Fire Weather Conditions in Boreal and Polar Regions in 2002–2021
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Region
2.2. Hotspot (Fire) and Weather Data
2.3. Analysis Methods
3. Results
3.1. Fire Distribution and History in the Arctic Region
3.2. High Fire Density Areas in the Arctic Region
3.3. Comparison of Fire Weather in Sakha and Alaska
3.3.1. Average Fire Activity during the Summer
3.3.2. Active Fire Period (Step 1/3)
3.3.3. Initial Conditions: Onset of Large Westerly Meandering (LWM) (Step 2/3)
3.3.4. HS Peak Weather Conditions in Sakha and Alaska (Step 3/3)
Fire Weather Conditions in Sakha
Fire–Weather Conditions in Alaska
3.3.5. Summary of Fire–Weather Conditions in Sakha and Alaska
Initial Weather Conditions
HS Peak Weather Conditions
3.4. Summary of Fire Weather (Regime) in Eurasia and North America
4. Discussion
- The four critical weather elements that produce extreme fire behavior are low relative humidity, strong surface wind, unstable air, and drought;
- Most periods of critical fire weather occur in transition zones between high- and low-pressure systems, both at the surface and in the upper air;
- In Alaska, the primary pattern is the breakdown of the upper ridge with a southeastern flow. This can bring gusty winds and dry lightning to the interior of Alaska after a period of hot dry weather.
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Previdi, M.; Smith, K.L.; Polvani, L.M. Arctic amplification of climate change: A review of underlying mechanisms. Environ. Res. Lett. 2021, 16, 093003. [Google Scholar] [CrossRef]
- Delmotte, M.V.; Zhai, P.; Pirani, A.; Connorsv, S.L.; Péanv, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarbv, L.; Gomis, M.I.; et al. (Eds.) IPCC, 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis, contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- Flannigan, M.D.; Amiro, B.D.; Logan, K.A.; Stocks, B.J.; Wotton, B.M. Forest fires and climate change in the 21st century. In Mitigation and Adaptation Strategies for Global Change; Springer: Berlin/Heidelberg, Germany, 2006; Volume 11, pp. 847–859. [Google Scholar]
- Pechony, O.; Shindell, D.T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl. Acad. Sci. USA 2010, 107, 19167–19170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarty, J.L.; Aalto, J.; Paunu, V.-V.; Arnold, S.R.; Eckhardt, S.; Klimont, Z.; Fain, J.J.; Evangeliou, N.; Venäläinen, A.; Tchebakova, N.M.; et al. Reviews and syntheses: Arctic fire regimes and emissions in the 21st century. Biogeosciences 2021, 18, 5053–5083. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, S.; Kaplan, J.O. Sensitivity of global wildfire occurrences to various factors in the context of global change. Atmos. Environ. 2014, 121, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Gillett, N.P.; Weaver, A.J.; Zwiers, F.W.; Flannigan, M.D. Detecting the effect of climate change on Canadian forest fires. Geophys. Res. Lett. 2004, 31, 18211. [Google Scholar] [CrossRef] [Green Version]
- Duffy, P.A.; Walsh, J.E.; Graham, J.M.; Mann, D.H.; Rupp, T.S. Impacts of large scale atmospheric Ocean variability on Alaskan fire season severity. Ecol. Appl. 2005, 15, 1317–1330. [Google Scholar] [CrossRef] [Green Version]
- Flannigan, M.D.; Logan, K.A.; Amiro, B.D.; Skinner, W.R.; Stocks, B.J. Future area burned in Canada. Clim. Change 2005, 72, 1–16. [Google Scholar] [CrossRef]
- IPCC. Climate change 2014: Impacts, adaptation, and vulnerability. Summaries, frequently asked questions, and cross-chapter boxes. In A Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Eds.; World Meteorological Organization: Geneva, Switzerland, 2014; p. 190. [Google Scholar]
- Ponomarev, E.I.; Kharuk, V.I.; Ranson, K.J. Wildfires Dynamics in Siberian Larch Forests. Forests 2016, 7, 125. [Google Scholar] [CrossRef] [Green Version]
- Conard, S.G.; Sukhinin, A.I.; Stocks, B.J.; Cahoon, D.R.; Davidenko, E.P.; Ivanova, G.A. Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia. Clim. Chang. 2002, 55, 197–211. [Google Scholar] [CrossRef]
- Shvidenko, A.Z.; Schepaschenko, D.G. Climate Change and Wildfires in Russia. Contemp. Probl. Ecol. 2013, 6, 683–692. [Google Scholar] [CrossRef]
- Federal State Statistics Service. Available online: http://www.gks.ru (accessed on 29 February 2016).
