Snails as Temporal Biomonitors of the Occurrence and Distribution of Pesticides in an Apple Orchard
Abstract
:1. Introduction
2. Materials and Methods
2.1. C. Aspersum Müller Snails and Field Microcosms
2.2. Study Site
2.3. Sampling Campaign
2.4. Analytical Procedure of Soil and Snails Samples
2.4.1. Samples Treatment
2.4.2. Extraction Procedure
2.4.3. Chromatographic Analysis
2.4.4. Quality Assurance (QA)/Quality Control (QC)
2.5. Data Treatment and Analysis
3. Results and Discussion
3.1. Pesticides’ Analysis in Soils
3.2. Pesticides’ Analysis in Snails
3.2.1. Non-Volatile Pesticides’ Analysis
3.2.2. Semi-Volatile Pesticides Analysis
3.2.3. Total Pesticides’ Accumulation in Snails
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Popp, J.; Pető, K.; Nagy, J. Pesticide productivity and food security. A review. Agron. Sustain. Dev. 2013, 33, 243–255. [Google Scholar] [CrossRef]
- FAO. World Food and Agriculture-Statistical Pocketbook 2019; Food & Agriculture Org: Rome, Italy, 2019. [Google Scholar]
- Liang, Z.; Mahmoud Abdelshafy, A.; Luo, Z.; Belwal, T.; Lin, X.; Xu, Y.; Wang, L.; Yang, M.; Qi, M.; Dong, Y.; et al. Occurrence, detection, and dissipation of pesticide residue in plant-derived foodstuff: A state-of-the-art review. Food Chem. 2022, 384, 132494. [Google Scholar] [CrossRef] [PubMed]
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osteen, C.; Livingston, M. Pest management practices. Agric. Resour. Environ. Indic. 2006, 4, 129–138. [Google Scholar]
- FAOSTAT. Agriculture Organization of the United Nations FAO Statistical Database. Available online: https://www.fao.org/faostat/en/#home (accessed on 3 May 2022).
- Román, C.; Peris, M.; Esteve, J.; Tejerina, M.; Cambray, J.; Vilardell, P.; Planas, S. Pesticide dose adjustment in fruit and grapevine orchards by DOSA3D: Fundamentals of the system and on-farm validation. Sci. Total Environ. 2022, 808, 152158. [Google Scholar] [CrossRef]
- Markó, V.; Elek, Z.; Kovács-Hostyánszki, A.; Kőrösi, Á.; Somay, L.; Földesi, R.; Varga, Á.; Iván, Á.; Báldi, A. Landscapes, orchards, pesticides–Abundance of beetles (Coleoptera) in apple orchards along pesticide toxicity and landscape complexity gradients. Agric. Ecosyst. Environ. 2017, 247, 246–254. [Google Scholar] [CrossRef] [Green Version]
- Le Navenant, A.; Brouchoud, C.; Capowiez, Y.; Rault, M.; Suchail, S. How lasting are the effects of pesticides on earwigs? A study based on energy metabolism, body weight and morphometry in two generations of Forficula auricularia from apple orchards. Sci. Total Environ. 2021, 758, 143604. [Google Scholar] [CrossRef]
- Baba, S.; Malik, H.; Mir, S.; Hamid, Y.; Kachroo, M. Externalities of pesticide application on apple in Kashmir Valley. Agric. Econ. Res. Rev. 2017, 30, 81–92. [Google Scholar] [CrossRef]
- Simon, S.; Brun, L.; Guinaudeau, J.; Sauphanor, B. Pesticide use in current and innovative apple orchard systems. Agron. Sustain. Dev. 2011, 31, 541–555. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef] [Green Version]
- Rasool, S.; Rasool, T.; Gani, K.M. A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chem. Eng. J. Adv. 2022, 11, 100301. [Google Scholar] [CrossRef]
