A Study on the Framework for Estimating Ship Air Pollutant Emissions—Focusing on Ports of South Korea
Abstract
:1. Introduction
2. Literature Review
2.1. Top-Down Approach
2.2. Bottom-Up Approach
Author | Year | Reference Agency | Operation Modes | Considered Pollutants | Research Object | Database |
---|---|---|---|---|---|---|
Corbett et al. [27] | 2009 | IMO | N/A | SOx, NOx, PM, CO2 | Container ships, US ports | Lloyd database |
Tzannatos [13] | 2010 | ENTEC | Man, Hot | NOx, SO2, PM | Piraeus Port, Greece | Ministry of Mercantile Marine, Greece |
Trozzi [28] | 2010 | EEA | Cru, Man, Hot | NOx, NMVOC, PM | Mediterranean Sea | Lloyd database |
Lonati et al. [29] | 2010 | ENTEC | Man, Hot | NOx, SOx, CO, VOC, PM10 | Ionian Sea, Southern Italy | Port Authority, Italy |
Deniz and Kilic [30] | 2010 | EPA | Cru, Man, Hot | SO2, NOx | Ambarlı Port, Turkey | Port Authority, Turkey |
Winnes and Frindell [31] | 2010 | IMO | Man | NOx | Main engines of two ships | The Environmental Research Institute, Sweden |
Villalba and Gemechu [32] | 2011 | IMO | Man, Hot | CO2, NOx, CH4 | Barcelona Port, Spain | Port Authority, Spain |
Shin and Cheong [33] | 2011 | IPCC | Man, Hot | CO2, N2O, CH4 | Busan Port, South Korea | Port Management Information System, South Korea |
Chang and Wang [34] | 2012 | EPA | Cru, Man, Hot | NOx, PM, SO2, HC, CO2 | Kaohsiung Port, Taiwan | Port Authority, Taiwan |
Tai and Lin [35] | 2013 | IMO | Cru, Man, Hot | NOx, SO2, CO2, HC, PM | Container shipping carriers, Eastern Europe routes | The ship company |
Chang et al. [36] | 2013 | EEA, EPA | Man | CO2 | Port of Incheon, South Korea | Port Authority, South Korea |
Song and Shon [19] | 2014 | IMO | Cru, Man, Hot | NOx, SO2, VOCs, CO2, PM | Busan Port, South Korea | Port Authority, South Korea |
Song. [3] | 2014 | EPA, ENTEC, IPCC, IMO | Cru, Man, Hot | CO2, CH4, N2O, PM10, PM2.5, NOx, SOx, CO, HC | Yangshan Port, China | AIS |
Kilic and Tzannatos [37] | 2014 | IMO, EPA, ENTEC, EPA | Man, Hot | NOx, SO2, CO2, HC, PM | Piraeus Port, Greece | Port Authority, Greece |
Papaefthimiou et al. [21] | 2015 | IMO, EEA, | Cru, Man, Hot | NOx, SO2, PM2.5, CO2, CH4 | Piraeus Port, Santorini Port, Mykonos Port, and 18 other ports in Greece | Port Authority, Greece |
Maragkogianni and Papaefthimiou [38] | 2015 | EEA, ENTEC, IMO | Cru, Man, Hot | PM, NOx, SO2 | Piraeus Port, Santorini Port, Mykonos Port, and 5 other ports in Greece | The Sea-web database, Greece |
Nunes et al. [39] | 2017 | IMO, ENTEC, IPCC | Cru, Man, Hot | PM10, PM2.5, NOx, SO2, CO, CO2, N2O CH4, NMVOC, HC | Leixoes Port, Setubal Port, Sines Port, and Viana do Castelo Port, Portugal | AIS |
Khan et al. [40] | 2018 | EEA, EPA | Cru, Man, Hot | CO2 | Port of Incheon, South Korea | AIS |
Alver et al. [41] | 2018 | IMO, ENTEC | Cru, Man, Hot | SO2, NOx, HC, PM10 | Samsun Port, Turkey | Port Authority, Turkey |
Zhao et al. [24] | 2019 | EEA, EPA | Hot | CO, NOx, SOx, PM10, PM2.5, VOC, NH3 | Gwangyang Port and Ulsan Port, South Korea | Vessel traffic service, South Korea |
Zhang et al. [42] | 2019 | IMO | Cru, Dec, Man, Hot | NOx, CO, SOx, CO2, HC, PM10, PM2.5 | Pudong Port, Gaoqiao Port, Yangshan Port, China | Baoshan meteorological station, China |
