Characteristics and Causes of Ozone Pollution in 16 Cities of Yunnan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Research Methods
3. Results and Analyses
3.1. Status and Spatial Distribution of O3 Pollution
3.2. O3 Concentration Time Variation Characteristics
3.2.1. Seasonal Variations in O3-8h
3.2.2. Daily Variations in O3-1h
3.3. Correlation Analysis of O3 Concentration and Meteorological Factors
3.3.1. Air Temperature
3.3.2. Relative Humidity
3.3.3. Wind Direction and Wind Speed
3.4. Analysis of Potential Sources of O3 Pollution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gong, S.; Zhang, L.; Liu, C.; Lu, S.; Pan, W.; Zhang, Y. Multi-scale analysis of the impacts of meteorology and emissions on PM2.5 and O3 trends at various regions in China from 2013 to 2020 2. Key weather elements and emissions. Sci. Total Environ. 2022, 824, 153847. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhu, H.; Xu, H.; Lu, K.; Ban, J.; Ma, R.; Li, T. The spatiotemporal trends of PM2.5-and O3-related disease burden coincident with the reduction in air pollution in China between 2005 and 2017. Resour. Conserv. Recycl. 2022, 176, 105918. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, P.; Li, C.; Li, X.; Ma, W.; Yin, S.; Yu, Q.; Li, J.; Liu, X. Evolution and variations of atmospheric VOCs and O3 photochemistry during a summer O3 event in a county-level city, Southern China. Atmos. Environ. 2022, 272, 118942. [Google Scholar] [CrossRef]
- Sather, M.E.; Cavender, K. Update of long-term trends analysis of ambient 8-hour ozone and precursor monitoring data in the South Central US; encouraging news. J. Environ. Monit. 2012, 14, 666–676. [Google Scholar] [CrossRef]
- Marenco, A. Variations of CO and O3 in the troposphere: Evidence of O3 photochemistry. Atmos. Environ. 1986, 20, 911–918. [Google Scholar] [CrossRef]
- Zhu, J.; Cheng, H.; Peng, J.; Zeng, P.; Wang, Z.; Lyu, X.; Guo, H. O3 photochemistry on O3 episode days and non-O3 episode days in Wuhan, Central China. Atmos. Environ. 2020, 223, 117236. [Google Scholar] [CrossRef]
- Shen, Z.; Cao, J.; Zhang, L.; Zhao, Z.; Dong, J.; Wang, L.; Wang, Q.; Li, G.; Liu, S.; Zhang, Q. Characteristics of surface O3 over Qinghai Lake area in Northeast Tibetan Plateau, China. Sci. Total Environ. 2014, 500, 295–301. [Google Scholar] [CrossRef]
- Crutzen, P. Photochemical reactions initiated by and influencing ozone in unpolluted tropospheric air. Tellus 1974, 26, 47–57. [Google Scholar] [CrossRef]
- Li, M.; Mao, J.; Chen, S.; Bian, J.; Bai, Z.; Wang, X.; Chen, W.; Yu, P. Significant contribution of lightning NOx to summertime surface O3 on the Tibetan Plateau. Sci. Total Environ. 2022, 829, 154639. [Google Scholar] [CrossRef]
- Wang, C. Study on the Causes of Ground-level Ozone in Typical Cities of Yunnan Province. Master Thesis, Kunming University of Science and Technology, Kunming, China, 2018. [Google Scholar]
- Kim, B.U.; Kim, H.C.; Kim, S. Effects of vertical turbulent diffusivity on regional PM2.5 and O3 source contributions. Atmos. Environ. 2021, 245, 118026. [Google Scholar] [CrossRef]
- Yang, Y.F.; Bian, J.C.; Wang, H.Y.; Wang, W.G.; Zhang, W.C.; Fan, W.X.; Yu, K. Seasonal vailation of atmospheric ozone in the lower troposphere surrounding the Tibetan Plateau based on OMI satellite date. J. Yunnan Univ. -Nat. Sci. Ed. 2013, 35, 183–192. [Google Scholar]
- Wang, M.; Zheng, Y.; Liu, Y.; Li, Q.; Ding, Y. Characteristics of ozone and its relationship with meteorological factors in Beijing-Tianjin-Hebei Region. China Environ. Sci. 2019, 39, 2689–2698. [Google Scholar]