- Van Zelm, R.; Larrey-Lassalle, P.; Roux, P. Bridging the gap between life cycle inventory and impact assessment for toxicological assessments of pesticides used in crop production. Chemosphere 2014, 100, 175–181. [Google Scholar] [CrossRef]
- Pimentel, D. Amounts of pesticides reaching target pests: Environmental impacts and ethics. J. Agric. Environ. Ethics 1995, 8, 17–29. [Google Scholar] [CrossRef]
- Soheilifard, F.; Marzban, A.; Ghaseminejad Raini, M.; Taki, M.; van Zelm, R. Chemical footprint of pesticides used in citrus orchards based on canopy deposition and off-target losses. Sci. Total Environ. 2020, 732, 139118. [Google Scholar] [CrossRef]
- Farahy, O.; Laghfiri, M.; Bourioug, M.; Aleya, L. Overview of pesticide use in Moroccan apple orchards and its effects on the environment. Curr. Opin. Environ. Sci. Health 2021, 19, 100223. [Google Scholar] [CrossRef]
- Panico, S.C.; van Gestel, C.A.M.; Verweij, R.A.; Rault, M.; Bertrand, C.; Menacho Barriga, C.A.; Coeurdassier, M.; Fritsch, C.; Gimbert, F.; Pelosi, C. Field mixtures of currently used pesticides in agricultural soil pose a risk to soil invertebrates. Environ. Pollut. 2022, 305, 119290. [Google Scholar] [CrossRef]
- Andreu, V.; Picó, Y. Determination of currently used pesticides in biota. Anal. Bioanal. Chem. 2012, 404, 2659–2681. [Google Scholar] [CrossRef]
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef]
- WorldBank. World Development Report 2008: Agriculture for Development; The World Bank: Washington, DC, USA, 2007. [Google Scholar]
- Kim, K.-H.; Kabir, E.; Jahan, S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef]
- Knapke, E.T.; Magalhaes, D.d.P.; Dalvie, M.A.; Mandrioli, D.; Perry, M.J. Environmental and occupational pesticide exposure and human sperm parameters: A Navigation Guide review. Toxicology 2022, 465, 153017. [Google Scholar] [CrossRef]
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusà, V.; Coscollà, C.; Mellouki, W.; Pastor, A.; de la Guardia, M. Sampling and analysis of pesticides in ambient air. J. Chromatogr. A 2009, 1216, 2972–2983. [Google Scholar] [CrossRef] [PubMed]
- La Cecilia, D.; Dax, A.; Ehmann, H.; Koster, M.; Singer, H.; Stamm, C. Continuous high-frequency pesticide monitoring to observe the unexpected and the overlooked. Water Res. X 2021, 13, 100125. [Google Scholar] [CrossRef] [PubMed]
- Murschell, T.; Farmer, D.K. Real-time measurement of herbicides in the atmosphere: A case study of MCPA and 2, 4-D during field application. Toxics 2019, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Tuduri, L.; Millet, M.; Briand, O.; Montury, M. Passive air sampling of semi-volatile organic compounds. TrAC Trends Anal. Chem. 2012, 31, 38–49. [Google Scholar] [CrossRef]
- Hayward, S.J.; Gouin, T.; Wania, F. Comparison of four active and passive sampling techniques for pesticides in air. Environ. Sci. Technol. 2010, 44, 3410–3416. [Google Scholar] [CrossRef]
- Górecki, T.; Namieśnik, J. Passive sampling. TrAC Trends Anal. Chem. 2002, 21, 276–291. [Google Scholar] [CrossRef]
