Impacts of Heavy and Persistent Precipitation on Railroad Infrastructure in July 2021: A Case Study from the Ahr Valley, Rhineland-Palatinate, Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.1.1. Flood Events in the Ahr Valley
2.1.2. The Ahr Valley Railroad
2.2. Meteorological Description of Events
2.3. Methods
2.3.1. Hydrological Investigations
2.3.2. Damage Mapping on the Railroad Line
3. Results
3.1. Hydrology of the Three Flood Events
3.2. Damage Mapping
3.2.1. Entire Railroad Line
3.2.2. Bridges
4. Discussion
4.1. Classification of the 2021 Event in Meteorological and Hydrological Terms
4.2. Damages on the Railroad Line and Interactions between Transport Infrastructure and the 2021 Flood Event
4.3. Comparison of Damages on the Railroad for the 1910, 2016 and 2021 Flood Events
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kreienkamp, F.; Philip, S.Y.; Tradowsky, J.S.; Kew, S.F.; Lorenz, P.; Arrighi, J.; Belleflamme, A.; Bettmann, T.; Caluwaerts, S.; Chan, S.C.; et al. Rapid attribution of heavy rainfall events leading to the severe flooding in Western Europe during July 2021. World Weather Attrib. 2021, 54. Available online: https://www.worldweatherattribution.org/wp-content/uploads/Scientific-report-Western-Europe-floods-2021-attribution.pdf (accessed on 16 December 2021).
- Dietze, M.; Öztürk, U. A flood of disaster response challenges. Science 2021, 373, 1317–1318. [Google Scholar] [CrossRef] [PubMed]
- Aon. Global Catastrophe Recap: July 2021; Aon-Report: London, UK, 2021; 19p. [Google Scholar]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- Wang, W.; Zhou, K.; Jing, H.; Zuo, J.; Li, P.; Li, Z. Effects of Bridge Piers on Flood Hazards: A Case Study on the Jialing River in China. Water 2019, 11, 1181. [Google Scholar] [CrossRef] [Green Version]
- Palin, E.J.; Stipanovic Oslakovic, I.; Gavin, K.; Quinn, A. Implications of climate change for railway infrastructure. Wiley Interdiscip. Rev. Clim. Change 2021, 12, e728. [Google Scholar] [CrossRef]
- Gavin, K.; Prendergast, L.; Stipanovic, I.; Skaric-Palic, S. Recent developments and remaining challenges with the use of vibration based scour in determining unique scour performance indicators. Balt. J. Road Bridge Eng. 2018, 13, 291–300. [Google Scholar] [CrossRef]
- Vassallo, R.; Mishra, M.; Santarsiero, G.; Masi, A. Interaction of a railway tunnel with a deep slow landslide in clay shales. Procedia Earth Planet. Sci. 2016, 16, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Rachoy, C.; Scheikl, M. Anthropogenic caused mass movements and their impact on railway lines in Austria. In Disaster Mitigation of Debris Flows, Slope Failures and Landslides; Marui, H., Mikoš, M., Eds.; Universal Academy Press: Tokyo, Japan, 2006; pp. 639–643. [Google Scholar]
- Fusco, E.J.; Abatzoglou, J.T.; Balch, J.K.; Finn, J.T.; Bradley, B.A. Quantifying the human influence on fire ignition across western USA. Ecol. Appl. 2016, 26, 2390–2401. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.X.; Zhang, H.Y.; Zhou, D.W. Using GIS spatial anaylsis and logistic regression to predict the probabilities of human-caused grassland fires. J. Arid Environ. 2010, 74, 386–393. [Google Scholar] [CrossRef]
- Koks, E.; Rozenberg, J.; Zorn, C.; Tariverdi, M.; Vousdoukas, M.; Fraser, S.A.; Hall, J.W.; Hallegatte, S. A global multi-hazard risk analysis of road and railway infrastructure assets. Nat. Commun. 2019, 10, 2677. [Google Scholar] [CrossRef] [Green Version]
- Mattson, L.-G.; Jenelius, E. Vulnerability and resilience of transport systems—A discussion of recent research. Transp. Res. Part A Policy Pract. 2015, 81, 16–34. [Google Scholar] [CrossRef]
- Reale, C.; Gavin, K.; Martinovic, K. Analysing the effect of rainfall on railway embankments using fragility curves. In Proceedings of the 7th Transport Research Arena TRA 2018, Vienna, Austria, 16–19 April 2018. [Google Scholar]
- Ministerium für Klimaschutz, Umwelt, Energie und Mobilität Rheinland-Pfalz (MKUEM). Gefahrenkarten und Überflutungsflächen für HQ10, HQ100 und HQextrem (HQ200). 2021. Available online: https://hochwassermanagement.rlp-umwelt.de/servlet/is/200041/ (accessed on 4 May 2022).