- Draxler, R.R.; Hess, G.D. An overview of the hysplit-4 modeling system for trajectories. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Stein, A.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.; Cohen, M.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Bera, B.; Bhattacharjee, S.; Sengupta, N.; Saha, S. Variation and dispersal of PM10 and PM2.5 during COVID-19 lockdown over Kolkata metropolitan city, India investigated through HYSPLIT model. Geosci. Front. 2022, 13, 101291. [Google Scholar] [CrossRef]
- Escudero, M.; Stein, A.; Draxler, R.; Querol, X.; Alastuey, A.; Castillo, S.; Avila, A. Source apportionment for African dust outbreaks over the Western Mediterranean using the HYSPLIT model. Atmos. Res. 2011, 99, 518–527. [Google Scholar] [CrossRef]
- Shan, W.; Yin, Y.; Lu, H.; Liang, S. A meteorological analysis of ozone episodes using HYSPLIT model and surface data. Atmos. Res. 2009, 4, 767–776. [Google Scholar] [CrossRef]
- Fan, X.; Lu, J.; Qiu, M.; Xiao, X. Changes in travel behaviors and intentions during the COVID-19 pandemic and recovery period: A case study of China. J. Outdoor Recreat. Tour. 2022, 100522. [Google Scholar] [CrossRef]
- Huang, X.; Shao, T.; Zhao, J.; Cao, J.; Song, Y. Influence factors and spillover effect of PM2.5 concentration on Fen-wei Plain. China Environ. Sci. 2019, 39, 3539–3548. [Google Scholar]
- Li, X.; Li, S.; Liu, P.; Kong, Y.; Song, H. Temporal and Spatial Variation of Ozone Concentration in Chinese Cities in 2016. J. Environ. Sci. 2018, 38, 1263–1274. [Google Scholar]
- Gao, L.; Wang, T.; Ren, X.; Ma, D.; Zhuang, B.; Li, S.; Xie, M.; Li, M.; Yang, X. Subseasonal characteristics and meteorological causes of surface O3 in different East Asian summer monsoon periods over the North China Plain during 2014–2019. Atmos. Environ. 2021, 264, 118704. [Google Scholar] [CrossRef]
- Wang, L.; Li, M.; Wang, Q.; Li, Y.; Xin, J.; Tang, X.; Du, W.; Song, T.; Li, T.; Sun, Y. Air stagnation in China: Spatiotemporal variability and differing impact on PM2.5 and O3 during 2013–2018. Sci. Total Environ. 2022, 819, 152778. [Google Scholar] [CrossRef] [PubMed]
- Paraschiv, S.; Barbuta-Misu, N.; Paraschiv, S.L. Influence of NO2, NO and meteorological conditions on the tropospheric O3 concentration at an industrial station. Energy Rep. 2020, 6, 231–236. [Google Scholar] [CrossRef]
- Hecht, A.; Galo, R.; Fellows, S.; Baldez, P.; Koonath, P. Radiolytic ozone yield G (O3) from 210Po alpha-particle radiation in air. Radiat. Phys. Chem. 2021, 183, 109387. [Google Scholar] [CrossRef]
- Plocoste, T.; Calif, R.; Jacoby-Koaly, S. Temporal multiscaling characteristics of particulate matter PM10 and ground-level ozone O3 concentrations in Caribbean region. Atmos. Environ. 2017, 169, 22–35. [Google Scholar] [CrossRef]
- Li, C.; Liu, Y.; Cheng, B.; Zhang, Y.; Liu, X.; Qu, Y.; An, J.; Kong, L.; Zhang, Y.; Zhang, C. A comprehensive investigation on volatile organic compounds (VOCs) in 2018 in Beijing, China: Characteristics, sources and behaviours in response to O3 formation. Sci. Total Environ. 2022, 806, 150247. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Liang, J.; Yao, F. Exploring common factors influencing PM2.5 and O3 concentrations in the Pearl River Delta: Tradeoffs and synergies. Environ. Pollut. 2021, 285, 117138. [Google Scholar] [CrossRef]
- Liu, J.; Ding, Y.; Huang, Y.; Huang, L. Correlation analysis between solar ultraviolet radiation intensity and meteorological elements. Plateau Meteorol. 2003, 22, 45–50. [Google Scholar]
- Kavassalis, S.C.; Murphy, J.G. Understanding ozone-meteorology correlations: A role for dry deposition. Geophys. Res. Lett. 2017, 44, 2922–2931. [Google Scholar] [CrossRef]