- Wang, J.; Tuduri, L.; Mercury, M.; Millet, M.; Briand, O.; Montury, M. Sampling atmospheric pesticides with SPME: Laboratory developments and field study. Environ. Pollut. 2009, 157, 365–370. [Google Scholar] [CrossRef]
- Fan, Z.-H.T. Passive air sampling: Advantages, limitations, and challenges. Epidemiology 2011, 22, S132. [Google Scholar] [CrossRef]
- Levy, M.; Al-Alam, J.; Delhomme, O.; Millet, M. An integrated extraction method coupling pressurized solvent extraction, solid phase extraction and solid-phase micro extraction for the quantification of selected organic pollutants in air by gas and liquid chromatography coupled to tandem mass spectrometry. Microchem. J. 2020, 157, 104889. [Google Scholar] [CrossRef]
- Hawker, D.W.; Clokey, J.; Gorji, S.G.; Verhagen, R.; Kaserzon, S.L. Chapter 3—Monitoring techniques–Grab and passive sampling. In Emerging Freshwater Pollutants; Dalu, T., Tavengwa, N.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 25–48. [Google Scholar]
- Gil, Y.; Sinfort, C.; Brunet, Y.; Polveche, V.; Bonicelli, B. Atmospheric loss of pesticides above an artificial vineyard during air-assisted spraying. Atmos. Environ. 2007, 41, 2945–2957. [Google Scholar] [CrossRef]
- Bourodimos, G.; Koutsiaras, M.; Psiroukis, V.; Balafoutis, A.; Fountas, S. Development and field evaluation of a spray drift risk assessment tool for vineyard spraying application. Agriculture 2019, 9, 181. [Google Scholar] [CrossRef] [Green Version]
- Al-Alam, J.; Chbani, A.; Faljoun, Z.; Millet, M. The use of vegetation, bees, and snails as important tools for the biomonitoring of atmospheric pollution—A review. Environ. Sci. Pollut. Res. 2019, 26, 9391–9408. [Google Scholar] [CrossRef]
- Ştefănuţ, S.; Manole, A.; Ion, M.C.; Constantin, M.; Banciu, C.; Onete, M.; Manu, M.; Vicol, I.; Moldoveanu, M.M.; Maican, S. Developing a novel warning-informative system as a tool for environmental decision-making based on biomonitoring. Ecol. Indic. 2018, 89, 480–487. [Google Scholar] [CrossRef]
- Morrison, S.A.; Belden, J.B. Development of Helisoma trivolvis pond snails as biological samplers for biomonitoring of current-use pesticides. Environ. Toxicol. Chem. 2016, 35, 2320–2329. [Google Scholar] [CrossRef]
- Dhiman, V.; Pant, D. Environmental biomonitoring by snails. Biomarkers 2021, 26, 221–239. [Google Scholar] [CrossRef]
- Radwan, M.; El-Gendy, K.; Gad, A. Biomarker responses in terrestrial gastropods exposed to pollutants: A comprehensive review. Chemosphere 2020, 257, 127218. [Google Scholar] [CrossRef]
- Baroudi, F.; Al-Alam, J.; Chimjarn, S.; Haddad, K.; Fajloun, Z.; Delhomme, O.; Millet, M. Use of Helix aspersa and Pinus nigra as Bioindicators to Study Temporal Air Pollution in Northern Lebanon. Int. J. Environ. Res. 2022, 16, 4. [Google Scholar] [CrossRef]
- Radwan, M.; El-Gendy, K.; Gad, A. Biomarkers of oxidative stress in the land snail, Theba pisana for assessing ecotoxicological effects of urban metal pollution. Chemosphere 2010, 79, 40–46. [Google Scholar] [CrossRef]