- Kempenich, J. Verheerende Unwetter mit historischen Dimensionen. Heim. Des Kreises Ahrweiler 2017, 16–20. Available online: https://relaunch.kreis-ahrweiler.de/kvar/ (accessed on 10 December 2021).
- Statistisches Landesamt Rheinland-Pfalz. Datentabelle: Bevölkerungsstand 31.12.2020. 2022. Available online: http://geodaten.statistik.rlp.de/mapbender/stala/showdatasheet.php?lingo=deutsch&tab_id=258 (accessed on 31 May 2022).
- Seel, K.A. Die Ahr und ihre Hochwässer in alten Quellen. Heim. Des Kreises Ahrweiler 1983, 40, 91–102. [Google Scholar]
- Roggenkamp, T.; Herget, J. Reconstructing peak discharges of historic floods of the river Ahr, Germany. Erdkunde 2014, 68, 49–59. [Google Scholar] [CrossRef]
- Schäfer, A.; Mühr, B.; Daniell, J.; Ehret, U.; Ehmele, F.; Küpfer, K.; Brand, J.; Wisotzky, C.; Skapski, J.; Rentz, L.; et al. Hochwasser Mitteleuropa, Juli 2021 (Deutschland). CEDIM Forensic Disaster Analysis Group Bericht Nr. 1 “Nordrhein-Westfalen & Rheinland-Pfalz”; Karlsruher Institut für Technologie (KIT): Karlsruhe, Germany, 2021. [Google Scholar] [CrossRef]
- Kemp, K.E. Am 17. September 1880 fuhr die erste Eisenbahn von Remagen nach Ahrweiler—Der Bau der Ahrtalbahn. Heim. Des Kreises Ahrweiler 1980, 4–12. Available online: https://relaunch.kreis-ahrweiler.de/kvar/ (accessed on 6 January 2022).
- Schönewald, H. Die Geschichte der Ahrtalbahn; Gaasterland Verlag: Jünkerath, Germany, 2020; 128p. [Google Scholar]
- Eisenbahn Verkehrsnachrichten (EVN). Bundesverkehrsministerium: Kaputte Brücken und Gleise Schnell Wieder Instandsetzen. 2021. Available online: https://bahnblogstelle.net/2021/07/19/bundesverkehrsministerium-kaputte-bruecken-und-gleise-schnell-wieder-instandsetzen/ (accessed on 7 January 2022).
- Eisenbahn Verkehrsnachrichten (EVN). Nach Flutkatastrophe: Zugverkehr im Ahrtal Rollt Wieder. 2021. Available online: https://bahnblogstelle.net/2021/11/08/nach-flutkatastrophe-zugverkehr-im-ahrtal-rollt-wieder/ (accessed on 7 January 2022).
- DWD Climate Data Center (CDC). Daily Grids of Soil Moisture under Grass and Sandy Loam, Version 0.x. 2022. Available online: https://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/soil_moist (accessed on 30 May 2022).
- Löpmeier, F.-J. Berechnung der Bodenfeuchte und Verdunstung mittels agrarmeteorologischer Modelle. Z. Für Bewässerungswirtschaft 1994, 29, 157–167. [Google Scholar]
- DWD Climate Data Center (CDC). Recent Hourly RADOLAN Grids of Precipitation Depth (binary), Version 2.5. 2022. Available online: https://opendata.dwd.de/climate_environment/CDC/grids_germany/hourly/radolan/historical/bin/ (accessed on 30 May 2022).