Sorte et al. [43] | 2019 | EEA, EPA | Man, Hot | NOx | Leixoes Port, Portugal | The Portuguese Environmental Agency |
Wan et al. [44] | 2020 | EPA, ENTEC | Cru, Dec, Man, Hot | NOx, CO, SOx, CO2, HC, CH4, NMVOC, PM10, PM2.5 | Bohai Bay, Yangtze River Delta, Pearl River Delta, China | Government data, China |
Lee et al. [45] | 2020 | EEA, EPA | Cru, Man, Hot | CO, NOx, SOx, PM, VOC, NH3 | Port of Incheon, South Korea | Vessel traffic service, South Korea |
Lee et al. [46] | 2021 | EEA, EPA | Cru, Man, Hot | CO, NOx, SOx, PM10, PM2.5, VOC, NH3, CO2 | Port of Incheon, South Korea | Vessel traffic service, South Korea |
Ekmekcioglu et al. [47] | 2020 | ENTEC | Cru, Man, Hot | CO, CO2, NOx, SO2, PM, VOC | Ambarlı Port, Kocaeli Port, Turkey | Ministry of Transport, Turkey |
Sorte et al. [48] | 2021 | EEA | Cru, Man, Hot | NOx, PM10, PM2.5, SOx, CO, VOC, HC, BC, CO2, N2O, CH4 | Leixoes Port, Portugal | Port Authority, Portugal |
2.3. Research Demand
3. Ship Emission Estimation Framework
3.1. Inventory Definition
3.1.1. Type of Air Pollutants
3.1.2. Type of Ship Activity
3.1.3. Emission Effect Area
3.2. Data Collection and Analysis
3.3. Estimation Framework for Ship Emission
4. Case Study
4.1. Data Collection and Analysis
4.2. Air Pollutant Emissions Results for Gwangyang and Yeosu Ports
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Available online: https://www.who.int/health-topics/air-pollution#tab=tab (accessed on 25 May 2022).
- Wang, H.; Liu, D.; Dai, G. Review of maritime transportation air emission pollution and policy analysis. J. Ocean. Univ. China 2009, 8, 283–290. [Google Scholar] [CrossRef]
- Song, S. Ship emissions inventory, social cost and eco-efficiency in Shanghai Yangshan port. Atmos. Environ. 2014, 82, 288–297. [Google Scholar] [CrossRef]
- IMO. Available online: https://www.hellenicshippingnews.com/imo-study-shipping-emissions-rose-by-almost-10-during-2012-2018-period/ (accessed on 25 May 2022).
- Zhang, Q.; Shen, Z.; Ning, Z.; Wang, Q.; Cao, J.; Lei, Y.; Sun, J.; Zeng, Y.; Westerdahl, D.; Wang, X.; et al. Characteristics and source apportionment of winter black carbon aerosols in two Chinese megacities of Xi’an and Hong Kong. Environ. Sci. Pollut. Res. 2018, 25, 33783–33793. [Google Scholar] [CrossRef] [PubMed]
- Corbett, J.J.; Winebrake, J.J.; Green, E.H.; Kasibhatla, P.; Eyring, V.; Lauer, A. Mortality from ship emissions: A global assessment. Environ. Sci. Technol. 2007, 41, 8512–8518. [Google Scholar] [CrossRef] [PubMed]
- Paxian, A.; Eyring, V.; Beer, W.; Sausen, R.; Wright, C. Present-day and future global bottom-up ship emission inventories including polar routes. Environ. Sci. Technol. 2010, 44, 1333–1339. [Google Scholar] [CrossRef]
- Brewer, T.L. Regulating international maritime shipping’s air polluting emissions monitoring, reporting, verifying and enforcing regulatory compliance. J. Int. Marit. Saf. Environ. Aff. Shipp. 2021, 5, 196–207. [Google Scholar] [CrossRef]
- IMO. Fourth IMO Greenhouse Gas Study; International Maritime Organization: London, UK, 2020. [Google Scholar]