- Carbone, D.; Faggio, C. Helix aspersa as sentinel of development damage for biomonitoring purpose: A validation study. Mol. Reprod. Dev. 2019, 86, 1283–1291. [Google Scholar] [CrossRef] [Green Version]
- Scheifler, R.; De Vaufleury, A.; Coeurdassier, M.; Crini, N.; Badot, P.M. Transfer of Cd, Cu, Ni, Pb, and Zn in a soil-plant-invertebrate food chain: A microcosm study. Environ. Toxicol. Chem. Int. J. 2006, 25, 815–822. [Google Scholar] [CrossRef]
- Berger, B.; Dallinger, R. Terrestrial snails as quantitative indicators of environmental metal pollution. Environ. Monit. Assess. 1993, 25, 65–84. [Google Scholar] [CrossRef]
- Regoli, F.; Gorbi, S.; Fattorini, D.; Tedesco, S.; Notti, A.; Machella, N.; Bocchetti, R.; Benedetti, M.; Piva, F. Use of the land snail Helix aspersa as sentinel organism for monitoring ecotoxicologic effects of urban pollution: An integrated approach. Environ. Health Perspect. 2006, 114, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Druart, C.; Millet, M.; Scheifler, R.; Delhomme, O.; Raeppel, C.; de Vaufleury, A. Snails as indicators of pesticide drift, deposit, transfer and effects in the vineyard. Sci. Total Environ. 2011, 409, 4280–4288. [Google Scholar] [CrossRef]
- Gibbs, J.L.; Yost, M.G.; Negrete, M.; Fenske, R.A. Passive sampling for indoor and outdoor exposures to chlorpyrifos, azinphos-methyl, and oxygen analogs in a rural agricultural community. Environ. Health Perspect. 2017, 125, 333–341. [Google Scholar] [CrossRef] [Green Version]
- Gomot-de Vaufleury, A.; Bispo, A. Methods for toxicity assessment of contaminated soil by oral or dermal uptake in land snails. 1. Sublethal effects on growth. Environ. Sci. Technol. 2000, 34, 1865–1870. [Google Scholar] [CrossRef]
- Staley, Z.R.; Harwood, V.J.; Rohr, J.R. A synthesis of the effects of pesticides on microbial persistence in aquatic ecosystems. Crit. Rev. Toxicol. 2015, 45, 813–836. [Google Scholar] [CrossRef] [Green Version]
- Coutellec, M.-A.; Delous, G.; Cravedi, J.-P.; Lagadic, L. Effects of the mixture of diquat and a nonylphenol polyethoxylate adjuvant on fecundity and progeny early performances of the pond snail Lymnaea stagnalis in laboratory bioassays and microcosms. Chemosphere 2008, 73, 326–336. [Google Scholar] [CrossRef]
- Elias, D.; Bernot, M.J. Effects of individual and combined pesticide commercial formulations exposure to egestion and movement of common freshwater snails, Physa acuta and Helisoma anceps. Am. Midl. Nat. 2017, 178, 97–111. [Google Scholar] [CrossRef]
- D2974-07; Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils. ASTM: West Conshohocken, PA, USA, 2007.
- Al-Alam, J.; Baroudi, F.; Chbani, A.; Fajloun, Z.; Millet, M. A multiresidue method for the analysis of pesticides, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in snails used as environmental biomonitors. J. Chromatogr. A 2020, 1621, 461006. [Google Scholar] [CrossRef]
- El Hawari, K.; Mokh, S.; Al Iskandarani, M.; Halloum, W.; Jaber, F. Pesticide residues in Lebanese apples and health risk assessment. Food Addit. Contam. Part B 2019, 12, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Bedos, C.; Cellier, P.; Calvet, R.; Barriuso, E.; Gabrielle, B. Mass transfer of pesticides into the atmosphere by volatilization from soils and plants: Overview. Agronomie 2002, 22, 21–33. [Google Scholar] [CrossRef]