- Winterrath, T.; Rosenow, W.; Weigl, E. On the DWD quantitative precipitation analysis and nowcasting system for real-time application in German flood risk management. IAHS-AISH Publ. 2012, 351, 323–329. [Google Scholar]
- Rauthe, M.; Steiner, H.; Riediger, U.; Mazurkiewicz, A.; Gratzki, A. A Central European precipitation climatology—Part 1: Generation and validation of a high-resolution gridded daily data set (HYRAS). Meteorol. Z. 2013, 22, 235–256. [Google Scholar] [CrossRef]
- Winterrath, T.; Brendel, C.; Hafer, M.; Junghänel, T.; Klameth, A.; Lengfeld, K.; Walawender, E.; Weigl, E.; Becker, A. RADKLIM Version 2017.002: Reprocessed Gauge-Adjusted Radar Data, One Hour Precipitation Sums (RW); Radar-based Climatology Version 2017.002; Deutscher Wetterdienst: Offenbach, Germany, 2018. [Google Scholar] [CrossRef]
- Kafsner, C. Ergebnisse der Niederschlags-Beobachtungen im Jahre 1910. In Veröffentlichungen Des Königlich Preußischen Meteorologischen Instituts Nr. 249; Springer Verlag: Berlin, Germany, 1912; 154p. [Google Scholar]
- Ziese, M.; Junghänel, T.; Becker, A. 2016. Andauernde Großwetterlage Tief Mitteleuropa entfaltet Ihr Unwetterpotential mit starken Gewittern und massiven Schadensgeschehen in Deutschland; Report Deutscher Wetterdienst; Deutscher Wetterdienst: Offenbach, Germany, 2016. [Google Scholar]
- Junghänel, T.; Bissolli, P.; Daßler, J.; Fleckenstein, R.; Imbery, F.; Janssen, W.; Kaspar, F.; Lengfeld, K.; Leppelt, T.; Rauthe-Schöch, M.; et al. Hydro-klimatologische Einordnung der Stark-und Dauerniederschläge in Teilen Deutschlands im Zusammenhang mit dem Tiefdruckgebiet “Bernd” vom 12. bis 19. Juli 2021; Report Deutscher Wetterdienst; Deutscher Wetterdienst: Offenbach, Germany, 2021. [Google Scholar]
- Copernicus Climate Change Service. European State of the Climate 2021, Full Report. 2021. Available online: https://climate.copernicus.eu/ESOTC/2021 (accessed on 30 May 2022).
- Bundesamt für Kartographie und Geodäsie (BKG). Digitales Geländemodell Gitterweite 5 m (DGM5). 2022. Available online: https://gdz.bkg.bund.de/index.php/default/digitales-gelandemodell-gitterweite-5-m-dgm5.html (accessed on 4 May 2022).
- Landesamt für Umwelt Rheinland-Pfalz (LfU). Hochwassermeldedienst. 2021. Available online: https://www.hochwasser-rlp.de (accessed on 31 May 2022).
- Deutsches Zentrum für Luft- und Raumfahrt (DLR). Befliegung Ahrbrück, Pützfeld, Altenahr 16.07.2021. 2021. Available online: https://arcgis.bbk.itzbund.de/arcgis/apps/sites/#/hochwasser2021 (accessed on 18 October 2021).
- Landesamt für Vermessung Geobasisinformationen Rheinland-Pfalz (LVG). Sonderbefliegung Hochwasser Ahr 2021. 2021. Available online: https://www.geoportal.rlp.de/map?WMS=73160 (accessed on 7 October 2021).
- Bundesamt für Kartographie und Geodäsie (BKG). Digitale Orthophotos DOP20/DOP40. 2021. Available online: https://gdz.bkg.bund.de/index.php/default/webdienste/digitale-orthophotos/wms-digitale-orthophotos-bodenauflosung-20-cm-wms-dop.html (accessed on 7 October 2021).
- Bundesamt für Kartographie und Geodäsie (BKG). BKG WMS Digitale Orthophotos Historisch, ©GeoBasis-DE 2022, dl-de/by-2-0. 2022. Available online: www.lvermgeo.rlp.de (accessed on 4 May 2022).