- Forkel, M.; Thonicke, K.; Beer, C.; Cramer, W.; Bartalev, S.; Schmullius, C. Extreme fire events are related to previous-year surface moisture conditions in permafrost-underlain larch forests of Siberia. Environ. Res. Lett. 2012, 7, 044021. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Ranson, K.J.; Dvinskaya, M.L.; Im, S.T. Wildfires in northern Siberian larch dominated communities. Environ. Res. Lett. 2011, 6, 045208. [Google Scholar] [CrossRef]
- Krylov, A.; McCarty, J.L.; Potapov, P.; Loboda, T.; Tyukavina, A.; Turubanova, S.; Hansen, M.C. Remote sensing estimates of stand-replacement fires in Russia, 2002–2011. Environ. Res. Lett. 2014, 9, 105007. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Crystal, A.K. Relative importance of weather and climate on wildfire growth in interior Alaska. Int. J. Wildland Fire 2011, 20, 479–486. [Google Scholar] [CrossRef]
- Bell, G. Special Climate Summary, April–July 2004, Hot in Alaska, Cool over Central North America, Wet in South-Central U.S. Available online: http://www.cpc.ncep.noaa.gov/products/expert_assessment/alaska.pdf (accessed on 27 October 2015).
- Wendler, G.; Conner, J.; Moore, B.; Shulski, M.; Stuefer, M. Climatology of Alaskan wildfires with special emphasis on the extreme year of 2004. Theor. Appl. Clim. 2010, 104, 459–472. [Google Scholar] [CrossRef]
- Fauria, M.; Johnson, E.A. Large-scale climatic patterns control large lightning fire occurrence in Canada and Alaska forest regions. J. Geophys. Res. Biogeosci. 2006, 111, G04008. [Google Scholar] [CrossRef] [Green Version]
- Fauria, M.; Johnson, E.A. Climate and wildfires in the North American boreal forest. Philos. Trans. R. Soc. B Biol. Sci. 2007, 363, 2315–2327. [Google Scholar] [CrossRef]
- Skinner, W.R.; Stocks, B.J.; Martell, D.L.; Bonsal, B.; Shabbar, A. The association between circulation anomalies in the mid-troposphere and area burned by wildland fire in Canada. Theor. Appl. Clim. 1999, 63, 89–105. [Google Scholar] [CrossRef]
- Skinner, W.R.; Flannigan, M.D.; Stocks, B.J.; Martell, D.L.; Wotton, B.M.; Todd, J.B.; Mason, J.A.; Logan, K.A.; Bosch, E.M. A 500 hPa synoptic wildland climatology for large Canadian forest fires 1959–1996. Theor. Appl. Clim. 2002, 71, 157–169. [Google Scholar] [CrossRef]
- Hayasaka, H.; Fukuda, M.; Kushida, K. Recent Large-scale Forest Fires in Boreal Forests and Climate Change Discussion Based on Forest Fire and Weather Data in Alaska and Sakha. J. JAFSE 2007, 57, 45–51. (In Japanese) [Google Scholar]
- Hayasaka, H. Recent Vegetation Fire Incidence in Russia. Glob. Environ. Res. 2011, 15, 5–13. [Google Scholar]
- Hayasaka, H.; Tanaka, H.L.; Bieniek, P.A. Synoptic-scale fire weather conditions in Alaska. Polar Sci. 2016, 10, 217–226. [Google Scholar] [CrossRef]
- Hayasaka, H.; Yamazaki, K.; Naito, D. Weather conditions and warm air masses in southern Sakha during active wildfire periods. J. Disaster Res. 2019, 14, 641–648. [Google Scholar] [CrossRef]
- Hayasaka, H.; Yamazaki, K.; Naito, D. Weather Conditions and Warm Air Masses during Active Fire-periods in Boreal Forests. Polar Sci. 2019, 22, 100472. [Google Scholar] [CrossRef]
- Hayasaka, H.; Sokolova, G.V.; Ostroukhov, A.; Naito, D. Classification of Active Fires and Weather Conditions in the Lower Amur River Basin. Remote Sens. 2020, 12, 3204. [Google Scholar] [CrossRef]
- Hayasaka, H. Rare and Extreme Wildland Fire in Sakha in 2021. Atmosphere 2021, 12, 1572. [Google Scholar] [CrossRef]
- Shahgedanova, M. Climate at present and in the historical past. In The Physical Geography of Northern Eurasia; Oxford University Press: Oxford, UK, 2003; pp. 70–102. Available online: http://www.rusnature.info/geo/03_2.htm (accessed on 25 November 2021).