- Arias-Estévez, M.; López-Periago, E.; Martínez-Carballo, E.; Simal-Gándara, J.; Mejuto, J.-C.; García-Río, L. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric. Ecosyst. Environ. 2008, 123, 247–260. [Google Scholar] [CrossRef]
- Glotfelty, D.; Schomburg, C. Volatilization of pesticides from soil. React. Mov. Org. Chem. Soils 1989, 22, 181–207. [Google Scholar]
- Rao, P.; Davidson, J. Estimation of pesticide retention and transformation parameters required in nonpoint source pollution models. Environ. Impact Nonpoint Source Pollut. 1980, 23–67. [Google Scholar]
- Silva, V.; Mol, H.G.J.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissen, V. Pesticide residues in European agricultural soils—A hidden reality unfolded. Sci. Total Environ. 2019, 653, 1532–1545. [Google Scholar] [CrossRef]
- Carlon, C. Derivation Methods of Soil Screening Values in Europe: A Review of National Procedures Towards Harmonisation: A Report of the ENSURE Action; EUR-OP: Brussels, Belgium, 2007. [Google Scholar]
- Rafique, N.; Tariq, S.R.; Ahmed, D. Monitoring and distribution patterns of pesticide residues in soil from cotton/wheat fields of Pakistan. Environ. Monit. Assess. 2016, 188, 695. [Google Scholar] [CrossRef]
- Muendo, B.M.; Lalah, J.O.; Getenga, Z.M. Behavior of pesticide residues in agricultural soil and adjacent River Kuywa sediment and water samples from Nzoia sugarcane belt in Kenya. Environmentalist 2012, 32, 433–444. [Google Scholar] [CrossRef]
- Riedo, J.; Wettstein, F.E.; Rösch, A.; Herzog, C.; Banerjee, S.; Büchi, L.; Charles, R.; Wächter, D.; Martin-Laurent, F.; Bucheli, T.D. Widespread occurrence of pesticides in organically managed agricultural soils—The ghost of a conventional agricultural past? Environ. Sci. Technol. 2021, 55, 2919–2928. [Google Scholar] [CrossRef]
- Rana, A.; Baig, N.; Saleh, T.A. Electrochemically pretreated carbon electrodes and their electroanalytical applications—A review. J. Electroanal. Chem. 2019, 833, 313–332. [Google Scholar] [CrossRef]
- EU. EU Pesticides Database. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/mrls/?event=download.MRL (accessed on 4 May 2022).
- Berg, F.; Kubiak, R.; Benjey, W.; Majewski, M.; Yates, S.; Reeves, G.; Smelt, J.; Van der Linden, A. Emission of pesticides into the air. In Fate of Pesticides in the Atmosphere: Implications for Environmental Risk Assessment; Springer: New York, NY, USA, 1999; pp. 195–218. [Google Scholar]
- Bidleman, T.F.; Leone, A.D.; Wong, F.; Van Vliet, L.; Szeto, S.; Ripley, B.D. Emission of legacy chlorinated pesticides from agricultural and orchard soils in British Columbia, Canada. Environ. Toxicol. Chem. Int. J. 2006, 25, 1448–1457. [Google Scholar] [CrossRef]
- Information, N.C.f.B. PubChem Annotation Record for MYCLOBUTANIL, Source: Hazardous Substances Data Bank (HSDB). Available online: https://pubchem.ncbi.nlm.nih.gov/source/hsdb/6708#section=Hazardous-Substances-DataBank-Number (accessed on 3 May 2022).