- Gallimore, P.; Achakulwisut, P.; Pope, F.; Davies, J.; Spring, D.; Kalberer, M. Importance of relative humidity in the oxidative ageing of organic aerosols: Case study of the ozonolysis of maleic acid aerosol. Atmos. Chem. Phys. 2011, 11, 12181–12195. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Xie, S. Historical estimation of carbonaceous aerosol emissions from biomass open burning in China for the period 1990–2005. Environ. Pollut. 2011, 159, 3316–3323. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Yan, H.; Zhan, Z.; Li, Z. Characterising vegetative biomass burning in China using MODIS data. Int. J. Wildland Fire 2013, 23, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Liang, W.; Xu, P.; Xue, H.; Zhang, M.; Shang, L.; Tian, H. Seasonal features and a case study of tropopause folds over the Tibetan Plateau. Adv. Meteorol. 2019, 2019, 4375123. [Google Scholar] [CrossRef]
- Chen, X.; Ma, Y.; Kelder, H.; Su, Z.; Yang, K. On the behaviour of the tropopause folding events over the Tibetan Plateau. Atmos. Chem. Phys. 2011, 11, 5113–5122. [Google Scholar] [CrossRef] [Green Version]
- Yin, D.; Zhao, S.; Qu, J. Spatial and seasonal variations of gaseous and particulate matter pollutants in 31 provincial capital cities, China. Air. Qual. Atmos. Health 2017, 10, 359–370. [Google Scholar] [CrossRef]
Season | Zhaotong | Kunming | Pu’er | |||
---|---|---|---|---|---|---|
r | P | r | P | r | P | |
Spring | 0.268 * | 0.0000 | 0.559 * | 0.0000 | 0.055 | 0.1996 |
Summer | 0.144 * | 0.0007 | −0.098 | 0.0219 | 0.498 * | 0.0000 |
Autumn | −0.052 | 0.2335 | 0.380 * | 0.0000 | −0.382 * | 0.0000 |
Winter | 0.384 * | 0.0000 | 0.438 * | 0.0000 | −0.160 * | 0.0005 |
Season | Zhaotong | Kunming | Pu’er | |||
---|---|---|---|---|---|---|
r | P | r | P | r | P | |
Spring | −0.470 * | 0.0000 | −0.349 * | 0.0000 | −0.489 * | 0.0000 |
Summer | −0.383 * | 0.0000 | −0.481 * | 0.0000 | −0.280 * | 0.0000 |
Autumn | −0.615 * | 0.0000 | −0.477 * | 0.0000 | −0.630 * | 0.0000 |
Winter | −0.657 * | 0.0000 | −0.670 * | 0.0000 | −0.674 * | 0.0000 |
Annual | −0.551 * | 0.0000 | −0.621 * | 0.0000 | −0.693 * | 0.0000 |
Season | Zhaotong | Kunming | Pu’er | |||
---|---|---|---|---|---|---|
r | P | r | P | r | P | |
Spring | 0.062 | 0.1439 | −0.007 | 0.8644 | 0.292 * | 0.0000 |
Summer | 0.135 * | 0.0000 | −0.285 * | 0.0000 | −0.050 | 0.2441 |
Autumn | 0.162 * | 0.0000 | −0.122 * | 0.0047 | 0.055 | 0.2083 |
Winter | 0.180 * | 0.0000 | 0.376 * | 0.0000 | 0.241 * | 0.0000 |
Annual | −0.033 | 0.1336 | 0.211 * | 0.0000 | 0.223 * | 0.0000 |
Quarter | Track | Frequency | O3/(μg/m3) |
---|---|---|---|
Spring | 1 | 6.59 | 75.93 |
2 | 64.01 | 94.81 | |
3 | 1.65 | 92.92 | |
4 | 27.75 | 91.31 | |
Summer | 1 | 75.55 | 49.01 |
2 | 8.52 | 63.25 | |
3 | 9.34 | 53.11 | |
4 | 6.59 | 72.64 | |
Autumn | 1 | 22.22 | 51.28 |
2 | 63.33 | 45.42 | |
3 | 9.72 | 41.90 | |
4 | 4.72 | 58.60 | |
Winter | 1 | 60.47 | 66.11 |
2 | 2.33 | 60.07 | |
3 | 22.67 | 49.31 | |
4 | 14.53 | 52.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Wang, Z.; Zhao, C.; Han, X.; Wang, J.; Yang, X.; Xie, H.; Zhao, P.; Ning, P. Characteristics and Causes of Ozone Pollution in 16 Cities of Yunnan Plateau. Atmosphere 2022, 13, 1177. https://doi.org/10.3390/atmos13081177
Shi J, Wang Z, Zhao C, Han X, Wang J, Yang X, Xie H, Zhao P, Ning P. Characteristics and Causes of Ozone Pollution in 16 Cities of Yunnan Plateau. Atmosphere. 2022; 13(8):1177. https://doi.org/10.3390/atmos13081177
Chicago/Turabian StyleShi, Jianwu, Zhijun Wang, Chenyang Zhao, Xinyu Han, Jianmin Wang, Xiaoxi Yang, Haitao Xie, Pingwei Zhao, and Ping Ning. 2022. "Characteristics and Causes of Ozone Pollution in 16 Cities of Yunnan Plateau" Atmosphere 13, no. 8: 1177. https://doi.org/10.3390/atmos13081177
APA StyleShi, J., Wang, Z., Zhao, C., Han, X., Wang, J., Yang, X., Xie, H., Zhao, P., & Ning, P. (2022). Characteristics and Causes of Ozone Pollution in 16 Cities of Yunnan Plateau. Atmosphere, 13(8), 1177. https://doi.org/10.3390/atmos13081177