, M.M.J.; Gilliot, J.-M.; Mignolet, C.; Bedos, C.; Mathias, E.; Eglin, T.; Makowski, D.; Génermont, S. A new framework to estimate spatio-temporal ammonia emissions due to nitrogen fertilization in France. Sci. Total Environ. 2018, 645, 205–219. [Google Scholar] [CrossRef]
- Génermont, S.; Ramanantenasoa, M.M.J.; Dufossé, K.; Maury, O.; Mignolet, C.; Gilliot, J.-M. Data on spatio-temporal representation of mineral N fertilization and manure N application as well as ammonia volatilization in French regions for the crop year 2005/06. Data Brief 2018, 21, 1119–1124. [Google Scholar] [CrossRef] [PubMed]
- EUROSTAT. Bovine Population. Available online: https://ec.europa.eu/eurostat/databrowser/view/apro_mt_lscatl/default/table?lang=en (accessed on 1 June 2021).
- World Bank. Available online: https://data.worldbank.org/indicator/AG.CON.FERT.ZS?view=chart (accessed on 1 June 2021).
- Ricardo. UK Informative Inventory Report (1990 to 2018). 2020. Available online: https://uk-air.defra.gov.uk/assets/documents/reports/cat07/2003131327_GB_IIR_2020_v1.0.pdf (accessed on 1 June 2021).
- Schiferl, L.D.; Heald, C.L.; Van Damme, M.; Clarisse, L.; Clerbaux, C.; Coheur, P.-F.; Nowak, J.B.; Neuman, J.A.; Herndon, S.C.; Roscioli, J.R.; et al. Interannual variability of ammonia concentrations over the United States: Sources and implications. Atmos. Chem. Phys. 2016, 16, 12305–12328. [Google Scholar] [CrossRef] [Green Version]
- Evangeliou, N.; Balkanski, Y.; Eckhardt, S.; Cozic, A.; Van Damme, M.; Coheur, P.F.; Clarisse, L.; Shephard, M.W.; Cady-Pereira, K.E.; Hauglustaine, D. 10-year satellite-constrained fluxes of ammonia improve performance of chemistry transport models. Atmos. Chem. Phys. 2021, 21, 4431–4451. [Google Scholar] [CrossRef]
- Fortems-Cheiney, A.; Broquet, G.; Pison, I.; Saunois, M.; Potier, E.; Berchet, A.; Dufour, G.; Siour, G.; Denier van der Gon, H.; Dellaert, S.N.C.; et al. Analysis of the anthropogenic and biogenic NOx emissions over 2008–2017: Assessment of the trends in the 30 most populated urban areas in Europe. Geophys. Res. Lett. 2021, 48, e2020GL092206. [Google Scholar] [CrossRef]
Name | NH3 Emissions | NOx and SOx Emissions | Objectives of the Simulation |
---|---|---|---|
CHIMERE-EMEP | EMEP 2008–2015 | EMEP 2008–2015 | Reference |
CHIMERE-EMEPconst | EMEP 2008 | EMEP 2008 | Sensitivity to meteorology |
CHIMERE-EMEPconstNS | EMEP 2008–2015 | EMEP 2008 | Sensitivity to NOx and SOx emissions |
Number of IASI Super-Observations | |
---|---|
January | 41,526 |
February | 43,463 |
March | 77,400 |
April | 84,574 |
May | 85,219 |
June | 105,932 |
July | 123,292 |
August | 121,195 |
September | 92,570 |
October | 63,362 |
November | 52,522 |
December | 44,538 |
CHIMERE-EMEP | CHIMERE-EMEPconst | CHMERE-EMEPconstNS | CHIMERE-EMEP-coloc | IASI-v3R | |
