Emission Characteristics and the Environmental Impact of VOCs from Typical FRP Manufacture Industry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Analysis Methods
2.2. Ozone Formation Potential Calculation
2.3. Calculation Method of Secondary Organic Aerosol Generation Potential
3. Results and Discussion
3.1. VOC Emission Characteristics of the FRP Industry
3.2. Analysis of the Ozone Formation Potential in the FRP Industry
3.3. Analysis of the Secondary Organic Aerosol Generation Potential in the FRP Industry
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Niu, S.P.; Yu, J.H.; Cheng, Y.S. Air pollution and potential contributors of particulate matter in Ma’anshan, a typical mining city from Yangtze Economic Zone. Acta Sci. Circum. 2022, 42, 283–297. [Google Scholar]
- Zhou, M.W.; Kang, P.; Wang, K.K.; Zang, X.L.; Hu, K.Y. The spatio-temporal aggregation pattern of ozone concentration in China from 2016 to 2018. China Environ. Sci. 2020, 40, 963–1974. [Google Scholar]
- Wang, Y.Y.; Yang, W.; Wang, X.Y.; Wang, S.; Bai, J.F.; Cheng, Y. Characteristics of ozone pollution and influencing factors in urban and suburban areas in Zibo. Environ. Sci. 2022, 43, 170–179. [Google Scholar]
- Xiang, S.L.; Liu, J.F.; Tao, W.; Yi, K.; Xu, J.Y.; Hu, X.R.; Liu, H.Z.; Wang, Y.Q.; Zhang, Y.Z.; Yang, H.Z.; et al. Control of both PM2.5 and O3 in Beijing-Tianjin-Hebei and the surrounding areas. Atmos. Environ. 2020, 224, 117259. [Google Scholar] [CrossRef]
- Yao, W.J.; Wang, D.W.; Xie, F.Y.; Zhu, H.W.; Meng, X.Y.; Tian, Y.; Liu, H.; Liu, X.Y.; Zhang, Y.T.; Lei, D.S.; et al. Spatial distribution characteristics of VOCs and its impact on ozone formation potential in Rizhao city in summer. Environ. Sci. 2022, 43, 714–722. [Google Scholar]
- Fu, C.B.; Xu, W.S.; Dan, L.; Tong, J.H. Temporal and spatial variations in ozone and its causes over Hainan province from 2015 to 2020. Environ. Sci. 2022, 43, 675–685. [Google Scholar]
- Li, B.W.; Ho, S.S.H.; Li, X.H.; Guo, L.Y.; Chen, A.; Hu LTYang, Y.; Chen, D.; Lin, A.A.; Fang, X.K. A comprehensive review on anthropogenic volatile organic compounds (VOCs) emission estimates in China: Comparison and outlook. Environ. Int. 2021, 156, 106710. [Google Scholar] [CrossRef] [PubMed]
- Mozaffar, A.; Zhang, Y.L.; Fan, M.Y.; Cao, F.; Lin, Y.C. Characteristics of summertime ambient VOCs and their contributions to O3 and SOA formation in a suburban area of Nanjing, China. Atmos. Res. 2020, 240, 104923. [Google Scholar] [CrossRef]
- Xing, J.; Wang, S.X.; Jang, C.; Zhu, Y.; Hao, J.M. Nonlinear response of ozone to precursor emission changes in China: A modeling study using response surface methodology. Atmos. Chem. Phys. 2010, 11, 5027–5044. [Google Scholar] [CrossRef]
- Yi, X.X.; Li, J.H.; Li, G.H.; Lu, Z.Z.; Sun, Z.G.; Gao, J.; Deng, S.X. Characteristics of VOCs and Formation Potentials of O3 and SOA in Autumn and Winter in Tongchuan, China. Environ. Sci. 2022, 43, 140–149. [Google Scholar]
- Kim, K.W.; Lee, B.H.; Kim, S.; Kim, H.J.; Yun, J.H.; Yoo, S.E.; Sohn, J.R. Reduction of VOC emission from natural flours filled biodegradable biodegradable bio-composites for automobile interior. J. Hazard. Mater. 2011, 187, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Liu, R.Y.; Liu, L.L.; Lu, S.W.; Huang, H.W.; Fan, L.Y.; Ye, D.Q. VOCs emission characteristics, environmental impact and health risk assessment of typical printing enterprises in Guangzhou. China Environ. Sci. 2020, 40, 3791–3800. [Google Scholar]
- Wang, H.L.; Yang, T.; Nie, L.; Fang, L.; Zhang, Z.S.; Hao, Z.P. Volatile organic compounds in the vehicle repairing industry of China: Emission, management, purification, and policy. Environ. Sci. 2021, 42, 5574–5584. [Google Scholar]
- Lu, Q.; He, Q.S.; Chen, G.L.; Li, T.T.; Huang, L.H.; Huang, D.J.; Chen, F.; Liang, X.M.; Lu, H.T.; Liu, M.; et al. Emission characteristics of VOCs during the production of asphalt using heavy-viscous crude oil. Acta Sci. Circum. 2021, 41, 2282–2290. [Google Scholar]
- Ministry of Ecology and Environment of the People’s Republic of China (MEE, PRC). Emission from Stationary Sources-Samplingof Volatile Organic Compounds-Bag Method. HJ 732-2014. Available online: http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201501/t20150115_294220.shtml (accessed on 13 November 2021).