- EEA. EMEP/EEA Air Pollutant Emission Inventory Guidebook; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- EPA. Current Methodologies in Preparing Mobile Source Port-Related Emission Inventories; ICF: Fairfax, VA, USA, 2009; pp. 2–14. [Google Scholar]
- Miola, A.; Ciuffo, B. Estimating air emissions from ships: Meta-analysis of modelling approaches and available data sources. Atmos. Environ. 2011, 45, 2242–2251. [Google Scholar] [CrossRef]
- Tzannatos, E. Ship emissions and their externalities for the port of Piraeus–Greece. Atmos. Environ. 2010, 44, 400–407. [Google Scholar] [CrossRef]
- Corbett, J.J.; Fischbeck, P. Emissions from ships. Science 1997, 278, 823–824. [Google Scholar] [CrossRef]
- Corbett, J.J.; Fischbeck, P.S.; Pandis, S.N. Global nitrogen and sulfur inventories for oceangoing ships. J. Geophys. Res. Atmos. 1999, 104, 3457–3470. [Google Scholar] [CrossRef]
- Wang, C.; Corbett, J.J.; Firestone, J. Modeling energy use and emissions from North American shipping: Application of the ship traffic, energy, and environment model. Environ. Sci. Technol. 2007, 41, 3226–3232. [Google Scholar] [CrossRef]
- Kasibhatla, P.; Arellano, A.; Logan, J.A.; Palmer, P.I.; Novelli, P. Top-down estimate of a large source of atmospheric carbon monoxide associated with fuel combustion in Asia. Geophys. Res. Lett. 2002, 29, 6. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Isaksen, I.S.; Berntsen, T.; Collins, W.J.; Corbett, J.J.; Endresen, O.; Grainger, R.G.; Moldanova, J.; Schlager, H.; Stevenson, D.S. Transport impacts on atmosphere and climate: Shipping. Atmos. Environ. 2010, 44, 4735–4771. [Google Scholar] [CrossRef]
- Song, S.K.; Shon, Z.H. Current and future emission estimates of exhaust gases and particles from shipping at the largest port in Korea. Environ. Sci. Pollut. Res. 2014, 21, 6612–6622. [Google Scholar] [CrossRef] [PubMed]
- Bacalja, B.; Krčum, M.; Slišković, M. A Line Ship Emissions while Manoeuvring and Hotelling—A Case Study of Port Split. J. Mar. Sci. Eng. 2020, 8, 953. [Google Scholar] [CrossRef]
- Papaefthimiou, S.; Maragkogianni, A.; Andriosopoulos, K. Evaluation of cruise ships emissions in the Mediterranean basin: The case of Greek ports. Int. J. Sustain. Transp. 2016, 10, 985–994. [Google Scholar] [CrossRef]
- Johansson, L.; Jalkanen, J.P.; Kukkonen, J. Global assessment of shipping emissions in 2015 on a high spatial and temporal resolution. Atmos. Environ. 2017, 167, 403–415. [Google Scholar] [CrossRef]
- Kesgin, U.; Vardar, N. A study on exhaust gas emissions from ships in Turkish Straits. Atmos. Environ. 2001, 35, 1863–1870. [Google Scholar] [CrossRef]
- Zhao, T.T.; Yun, K.J.; Lee, H.S. A Study on Estimating Ship Emission-Focusing on Gwangyang Port and Ulsan Port. J. Korea Port Econ. Assoc. 2019, 35, 93–108. [Google Scholar] [CrossRef]
- Wang, Z.; Qin, C.; Zhang, W. Study on Characteristics of Emissions of Air Pollutants in Ships in the Yangtze River Delta and Countermeasures. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 450, p. 012032. [Google Scholar]
- Jalkanen, J.P.; Johansson, L.; Kukkonen, J. A comprehensive inventory of ship traffic exhaust emissions in the European sea areas in 2011. Atmos. Chem. Phys. 2016, 16, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Corbett, J.J.; Wang, H.; Winebrake, J.J. The effectiveness and costs of speed reductions on emissions from international shipping. Transp. Res. Part D Transp. Environ. 2009, 14, 593–598. [Google Scholar] [CrossRef]