---|---|---|---|---|---|
Continental domain | +2.7 ± 1.0 (p = 7.7 × 10−6) | +0.2 ± 1.2 (p = 0.41) | +0.6 ± 1.2(p = 0.13) | +2.4 ± 1.1(p = 4.9 × 10−5) | 0.9 ± 2.4 (p = 0.12) |
Spain | +4.9 ± 1.9(p = 6.3 × 10−7) | +0.4 ± 1.7(p = 0.70) | +3.0 ± 1.9 (p = 0.003) | +4.3 ± 1.8(p = 1.4 × 10−6) | +0.07 ± 2.5 (p = 0.47) |
Germany | +3.2 ± 1.6 (p = 1.9 × 10−6) | +0.3 ± 1.6 (p = 0.14) | +1.8 ± 1.6(p = 0.002) | +3.5 ± 1.8 (p = 2.1 × 10−6) | +3.8 ± 4.0 (p = 0.86) |
UK | +2.7 ± 2.4(p = 9 × 10−5) | −0.04 ± 2.46 (p = 0.27) | +0.3 ± 2.5(p = 0.13) | +3.7± 2.2(p = 2.7 × 10−6) | −2.6 ± 5.2 (p = 0.10) |
France | +2.4 ± 1.0(p = 1.8 × 10−6) | +0.6 ± 1.8 (p = 0.33) | +0.2 ± 1.8 (p = 0.68) | +2.3 ± 1.8(p = 3.5 × 10−4) | +1.8 ± 3.5 (p = 0.54) |
Poland | +2.6 ± 2.2 (p = 0.001) | +0.3 ± 2.2 (p = 0.24) | +0.1 ± 2.2 (p = 0.32) | +3.6 ± 2.7 (p = 0.004) | +2.39 ± 3.39 (p = 0.90) |
CHIMERE-EMEP-Coloc IASIin MAMJJA | IASI-v3Rin MAMJJA | |
---|---|---|
Entire domain | +2.3 ± 1.4 (p = 4 × 10−3) | +2.9 ± 2.6 (p = 0.042) |
Spain | +4.4 ± 2.2 (p = 2 × 10−4) | +1.4 ± 2.7 (p = 0.32) |
Germany | +2.9 ± 2.0 (p = 4 × 10−3) | +5.2 ± 4.3 (p = 0.033) |
UK | +0.7 ± 3.4 (p = 0.24) | +1.1 ± 5.2 (p = 0.51) |
France | +1.6 ± 2.1 (p = 0.08) | +3.2 ± 3.8 (p = 0.15) |
Poland | +2.8 ± 3.0 (p = 0.09) | +6.0 ± 3.9 (p = 0.005) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fortems-Cheiney, A.; Dufour, G.; Foret, G.; Siour, G.; Van Damme, M.; Coheur, P.-F.; Clarisse, L.; Clerbaux, C.; Beekmann, M. Understanding the Simulated Ammonia Increasing Trend from 2008 to 2015 over Europe with CHIMERE and Comparison with IASI Observations. Atmosphere 2022, 13, 1101. https://doi.org/10.3390/atmos13071101
Fortems-Cheiney A, Dufour G, Foret G, Siour G, Van Damme M, Coheur P-F, Clarisse L, Clerbaux C, Beekmann M. Understanding the Simulated Ammonia Increasing Trend from 2008 to 2015 over Europe with CHIMERE and Comparison with IASI Observations. Atmosphere. 2022; 13(7):1101. https://doi.org/10.3390/atmos13071101
Chicago/Turabian StyleFortems-Cheiney, Audrey, Gaëlle Dufour, Gilles Foret, Guillaume Siour, Martin Van Damme, Pierre-François Coheur, Lieven Clarisse, Cathy Clerbaux, and Matthias Beekmann. 2022. "Understanding the Simulated Ammonia Increasing Trend from 2008 to 2015 over Europe with CHIMERE and Comparison with IASI Observations" Atmosphere 13, no. 7: 1101. https://doi.org/10.3390/atmos13071101
APA StyleFortems-Cheiney, A., Dufour, G., Foret, G., Siour, G., Van Damme, M., Coheur, P. -F., Clarisse, L., Clerbaux, C., & Beekmann, M. (2022). Understanding the Simulated Ammonia Increasing Trend from 2008 to 2015 over Europe with CHIMERE and Comparison with IASI Observations. Atmosphere, 13(7), 1101. https://doi.org/10.3390/atmos13071101