- Gunstone, T.; Cornelisse, T.; Klein, K.; Dubey, A.; Donley, N. Pesticides and soil invertebrates: A hazard assessment. Front. Environ. Sci. 2021, 9, 122. [Google Scholar] [CrossRef]
- Spengler, J.D.; Samet, J.M.; McCarthy, J.F. Indoor Air Quality Handbook; McGraw-Hill Education: Berkshire, UK, 2001. [Google Scholar]
- Andreev, R.; Kutinkova, H. Resistance to aphids and scale insects in nine apple cultivars. J. Fruit Ornam. Plant Res. 2004, 12, 215–221. [Google Scholar]
- Itziou, A.; Dimitriadis, V. Introduction of the land snail Eobania vermiculata as a bioindicator organism of terrestrial pollution using a battery of biomarkers. Sci. Total Environ. 2011, 409, 1181–1192. [Google Scholar] [CrossRef]
- Hong, S.-W.; Zhao, L.; Zhu, H. CFD simulation of pesticide spray from air-assisted sprayers in an apple orchard: Tree deposition and off-target losses. Atmos. Environ. 2018, 175, 109–119. [Google Scholar] [CrossRef]
- Holownicki, R.; Doruchowski, G.; Godyn, A.; Swiechowski, W. Effects of air jet adjustment on spray losses in orchard. Asp. Appl. Biol. 2000, 57, 293–300. [Google Scholar]
- Savoca, D.; Pace, A. Bioaccumulation, biodistribution, toxicology and biomonitoring of organofluorine compounds in aquatic organisms. Int. J. Mol. Sci. 2021, 22, 6276. [Google Scholar] [CrossRef]
- Spacie, A.; Hamelink, J.L. Alternative models for describing the bioconcentration of organics in fish. Environ. Toxicol. Chem. Int. J. 1982, 1, 309–320. [Google Scholar] [CrossRef]
- Veith, G.D.; DeFoe, D.L.; Bergstedt, B.V. Measuring and estimating the bioconcentration factor of chemicals in fish. J. Fish. Board Can. 1979, 36, 1040–1048. [Google Scholar] [CrossRef]
- Handy, R.; Clark, N.; Boyle, D.; Vassallo, J.; Green, C.; Nasser, F.; Botha, T.; Wepener, V.; van den Brink, N.; Svendsen, C. The bioaccumulation testing strategy for nanomaterials: Correlations with particle properties and a meta-analysis of in vitro fish alternatives to in vivo fish tests. Environ. Sci. Nano 2022, 9, 684–701. [Google Scholar] [CrossRef]
- Burkhard, L.P.; Arnot, J.A.; Embry, M.R.; Farley, K.J.; Hoke, R.A.; Kitano, M.; Leslie, H.A.; Lotufo, G.R.; Parkerton, T.F.; Sappington, K.G. Comparing laboratory and field measured bioaccumulation endpoints. Integr. Environ. Assess. Manag. 2012, 8, 17–31. [Google Scholar] [CrossRef]
- Workgroup U.S.E.P.A.B.A. Bioaccumulation Testing and Interpretation for the Purpose of Sediment Quality Assessment: Status and Needs; US Environmental Protection Agency: Washington, DC, USA, 2000; Volume 2.
Site-A | Site-B | Site-C | Site-R | ||||||
---|---|---|---|---|---|---|---|---|---|
Pesticide | S0 | SF | S0 | SF | S0 | SF | S0 | SF | |
non-volatile pesticides | Carbendazim | 14.3 ± 0.1 * | 8.84 ± 1.9 * | 81.11 ± 1.01 * | 17.91 ± 1.84 * | 7.3 ± 0.2 * | 4.5 ± 0.1 * | 7.4 ± 0.1 | 7.63 ± 0.98 |