- Gao, Z.F.; Zhang, X.H.; Zhao, W.J.; Zhang, X.M.; Xue, Z.G.; Du, J.H. Characteristic analysis of VOCs emitted from a typical coking plant. Res. Environ. Sci. 2019, 32, 1540–1545. [Google Scholar]
- Carter, W.P.L. Development of ozone reactivity scales for volatile organic compounds. J. Air Waste Manag. 1994, 44, 881–889. [Google Scholar] [CrossRef]
- Carter, W.P.L. Development of the SAPRC-07 chemical mechanism. Atmos. Environ. 2010, 44, 5324–5335. [Google Scholar] [CrossRef]
- Grosjean, D. In situ organic aerosol formation during a smog episode estimated production and chemical functionality. Atmos. Environ. 1992, 26, 953–963. [Google Scholar] [CrossRef]
- Grosjean, D.; Seinfeld, J.H. Parameterization of the formation potential of secondary organic aerosols. Atmos. Environ. 1989, 23, 1733–1747. [Google Scholar] [CrossRef]
Process Type | Main Raw Materials and Ingredients | Terminal Treatment Facilities | Sampling Location |
grille | unsaturated resin, vinyl resin, curing agent, plasticizer, etc. | UV Photooxidation + activated carbon | exhaust |
sheet | UV Photooxidation + activated carbon | exhaust | |
twine | UV Photooxidation + activated carbon | exhaust | |
molded | UV Photooxidation + activated carbon | exhaust | |
pultrusion | UV Photooxidation + activated carbon | exhaust |
Composition | Production Process | ||||
---|---|---|---|---|---|
Grille | Sheet | Twine | Molded | Pultrusion | |
methyl chloride | 124 | N.D. | 479 | 6.41 | 18.4 |
isobutane | N.D. | N.D. | 52.6 | 41.7 | 54.6 |
ethylene | 17.7 | N.D. | 81.5 | 20.4 | 129 |
acetylene | N.D. | N.D. | 35.5 | 18.4 | 14.9 |
1-butene | N.D. | N.D. | 23.2 | 10.9 | 106 |
butane | N.D. | N.D. | 14.2 | 7.04 | N.D. |
ethane | N.D. | N.D. | 33.2 | 26.0 | 22.2 |
ethyl chloride | 14.4 | N.D. | 9.30 | N.D. | N.D. |
ethanol | 8.71 | 19.4 | 1550 | 2120 | 22.7 |
acrolein | N.D. | N.D. | 60.4 | 17.6 | 15.3 |
acetone | 11.2 | 14.6 | 303 | 196 | 1367 |
isopentane | N.D. | N.D. | 14.5 | 9.22 | 13.4 |
isopropyl alcohol | N.D. | N.D. | 20.9 | 31.7 | 15.7 |
pentane | N.D. | N.D. | 10.8 | N.D. | N.D. |
1,1-dichloroethylene | N.D. | N.D. | 25.8 | N.D. | N.D. |
cis-2-pentene | N.D. | N.D. | 6.70 | N.D. | 16.7 |
dichloromethane | 10.5 | 2630 | 94,369 | 953 | 4315 |
carbon disulfide | N.D. | N.D. | 12.2 | N.D. | N.D. |
propylene | N.D. | N.D. | 20.0 | 9.36 | 18.1 |
propane | N.D. | N.D. | 28.5 | 16.8 | 16.0 |
1,1-dichloroethane | N.D. | N.D. | 5.45 | N.D. | N.D. |
vinyl acetate | N.D. | N.D. | 28.3 | N.D. | 6.35 |
methyl ethyl ketone | 464 | 9.50 | 69.7 | 12.7 | 87.3 |
ethyl acetate | N.D. | N.D. | 368 | 518 | N.D. |
n-hexane | N.D. | N.D. | 6.59 | N.D. | 14.0 |