- Trozzi, C. Emission Estimate Methodology for Maritime Navigation; Techne Consulting: Rome, Italy, 2010. [Google Scholar]
- Lonati, G.; Cernuschi, S.; Sidi, S. Air quality impact assessment of at-berth ship emissions: Case-study for the project of a new freight port. Sci. Total Environ. 2010, 409, 192–200. [Google Scholar] [CrossRef]
- Deniz, C.; Kilic, A. Estimation and assessment of shipping emissions in the region of Ambarlı Port, Turkey. Environ. Prog. Sustain. Energy 2010, 29, 107–115. [Google Scholar] [CrossRef]
- Winnes, H.; Fridell, E. Emissions of NOx and particles from manoeuvring ships. Transp. Res. Part D Transp. Environ. 2010, 15, 204–211. [Google Scholar] [CrossRef]
- Villalba, G.; Gemechu, E.D. Estimating GHG emissions of marine ports—The case of Barcelona. Energy Policy 2011, 39, 1363–1368. [Google Scholar] [CrossRef]
- Shin, K.W.; Cheong, J.P. Estimating transportation-related greenhouse gas emissions in the Port of Busan, S. Korea. Asian J. Atmos. Environ. 2011, 5, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.C.; Wang, C.M. Evaluating the effects of green port policy: Case study of Kaohsiung harbor in Taiwan. Transp. Res. Part D Transp. Environ. 2012, 17, 185–189. [Google Scholar] [CrossRef]
- Tai, H.H.; Lin, D.Y. Comparing the unit emissions of daily frequency and slow steaming strategies on trunk route deployment in international container shipping. Transp. Res. Part D Transp. Environ. 2013, 21, 26–31. [Google Scholar] [CrossRef]
- Chang, Y.T.; Song, Y.; Roh, Y. Assessing greenhouse gas emissions from port vessel operations at the Port of Incheon. Transp. Res. Part D Transp. Environ. 2013, 25, 1–4. [Google Scholar] [CrossRef]
- Kilic, A.; Tzannatos, E. Ship Emissions and Their Externalities at the Container Terminal of Piraeus—Greece. Int. J. Environ. Res. 2014, 8, 1329–1340. [Google Scholar]
- Maragkogianni, A.; Papaefthimiou, S.; Zopounidis, C. Mitigating Shipping Emissions in European Ports: Social and Environmental Benefits; Springer International Publishing: Berlin, Germany, 2016. [Google Scholar]
- Nunes, R.A.O.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V. Assessment of shipping emissions on four ports of Portugal. Environ. Pollut. 2017, 231, 1370–1379. [Google Scholar] [CrossRef]
- Khan, S.; Chang, Y.T.; Lee, S.; Choi, K.S. Assessment of greenhouse gas emissions from ships operation at the Port of Incheon using AIS. J. Korea Port Econ. Assoc. 2018, 34, 65–80. [Google Scholar] [CrossRef]
- Alver, F.; Saraç, B.A.; Şahin, Ü.A. Estimating of shipping emissions in the Samsun Port from 2010 to 2015. Atmos. Pollut. Res. 2018, 9, 822–828. [Google Scholar] [CrossRef]
- Zhang, Y.; Fung, J.C.; Chan, J.W.; Lau, A.K. The significance of incorporating unidentified vessels into AIS-based ship emission inventory. Atmos. Environ. 2019, 203, 102–113. [Google Scholar] [CrossRef]
- Sorte, S.; Arunachalam, S.; Naess, B.; Seppanen, C.; Rodrigues, V.; Valencia, A.; Borrego, C.; Monteiro, A. Assessment of source contribution to air quality in an urban area close to a harbor: Case-study in Porto, Portugal. Sci. Total Environ. 2019, 662, 347–360. [Google Scholar] [CrossRef]