Diflubenzuron | 3.4 ± 0.2 * | 0.84 ± 0.51 * | 8.2 ± 0.2 * | 0.6 ± 0.2 * | 7.37 ± 0.06 * | 3.87 ± 0.25 * | 0.7 ± 0.1 * | N.D. | |
Diflufenican | <DL | <DL | <DL | <DL | <DL | <DL | <DL | N.D. | |
Epoxiconazole | 18.2 ± 0.2 * | 14.87 ± 1.27 * | N.D. | N.D. | N.D. | N.D. | 2.3 ± 0.2 * | N.D. | |
Flufenoxuron | 2.7 ± 0.2 * | 1.29 ± 0.48 * | 7.3 ± 0.2 * | <DL | <DL | <DL | <DL | N.D. | |
Foramsulfuron | 2.7 ± 0.1 * | <DL | 36.2 ± 2.43 * | <DL | 4.27 ± 0.05 * | <DL | <DL | <DL | |
Isoxadifen | 5 ± 0.14 * | 3.17 ± 0.25 * | 12.67 ± 2.02 * | N.D. | 2.5 ± 0.1 * | N.D. | <DL | N.D. | |
Nicosulfuron | 18.14 ± 1 * | <DL | 63.01 ± 2.5 * | 30.59 ± 1.44 * | 6.47 ± 0.06 * | <DL | N.D. | N.D. | |
Penconazole | 1.87 ± 0.25 * | <DL | 47.27 ± 2.2 * | 11.23 ± 1.1 * | 2.44 ± 0.05 * | <DL | <DL | <DL | |
Pymetrozine | 3.4 ± 0.1 * | <DL | 74 ± 2 * | 62.99 ± 3.21 * | 7.3 ± 0.1 * | <DL | <DL | N.D. | |
Pyraclostrobine | <DL | <DL | <DL | <DL | <DL | <DL | <DL | <DL | |
Tebuconazole | <DL | <DL | <DL | <DL | <DL | <DL | <DL | <DL | |
Thiacloprid | <DL | <DL | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
Triflusulfuron Methyl | <DL | N.D. | 13.74 ± 2.14 * | <DL | 3.2 ± 0.1 * | <DL | <DL | <DL | |
Σ non-volatile pesticides | 69.71 ± 0.2 | 29.01 ± 0.5 | 343.5 ± 1.09 | 123.32 ± 0.65 | 40.85 ± 0.1 | 8.37± 0.2 | 10.4 ± 0.07 | 7.63 ± 0.2 | |
Semi-volatile pesticides | Acetochlor | 22.41 ± 1.1 * | 14.71 ± 4.3 * | <DL | N.D. | N.D. | N.D. | N.D. | N.D. |
Alachlor | 814.32 ± 5.5 * | 712.79 ± 7.23 * | 743.29 ± 8.55 * | 624.81 ± 10.3 * | N.D. | N.D. | N.D. | N.D. | |
Benoxacor | 55.81 ± 1.86 * | 32.16 ± 10.22 * | 12.49 ± 1.13 * | 9.29 ± 1.05 * | 90.97 ± 3.48 * | 15.39 ± 1.1 * | 34.72 ± 1.88 * | 12.51 ± 0.69 * | |
Bifenthrin | 929.42 ± 10.87 * | 854 ± 17.98 * | 829.16 ±7.83 | 735.48 ± 6.28 | N.D. | N.D. | N.D. | N.D. | |
Bromoxynil octanoate | <DL | N.D. | N.D. | N.D. | < DL | N.D. | N.D. | N.D. | |
Buprofezin | 331.71 ± 5.14 * | 114.73 ± 13.4 * | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
Chlorpropham | 7.51 ± 1.04 * | <DL | N.D. | N.D. | <DL | N.D. | N.D. | N.D. | |
Cypermethrin | 1184.94 ± 12.64 * | 994.92 ± 27.32 * | 1084.36 ± 7.53 * | 958.33 ± 13.95 * | N.D. | N.D. | N.D. | N.D. | |
Dimethachlore | 41.89 ± 2.48 * | 27.43 ± 0.05 * | 6.8 ± 0.56 * | N.D. | N.D. | N.D. | 39.57 ± 1.67 * | 20.85 ± 0.63 * | |
Dimethenamid-P | <DL | N.D. | <DL | N.D. | 79.63 ± 1.36 * | 61.89 ± 3.09 * | 45.4 ± 2.8 * | 19.55 ± 2.16 * | |
Dimoxystrobin | 52.91 ± 2.95 * | 38.54 ± 2.9 * | 4.14 ± 0.1 * | 0.43 ± 0.2 * | <DL | N.D. | <DL | <DL | |
Diphenylamine | <DL | <DL | <DL | N.D. | N.D. | N.D. | N.D. | N.D. | |
Ethofumesate | 339.48 ± 14.5 * | 257.37 ± 11.73 * | <DL | < DL | N.D. | N.D. | N.D. | N.D. | |