- Roggenkamp, T.; Herget, J. Hochwasser der Ahr im Juli 2021—Abflussschätzung und Einordnung. HW 66 2022, H.1, 40–49. [Google Scholar]
- Müller, M.; Kaspar, M. Event-adjusted evaluation of weather and climate extremes. Nat. Hazards Earth Syst. Sci. 2014, 14, 473–483. [Google Scholar] [CrossRef] [Green Version]
- Korswagen, P.A.; Harish, S.; Oetjen, J.; Wüthrich, D. Post-Flood Field Survey of the Ahr Valley (Germany): Building Damages and Hydraulic Aspects; Technical Report 2022; Delft University of Technology: Delft, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Ravazzolo, D.; Spreizter, G.; Friedrich, H.; Tunnicliffe, J. River Flow 2020, Chap. Flume Experiments on the Geomorphic Effects of Large Wood in Gravel-Bed Rivers; CRC Press: Boca Raton, FL, USA, 2020; pp. 1609–1615. [Google Scholar]
- Ruiz-Villanueva, V.; Mazzorana, B.; Bladé, E.; Bürkli, L.; Iribarren-Anacona, P.; Mao, L.; Nakamura, F.; Ravazzolo, D.; Rickenmann, D.; Sanz-Ramos, M.; et al. Characterization of wood-laden flows in rivers. Earth Surf. Process. Landf. 2019, 44, 1694–1709. [Google Scholar] [CrossRef]
- Sächsisches Landesamt für Umwelt und Geologie (LfUG). Ereignisanalyse Hochwasser August 2002 in den Osterzgebirgsflüssen. 2004, Materialien zur Wasserwirtschaft; p. 176. Available online: https://umwelt.sachsen.de/umwelt/infosysteme/lhwz/download/Ereignisanalyse_neu.pdf (accessed on 4 May 2022).
- Buffin-Bélanger, T.; Biron, P.M.; Laroque, M.; Demers, S.; Olsen, T.; Choné, G.; Ouellet, M.-A.; Cloutier, C.-A.; Desjarlais, C.; Eyquem, J. Freedom space for rivers: An economically viable river management concept in a changing climate. Geomorphology 2015, 251, 137–148. [Google Scholar] [CrossRef]
- Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW). Schwemmholz: Probleme und Lösungsansätze. VAW-Mitt. 2006, 188, 135. [Google Scholar]
- Fekete, A.; Sandholz, S. Here comes the flood, but not failure? Lessons to learn after the heavy rain and pluvial floods in Germany 2021. Water 2021, 13, 3016. [Google Scholar] [CrossRef]
- AW-Wiki. Eisenbahnbrücke Ahrbrück. 2021. Available online: https://www.aw-wiki.de/index.php/Eisenbahnbrücke_Ahrbrück (accessed on 4 May 2022).
- Deng, L.; Wang, W.; Yu, Y. State-of-the-art review on the causes and mechanisms of bridge collapse. J. Perform. Constr. Facil. 2016, 30, 04015005. [Google Scholar] [CrossRef]
- AW-Wiki. Ahr-Hochwasser vom 14./15. Juli 2021. 2021. Available online: https://www.aw-wiki.de/index.php/Ahr-Hochwasser_vom_14./15._Juli_2021 (accessed on 4 May 2022).
- Koks, E.; Van Ginkel, K.; Van Marle, M.; Lemnitzer, A. Brief Communication: Critical Infrastructure impacts of the 2021 mid-July western European flood event. Nat. Hazards Earth Syst. Sci. Discuss. 2021. in review. [Google Scholar] [CrossRef]
- Lengfeld, K.; Walawender, E.; Winterrath, T.; Becker, A. CatRaRE: A Catalogue of radar-based heavy rainfall events in Germany derived from 20 years of data. Meteorol. Z. 2021, 30, 469–487. [Google Scholar] [CrossRef]
- Kemp, K. Die Ahrtalbahn von 1880/88—eine Spurensuche. Heim. Des Kreises Ahrweiler 2014, 185–192. Available online: https://relaunch.kreis-ahrweiler.de/kvar/ (accessed on 10 December 2021).
- Büchs, W. Hochwasserschutz im Ahrtal: “Hier ist Ingenieurskunst gefragt”. Interview mit dem Biologen Wolfgang Büchs. 2021. Available online: https://www.tagesschau.de/wirtschaft/technologie/hochwasserschutz-ahrtal-101.html (accessed on 4 May 2022).
- Janta, L.; Poppelreuter, H. “…Das Elend übersteigt jeden Begriff…” Ahr-Hochwasser am 12./13. Juni 1910 forderte 52 Menschenleben. Heim. Des Kreises Ahrweiler 2010, 188–197. Available online: https://relaunch.kreis-ahrweiler.de/kvar/ (accessed on 10 December 2021).