- FIRMS. MODIS Collection 6. Available online: https://firms.modaps.eosdis.nasa.gov/download/ (accessed on 10 September 2021).
- Worldview. Available online: https://worldview.earthdata.nasa.gov (accessed on 6 October 2021).
- NCEP/NCAR Reanalysis 1: Summary. Available online: https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.pressure.html (accessed on 4 April 2022).
- Reigate Grammar School Weather Station, HIGH Pressure: Windy Round the Edges, a Bit on Super-Geostrophic Winds. Available online: https://rgsweather.com/2015/02/09/high-pressure-windy-round-the-edges-a-bit-on-super-geostrophic-winds/ (accessed on 8 October 2021).
- National Wildfire Coordinating Group. Available online: https://www.nwcg.gov/publications/pms437/weather/critical-fire-weather (accessed on 8 April 2022).
- Synthesis of Knowledge of Extreme Fire Behavior: Volume I for Fire Managers. Available online: https://www.fs.usda.gov/treesearch/pubs/39553 (accessed on 8 April 2022).
- Carla Lak Fire. Available online: https://www.deseret.com/1998/6/5/19384046/hundreds-fight-43-000-acre-alaska-wildfire (accessed on 8 April 2022).
Name 1,2 | Region | Peak HS | Total HSs | Num. Days | ||
---|---|---|---|---|---|---|
E Longitude | N Latitude | |||||
S | S1L.2Aug.′21 1 | 110–140 | 57.5–70 | 16,226 | 181,337 | 23 |
a | S2L.19Aug.′02 1 | 10,454 | 63,919 | 14 | ||
k | S3C.3Aug.′12 1 | 8282 | 38,237 | 12 | ||
h | S4C.22Jul.′14 1 | 8030 | 74,565 | 28 | ||
a | S5L.14Jul.′12 1 | 6943 | 29,864 | 10 | ||
E1C.Europe.20Aug.′02 2 | 20–50 | 50–57.5 | 2319 | 20,843 | 16 | |
E2C.Moskva.29Jul.′10 2 | 40–50 | 55–57.5 | 1994 | 14,602 | 22 | |
E3C.N-Omsk+.5Jul.′12 2 | 60–100 | 57.5–65 | 8588 | 76,909 | 29 | |
E4C.N-Krasno+.23Jul.′19 2 | 90–120 | 57.5–65 | 7588 | 68,411 | 24 | |
E5C.N-Krasno+.22Jul.′06 2 | 90–120 | 57.5–65 | 7030 | 36,203 | 11 | |
E6C.N-Krasno+.23Jul.′16 2 | 92–106 | 60–66 | 6920 | 32,164 | 15 | |
E7C.Baikal.22Aug.′15 2 | 100–110 | 52.5–55 | 2978 | 10,107 | 5 | |
E8C.Baikal.13Jun.′03 2 | 110–120 | 52.5–55 | 2888 | 13,971 | 9 | |
E9C.Baikal.13Aug.′07 2 | 110–120 | 50–52.5 | 1438 | 4045 | 4 | |
E10C.Vjerhojansk.4Aug.′19 2 | 120–150 | 65–70 | 3095 | 23,568 | 19 | |
E11C.S-Khabarovsk.29Jun′12 2 | 128–141 | 48–54 | 2758 | 20,850 | 15 | |
E12C.N-Khabarovsk.19Jul′08 2 | 130–140 | 57.5–60 | 2248 | 10,077 | 6 | |
E13CH.Magadan.25Jul.′03 2 | 150–170 | 62.5–67.5 | 5050 | 19,904 | 15 | |
E14C.E-Magadan.30Jul.′10 2 | 160–170 | 62.5–65 | 3535 | 20,854 | 17 |
Name 1,2 | Region | Peak HS | Total HSs | Num. Days | ||
---|---|---|---|---|---|---|
W Longitude | N Latitude | |||||
A | A1C.30Jun.′04 R,1 | 130–160 | 60–70 | 6158 | 41,375 | 18 |
l | A2C.15Aug.′05 1 | 5313 | 35,844 | 14 | ||