chloroform | 20.9 | N.D. | 126 | 35.6 | 13.7 |
1,2-dichloroethane | 257 | 39.8 | 901 | 2697 | 168 |
benzene | N.D. | N.D. | 42.2 | 10.7 | 64.9 |
carbon tetrachloride | 7.60 | N.D. | 11.7 | 18.2 | 26.0 |
cyclohexane | N.D. | N.D. | 93.8 | 73.1 | 76.4 |
1,2-dichloropropane | 45.0 | N.D. | 79.4 | 425 | 1905 |
1,4-dioxane | N.D. | N.D. | 29.1 | N.D. | N.D. |
methyl methacrylate | N.D. | N.D. | 26.2 | N.D. | N.D. |
methylcyclohexane | N.D. | N.D. | 6.16 | N.D. | N.D. |
1,1,2-trichloroethane | 42.7 | N.D. | 38.8 | N.D. | N.D. |
toluene | N.D. | N.D. | 13.4 | 6.22 | 8.47 |
2-methylheptane | N.D. | N.D. | 7.85 | N.D. | N.D. |
3-methylheptane | N.D. | N.D. | 6.42 | N.D. | N.D. |
octane | N.D. | N.D. | 28.8 | N.D. | N.D. |
chlorobenzene | N.D. | N.D. | 8.77 | N.D. | N.D. |
ethylbenzene | 8.45 | 5.76 | 53.1 | 145 | 22.5 |
p-m-xylene | 18.9 | N.D. | 44.5 | 368 | 15.1 |
styrene | 2377 | 8759 | 260,335 | 13,850 | 86,461 |
1,1,2,2-tetrachloroethane | N.D. | N.D. | 6.81 | N.D. | N.D. |
o-xylene | 9.64 | N.D. | 37.8 | 216 | 12.0 |
nonane | N.D. | N.D. | 20.8 | N.D. | N.D. |
cumene | N.D. | N.D. | 81.9 | 13.0 | 12.8 |
benzaldehyde | 24.0 | 61.9 | 140 | 24.7 | 30.7 |
propylbenzene | N.D. | N.D. | 59.9 | 27.8 | 11.0 |
m-ethyltoluene | N.D. | N.D. | 13.7 | 86.9 | 11.8 |
p-ethyltoluene | N.D. | N.D. | N.D. | 23.1 | N.D. |
1,3,5-trimethylbenzene | N.D. | N.D. | N.D. | 18.4 | N.D. |
o-ethyltoluene | N.D. | N.D. | N.D. | 28.0 | N.D. |
1,2,4-trimethylbenzene | N.D. | N.D. | N.D. | 12.9 | N.D. |
decane | N.D. | N.D. | 9.87 | N.D. | N.D. |
1,2,3-trimethylbenzene | N.D. | N.D. | 11.4 | N.D. | N.D. |
naphthalene | N.D. | N.D. | 12.7 | 8.50 | 7.14 |
dodecane | N.D. | N.D. | N.D. | N.D. | 22.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, R.; Xue, S.; Sun, H.; Yang, T.; Wang, H. Emission Characteristics and the Environmental Impact of VOCs from Typical FRP Manufacture Industry. Atmosphere 2022, 13, 1274. https://doi.org/10.3390/atmos13081274
Hao R, Xue S, Sun H, Yang T, Wang H. Emission Characteristics and the Environmental Impact of VOCs from Typical FRP Manufacture Industry. Atmosphere. 2022; 13(8):1274. https://doi.org/10.3390/atmos13081274
Chicago/Turabian StyleHao, Run, Song Xue, Hao Sun, Tao Yang, and Hailin Wang. 2022. "Emission Characteristics and the Environmental Impact of VOCs from Typical FRP Manufacture Industry" Atmosphere 13, no. 8: 1274. https://doi.org/10.3390/atmos13081274
APA StyleHao, R., Xue, S., Sun, H., Yang, T., & Wang, H. (2022). Emission Characteristics and the Environmental Impact of VOCs from Typical FRP Manufacture Industry. Atmosphere, 13(8), 1274. https://doi.org/10.3390/atmos13081274