- Landesamt für Umwelt Rheinland-Pfalz (LfU). Starkregen und Hochwasser in Rheinland-Pfalz im Mai/Juni 2016. Bericht des Landesamt für Umwelt Rheinland-Pfalz 2016; Landesamt für Umwelt Rheinland-Pfalz: Mainz, Germany, 2016; 46p. [Google Scholar]
Date | Water Level (m) | Peak Discharge (m3/s) |
---|---|---|
21 July 1804 | ca. 7 (estimated, gauge Ahrweiler) | 1208 (reconstructed, gauge Dernau) |
13 June 1910 | 5 (estimated, gauge Ahrweiler) | 496 (reconstructed, gauge Altenahr) |
2 June 2016 | 3.71 (measured, gauge Altenahr) | 236 (measured, gauge Altenahr) |
14 July 2021 | 7–8 (estimated, gauge Altenahr) | 400–700 (estimated, gauge Altenahr) 991 (reconstructed, gauge Altenahr) 1000–1200 (estimated, between Rech and Dernau) |
Gauging Station | River km | Discharge Peak | Precipitation Peak | Time Difference (h) | ||
---|---|---|---|---|---|---|
m3/s | Time | mm | Time | |||
Ahr | ||||||
Müsch | 63.0 | 496.0 | 14 July 2021 21:15 h | 921 | 14 July 2021 16:50 h | 4.4 |
Altenahr | 31.7 | 991.0 | 15 July 2021 01:00 h | 2077 | 14 July 2021 16:50 h | 8.2 |
Bad Bodendorf | 4.9 | 898.0 | 15 July 2021 03:00 h | 2297 | 14 July 2021 16:50 h | 10.7 |
Tributaries | ||||||
Kirmutscheid/Trierbach | 127.0 | 14 July 2021 19:00 h | 258 | 14 July 2021 11:50 h | 7.2 | |
Niederadenau/Adenauer Bach | 40.4 | 14 July 2021 21:45 h | 138 | 14 July 2021 11:50 h | 9.9 | |
Denn/Kesselinger Bach | 69.2 | 14 July 2021 22:45 h | 206 | 14 July 2021 12:50 h | 9.9 | |
Kreuzberg/Sahrbach | 158.0 | 14 July 2021 19:45 h | 204 | 14 July 2021 16.50 h | 2.9 |
Bridge 1 | Bridge 2 | Bridge 3 | Bridge 4 | |
---|---|---|---|---|
bridge type | arch bridge with four arches | arch bridge with five arches | arch bridge with five arches | steel bridge |
combined with cycle path bridge | no | no | no | yes (railroad track upstream) |
length (m) | 52 | 60 | 70 | 58 |
area (m2) | 458 | 654 | 588 | 302 |
year of activation | 1912 | 1912 | 1912 | 1907 |
status description (based on RLP_24.07.2021) | track buried, no visible damage to the bridge | track buried, damage to the bridge on orographic left bank | track buried, no visible damage to the bridge | track buried, damage to the bridge on both banks |
place of the greatest destruction of the bridge (orographic and morphologic) | left; cut bank | left | right; slip-off slope | left; slip-off slope |
status description (based on BKG_03.09.2021, post-event photographs and field survey) | no external damage to the foundation visible, stone slabs on the bridge removed | foundation still in place, but partially destroyed on the orographic left bank, cracks present and arches sagged, one pier damaged upstream | no external damage to the foundation visible, stone slabs on the bridge removed | bridge completely removed, only foundations left at the edges |
flow path of the Ahr during the flood event | on both sides of the bridge, impoundment of material mainly on the left bank, widening of river bed | on both sides of the bridge, mainly left through the road underpass, impoundment of material mainly on the right bank | on both sides of the bridge | on both sides of the bridge, especially on the slip-off slope because of accumulated material on the cut bank |
change of the river course post-event | same river bed as pre-event | widening of river bed to the left, river flows through three arches (pre-event: two arches) | widening of river bed to the right, river flows through 3 arches (pre-event: 1 arch) | widening of the river bed to the left |
erosion | lateral erosion on the right bank upstream, on both banks downstream of the bridge | lateral erosion in meadow terrain on the left bank upstream and on stone wall on the right bank at the bridge | lateral erosion of gravel and meadow areas on the right bank of the river, deep erosion of gravel area downstream of the bridge | lateral erosion on the left bank downstream of the bridge |
accumulation | new gravel area below the bridge on the right bank | new gravel area downstream of the bridge | ||
Bridge 5 | Bridge 6 | Bridge 7 | ||
bridge type | arch bridge with three arches | arch bridge with three arches | truss bridge | |
combined with cycle path bridge | yes (railroad track downstream) | yes (railroad track upstream) | yes (railroad track downstream) | |
length (m) | 66 | 91 | 87 | |
area (m2) | 538 | 538 | 505 | |
year of activation | 1938 | 1938 | 1936 | |
status description (based on RLP_24.07.2021) | track torn away, bridge destroyed, first pier on orographic right bank torn away | track buried, bridge destroyed on orographic right bank | track torn away, half of the bridge and embankment on orographic left bank destroyed and torn away | |