a | A3C.13Jul.’04 R,1 | 4857 | 21,620 | 13 | ||
s | A4C.21Aug.’04 R,1 | 3844 | 37,025 | 25 | ||
ka | A5C.25Jun.’15 1 | 3662 | 12,308 | 7 | ||
N1C.B-Colum.12Aug.′17 2 | 120–130 | 50–52.5 | 1528 | 10,845 | 15 | |
N2C.B-Colum.22Aug.′18 2 | 120–130 | 52.5–55 | 2498 | 19,779 | 18 | |
N3C.NW-terri.5Aug.′14 2 | 110–120 | 60–62.5 | 2319 | 12,552 | 18 | |
N4C.N-Alberta.3Jul.′15 2 | 100–110 | 55–57.5 | 1697 | 14,650 | 17 | |
N5C.Ontario.17Jul.′21 2 | 90–110 | 50–57.5 | 2905 | 19,773 | 15 |
Name | Causes of LWM | Upper Air (500 hPa) | Wind (925 hPa) | Warm Air Masses (925 hPa) | ||||
---|---|---|---|---|---|---|---|---|
Height, N, E | Block Type | H, R, L, T Height, N, E | ΔH | Direction | Temperature, N, E | Type, Origin | ||
S1L.2Aug.′21 | L5300+T | H5820,68,120 | Omega | H880,73,150 | 130 | East | 296,66,118 | cT, Tibet |
S2L.19Aug.′02 | L5320+T | H5760,68,125 | Omega | H910,75,152 | 70 | East | 290,64,123 | cT, Tibet |
S3C.3Aug.′12 | C5580+T | R5780,69,140 | Ridge | R810,49,143 | −90 | SW | 296,58,140 | cT, Tibet |
S4C.22Jul.′14 | C5480+T | R5700,66,132 | COL | L540,56,138 | 120(E-W)*ex | NW | R288,62,130 | cT, Tibet |
S5L.14Jul.′12 | L5440+T | R5720,60,131 | Ridge | H770,52,165 | 60 | SE | R288,65,130 | cT, Tibet |
Name | Causes of LWM | Upper Air (500 hPa) | Wind (925 hPa) | Warm Air Masses (925 hPa) | ||||
---|---|---|---|---|---|---|---|---|
Height, N, W | Block Type | H, R, L, T Height, N, W | ΔH | Direction | Temperature, N, W | Type, Origin | ||
A1C.30Jun.′04 R | C5580+T | H5800,68,157 | Rex | H880,73,150 | 70 | East | 292,65,158 | cT, G.Basin |
A2C.15Aug.′05 R | C5440+T | H5760,66,160 | Omega | H870,72,138 | 60 | East | 294,61,148 | cT, G.Basin |
A3C.13Jul.′04 | C5460+T | H5740,62,142 | Omega | H810,58,145 | −70 | West | 292,64,151 | mT, Pacific O. |
A4C.21Aug.′04 R | C5400+T | H5780,69,150 | Rex | H860,73,136 | 60 | East | 292,66,138 | cT, G.Basin |
A5C.25Jun.′15 | C5520+T | R5640,65,147 | Ridge | L600,75,170 | −70 | SW | R290,66,149 | cT, G.Basin |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayasaka, H. Fire Weather Conditions in Boreal and Polar Regions in 2002–2021. Atmosphere 2022, 13, 1117. https://doi.org/10.3390/atmos13071117
Hayasaka H. Fire Weather Conditions in Boreal and Polar Regions in 2002–2021. Atmosphere. 2022; 13(7):1117. https://doi.org/10.3390/atmos13071117
Chicago/Turabian StyleHayasaka, Hiroshi. 2022. "Fire Weather Conditions in Boreal and Polar Regions in 2002–2021" Atmosphere 13, no. 7: 1117. https://doi.org/10.3390/atmos13071117
APA StyleHayasaka, H. (2022). Fire Weather Conditions in Boreal and Polar Regions in 2002–2021. Atmosphere, 13(7), 1117. https://doi.org/10.3390/atmos13071117