Fenoxycarb | 277.11 ± 3.64 * | 71.32 ± 9.40 * | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
Fenpropidin | 642.67 ± 4.4 * | 593.16 ± 6.47 * | 647.47 ± 5.95 * | 605.23 ± 6.23 * | 656.26 ± 11.4 | 645.83 ± 5.7 | N.D. | N.D. | |
Flurochloridon | <DL | <DL | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
Lambda cyhalothrin | 790.72 ± 1.6 * | 731.6 ± 6.69 * | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
Malathion | 816.54 ± 3.89 * | 737.42 ± 10.7 * | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
Metolachlor | 11.64 ± 1.20 * | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
Myclobutanil | 2241.08 ± 24.17 * | 1737.52 ± 34.14 * | 1397.90 ± 6.57 * | 709.82 ± 21.1 * | N.D. | N.D. | N.D. | N.D. | |
Pyrimethanil | <DL | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
Spiroxamine | 11.7 ± 0.94 * | 5.32 ± 4.64 * | 23.17 ± 0.97 * | 13.74 ± 1.48 * | 86.46 ± 2.05 * | 50.53 ± 1.59 * | N.D. | N.D. | |
Tebufenpyrad | 821.57 ± 4.73 * | 737.45 ± 13.57 * | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
Tebutam | 66.93 ± 1.81 * | 46.95 ± 2.9 * | 12.57 ± 0.94 * | 7.76 ± 0.38 * | 30.13 ± 1.48 | 22.92 ± 3.85 | 8.9 ± 0.42 * | 4.73 ± 0.89 * | |
Trifloxystrobine | 544.23 ± 5.21 * | 466.55 ± 16.89 * | 684.69 ± 1.68 * | 579.24 ± 2.85 * | 482.13 ± 1.95 | 473.6 ± 5.26 | N.D. | N.D. | |
Σ semi-volatile pesticides | 10,004.59 ± 4.97 | 8173.94 ± 14.44 | 5546.04 ± 1.38 | 4244.13 ± 3.1 | 1425.58 ± 1.16 | 1270.16 ± 1.15 | 128.59 ± 0.3 | 57.64 ± 0.2 | |
Σ pesticides (ng/g) | 10,074.3 ± 2.6 | 8202.95 ± 7.5 | 5789.54 ± 1.3 | 4367.45 ± 1.83 | 1466.43 ± 0.7 | 1278.53 ± 0.7 | 138.99 ± 0.2 | 65.27 ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Alam, J.; Millet, M.; Khoury, D.; Rodrigues, A.; Harb, M.; Akoury, E.; Tokajian, S.; Wazne, M. Snails as Temporal Biomonitors of the Occurrence and Distribution of Pesticides in an Apple Orchard. Atmosphere 2022, 13, 1185. https://doi.org/10.3390/atmos13081185
Al-Alam J, Millet M, Khoury D, Rodrigues A, Harb M, Akoury E, Tokajian S, Wazne M. Snails as Temporal Biomonitors of the Occurrence and Distribution of Pesticides in an Apple Orchard. Atmosphere. 2022; 13(8):1185. https://doi.org/10.3390/atmos13081185
Chicago/Turabian StyleAl-Alam, Josephine, Maurice Millet, Dani Khoury, Anaïs Rodrigues, Moustapha Harb, Elias Akoury, Sima Tokajian, and Mahmoud Wazne. 2022. "Snails as Temporal Biomonitors of the Occurrence and Distribution of Pesticides in an Apple Orchard" Atmosphere 13, no. 8: 1185. https://doi.org/10.3390/atmos13081185
APA StyleAl-Alam, J., Millet, M., Khoury, D., Rodrigues, A., Harb, M., Akoury, E., Tokajian, S., & Wazne, M. (2022). Snails as Temporal Biomonitors of the Occurrence and Distribution of Pesticides in an Apple Orchard. Atmosphere, 13(8), 1185. https://doi.org/10.3390/atmos13081185