- Wan, Z.; Ji, S.; Liu, Y.; Zhang, Q.; Chen, J.; Wang, Q. Shipping emission inventories in China’s Bohai Bay, Yangtze River Delta, and Pearl River Delta in 2018. Mar. Pollut. Bull. 2020, 151, 110882. [Google Scholar] [CrossRef]
- Lee, H.; Park, D.; Choo, S.; Pham, H.T. Estimation of the non-greenhouse gas emissions inventory from ships in the port of Incheon. Sustainability 2020, 12, 8231. [Google Scholar] [CrossRef]
- Lee, H.; Pham, H.T.; Chen, M.; Choo, S. Bottom-up approach ship emission inventory in Port of Incheon based on VTS data. J. Adv. Transp. 2021, 2021, 5568777. [Google Scholar] [CrossRef]
- Ekmekçioğlu, A.; Kuzu, S.L.; Ünlügençoğlu, K.; Çelebi, U.B. Assessment of shipping emission factors through monitoring and modelling studies. Sci. Total Environ. 2020, 743, 140742. [Google Scholar] [CrossRef]
- Sorte, S.; Rodrigues, V.; Lourenço, R.; Borrego, C.; Monteiro, A. Emission inventory for harbour-related activities: Comparison of two distinct bottom-up methodologies. Air Qual. Atmos. Health 2021, 14, 831–842. [Google Scholar] [CrossRef]
- Wilson, D.; Swisher, J. Exploring the gap: Top-down versus bottom-up analyses of the cost of mitigating global warming. Energy Policy 1993, 21, 249–263. [Google Scholar] [CrossRef]
Ship Type | Gwangyang Port | Yeosu Port | Total | Ratio | |||
---|---|---|---|---|---|---|---|
Gwangyang Area | Yeocheon Area | Yulchon Area | Subtotal | ||||
Bulk Ship | 2469 | 458 | 28 | 2955 | 17 | 2972 | 10.6% |
Container Ship | 3532 | - | 2 | 3534 | 21 | 3555 | 12.7% |
Passenger Ship | - | - | - | 5 | 5 | 0.05% | |
General Cargo Ship | 2209 | 339 | 357 | 2905 | 10 | 2915 | 10.4% |
RORO Ship | 311 | 12 | - | 323 | 5 | 328 | 1.2% |
Reefer | - | - | - | 6 | 6 | 0.05% | |
Tanker | 2327 | 11,272 | 93 | 4418 | 18,103 | 64.7% | |
Miscellaneous | 7 | 30 | 7 | 32 | 82 | 0.3% | |
Total | 10,855 | 12,111 | 472 | 23,452 | 4514 | 27,966 | 100.0% |
Sector | Area | Average Time of Cruising | Average Time of Berthing |
---|---|---|---|
Gwangyang Port | Gwangyang | 1.2 | 21.1 |
Yeocheon | 1.0 | 16.0 | |
Yulchon | 1.8 | 28.0 | |
Yeosu Port | - | 0.5 | 21.2 |
Sector | Average Time of Berthing |
---|---|
Bulk Ship | 48.3 |
Container Ship | 11.1 |
Passenger Ship | 70.5 |
General Cargo Ship | 34.0 |
RORO Ship | 23.7 |
Reefer | 168.0 |
Tanker | 14.0 |
Miscellaneous | 75.5 |
Total | 19.0 |
Sector | Gwangyang Port | Yeosu Port | At Sea | Total | ||||
---|---|---|---|---|---|---|---|---|
Gwangyang Area | Yeocheon Area | Yulchon Area | Subtotal | |||||
CO | Emission | 189.2 | 94.0 | 3.7 | 286.9 | 25.9 | 374.6 | 687.4 |
Ratio | 28% | 14% | 1% | 43% | 4% | 55% | 100% | |
NOx | Emission | 1500.5 | 754.1 | 29.0 | 2283.6 | 203.1 | 3245.5 | 5732.2 |
Ratio | 26% | 13% | 1% | 40% | 4% | 57% | 100% | |
SOx | Emission | 185.7 | 96.2 | 4.1 | 286 | 26.7 | 542.4 | 855.2 |
Ratio | 22% | 11% | 1% | 34% | 3% | 63% | 100% | |
TSP (PM10) | Emission | 19.7 | 10.0 | 0.4 | 30.1 | 2.8 | 51.5 | 84.4 |
Ratio | 23% | 12% | 1% | 26% | 3% | 61% | 100% | |
PM2.5 | Emission | 18.4 | 9.3 | 0.4 | 28.1 | 2.6 | 48.1 | 78.8 |