place of the greatest destruction of the bridge (orographic and morphologic) | right; slip-off slope | right; slip-off slope | left; slip-off slope | |
status description (based on BKG_03.09.2021, post-event photographs and field survey) | bridge completely removed | foundation still in place, but partially destroyed on the orographic right bank | bridge completely removed, only foundations left at the tunnel portal | |
flow path of the Ahr during the flood event | on both sides of the bridge | change of the flow conditions due to the new flow path of parts of the discharge through the road tunnel, confluence just upstream of the bridge | shifting the course of the river to the left | |
change of the river course post-event | widening of the river bed to the left, same river bed as pre-event at time of field survey | widening of river bed to the right, river flows through 2 arches (pre-event: 1 arch) | same river bed as pre-event | |
erosion | lateral erosion on both banks | lateral erosion on the right bank | lateral erosion on the left bank | |
accumulation | debris fan at the tunnel portal upstream of the bridge, new gravel area on the left bank downstream of the bridge | |||
Bridge 8 | Bridge 9 | Bridge 10 | Bridge 11 | |
bridge type | arch bridge with 4 arches | concrete rolled girders | concrete rolled girders | arch bridge with 4 arches |
combined with cycle path bridge | yes (railroad track upstream) | yes (railroad track downstream) | yes (railroad track upstream) | yes (railroad track downstream) |
length (m) | 65 | 58 | 58 | 75 |
area (m2) | 657 | 281 | 281 | 645 |
year of activation | 1911 | 1951 | 1951 | 1911 |
status description (based on RLP_24.07.2021) | track buried, no visible damage to the bridge | track torn away, bridge and embankment on orographic left bank destroyed | track torn away, bridge destroyed on orographic right bank | track torn away, more than half of the bridge and embankment on orographic left bank destroyed |
place of the greatest destruction of the bridge (orographic and morphologic) | left | left; slip-off slope | right | left |
status description (based on BKG_03.09.2021, post-event photographs and field survey) | foundation still in place, one pier damaged upstream | only piers still in place | only piers still in place, one pier completely removed | bridge completely removed |
flow path of the Ahr during the flood event | shifting the course of the river to the left | shifting the course of the river to the left | on both sides of the bridge, shifting the course of the river to the right | on both sides of the bridge, especially on the left |
change of the river course post-event | widening of river bed to the left, river flows through three arches (pre-event: two arches) | same river bed as pre-event | same river bed as pre-event | same river bed as pre-event |
erosion | lateral erosion on the left bank | deep erosion of gravel area downstream of the bridge | lateral erosion on both banks, torn out rock slabs on right bank downstream of the bridge | lateral erosion on both banks up- and downstream of the bridge |
accumulation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymczak, S.; Backendorf, F.; Bott, F.; Fricke, K.; Junghänel, T.; Walawender, E. Impacts of Heavy and Persistent Precipitation on Railroad Infrastructure in July 2021: A Case Study from the Ahr Valley, Rhineland-Palatinate, Germany. Atmosphere 2022, 13, 1118. https://doi.org/10.3390/atmos13071118
Szymczak S, Backendorf F, Bott F, Fricke K, Junghänel T, Walawender E. Impacts of Heavy and Persistent Precipitation on Railroad Infrastructure in July 2021: A Case Study from the Ahr Valley, Rhineland-Palatinate, Germany. Atmosphere. 2022; 13(7):1118. https://doi.org/10.3390/atmos13071118
Chicago/Turabian StyleSzymczak, Sonja, Fabia Backendorf, Frederick Bott, Katharina Fricke, Thomas Junghänel, and Ewelina Walawender. 2022. "Impacts of Heavy and Persistent Precipitation on Railroad Infrastructure in July 2021: A Case Study from the Ahr Valley, Rhineland-Palatinate, Germany" Atmosphere 13, no. 7: 1118. https://doi.org/10.3390/atmos13071118
APA StyleSzymczak, S., Backendorf, F., Bott, F., Fricke, K., Junghänel, T., & Walawender, E. (2022). Impacts of Heavy and Persistent Precipitation on Railroad Infrastructure in July 2021: A Case Study from the Ahr Valley, Rhineland-Palatinate, Germany. Atmosphere, 13(7), 1118. https://doi.org/10.3390/atmos13071118