Ratio | 23% | 12% | 1% | 26% | 3% | 61% | 100% | |
VOC | Emission | 46.0 | 22.9 | 0.9 | 69.8 | 6.3 | 113.9 | 190.0 |
Ratio | 24% | 12% | 1% | 37% | 3% | 60% | 100% | |
NH3 | Emission | 0.2 | 0.1 | 0.0 | 0.3 | 0.0 | 0.4 | 0.7 |
Ratio | 28% | 14% | 1% | 43% | 4% | 55% | 100% |
Sector | Anchoring | Cruising (Cru, Man) | Berthing | Total | |
---|---|---|---|---|---|
CO | Emission | 137.3 | 237.2 | 312.8 | 687.4 |
Ratio | 20.00% | 34.50% | 45.50% | 100.00% | |
NOx | Emission | 1088.1 | 2157.40 | 2486.8 | 5732.2 |
Ratio | 19.00% | 37.60% | 43.40% | 100.00% | |
SOx | Emission | 139.1 | 403.4 | 312.7 | 855.2 |
Ratio | 16.30% | 47.20% | 36.60% | 100.00% | |
TSP (PM10) | Emission | 14.5 | 37.0 | 32.8 | 84.4 |
Ratio | 17.20% | 43.90% | 38.90% | 100.00% | |
PM2.5 | Emission | 13.5 | 34.6 | 30.7 | 78.8 |
Ratio | 17.20% | 43.90% | 38.90% | 100.00% | |
VOC | Emission | 33.4 | 80.5 | 76.1 | 190.0 |
Ratio | 17.60% | 42.40% | 40.10% | 100.00% | |
NH3 | Emission | 0.1 | 0.2 | 0.3 | 0.7 |
Ratio | 20.00% | 34.50% | 45.50% | 100.00% |
Sector | Bulk Ship | Container Ship | Passenger Ship | General Cargo Ship | RORO Ship | Reefer | Tanker | Miscellaneous | Total | |
---|---|---|---|---|---|---|---|---|---|---|
CO | Emission | 60.3 | 195 | 1.1 | 97.3 | 15.5 | 1.1 | 310.2 | 6.9 | 687.4 |
Ratio | 8.80% | 28.40% | 0.20% | 14.10% | 2.30% | 0.20% | 45.10% | 1.00% | 100% | |
NOx | Emission | 564.1 | 1694.20 | 7.2 | 772.9 | 128.4 | 9.3 | 2508.30 | 47.9 | 5732.2 |
Ratio | 9.80% | 29.60% | 0.10% | 13.50% | 2.20% | 0.20% | 43.80% | 0.80% | 100% | |
SOx | Emission | 75.1 | 220.6 | 1.6 | 132.5 | 17.1 | 1.1 | 400.2 | 7 | 855.2 |
Ratio | 8.80% | 25.80% | 0.20% | 15.50% | 2.00% | 0.10% | 46.80% | 0.80% | 100% | |
TSP (PM10) | Emission | 7.7 | 23 | 0.1 | 12.5 | 1.8 | 0.1 | 38.4 | 0.7 | 84.4 |
Ratio | 9.10% | 27.30% | 0.20% | 14.80% | 2.10% | 0.10% | 45.50% | 0.90% | 100% | |
PM2.5 | Emission | 7.2 | 21.5 | 0.1 | 11.7 | 1.7 | 0.1 | 35.9 | 0.7 | 78.8 |
Ratio | 9.10% | 27.30% | 0.20% | 14.80% | 2.10% | 0.10% | 45.50% | 0.90% | 100% | |
VOC | Emission | 19.1 | 55.2 | 0.3 | 25.8 | 4.2 | 0.3 | 83.4 | 1.7 | 190 |
Ratio | 10.10% | 29.10% | 0.10% | 13.60% | 2.20% | 0.10% | 43.90% | 0.90% | 100% | |
NH3 | Emission | 0.1 | 0.2 | 0 | 0.1 | 0 | 0 | 0.3 | 0 | 0.7 |
Ratio | 8.80% | 28.40% | 0.20% | 14.10% | 2.30% | 0.20% | 45.10% | 1.00% | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, T.; Chen, M.; Lee, H. A Study on the Framework for Estimating Ship Air Pollutant Emissions—Focusing on Ports of South Korea. Atmosphere 2022, 13, 1141. https://doi.org/10.3390/atmos13071141
Zhao T, Chen M, Lee H. A Study on the Framework for Estimating Ship Air Pollutant Emissions—Focusing on Ports of South Korea. Atmosphere. 2022; 13(7):1141. https://doi.org/10.3390/atmos13071141
Chicago/Turabian StyleZhao, Tingting, Maowei Chen, and Hyangsook Lee. 2022. "A Study on the Framework for Estimating Ship Air Pollutant Emissions—Focusing on Ports of South Korea" Atmosphere 13, no. 7: 1141. https://doi.org/10.3390/atmos13071141
APA StyleZhao, T., Chen, M., & Lee, H. (2022). A Study on the Framework for Estimating Ship Air Pollutant Emissions—Focusing on Ports of South Korea. Atmosphere, 13(7), 1141. https://doi.org/10.3390/atmos13071141