Offline Diagnostics of Skin Sea Surface Temperature from a Prognostic Scheme and Its Application in Typhoon Forecasting Using the CMA-TRAMS Model over South China
Abstract
:1. Introduction
2. Description of Prognostic Scheme and CMA-TRAMS Model
2.1. Prognostic Scheme
2.2. CMA-TRAMS Model
3. Prognostic Scheme Offline Diagnosis
3.1. Observation Data
3.2. Offline Diagnostic Results
4. Model Simulation
4.1. Differences in between the Experiments
4.2. Impacts on Medium-Range Skill Scores
4.3. Impacts on Typhoons
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fairall, C.W.; Bradley, E.F.; Godfrey, J.S.; Wick, G.A.; Edson, J.B.; Young, G.S. Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res. 1996, 101, 1295–1308. [Google Scholar] [CrossRef]
- Donlon, C.; Robinson, I.; Casey, K.S.; Vazquez-Cuervo, J.; Armstrong, E.; Arino, O.; Gentemann, C.; May, D.; LeBorgne, P.; Piollé, J.; et al. The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bull. Am. Meteorol. Soc. 2007, 88, 1197–1213. [Google Scholar] [CrossRef]
- Kawai, Y.; Wada, A. Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review. J. Oceanogr. 2007, 63, 721–744. [Google Scholar] [CrossRef]
- Webster, P.J.; Clayson, C.A.; Curry, J.A. Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical western Pacific. J. Clim. 1996, 9, 1712–1730. [Google Scholar] [CrossRef]
- Llewellyn-Jones, D.T.; Minnett, P.J.; Saunders, R.W.; Zavody, A.M. Satellite multichannel infrared measurements of sea surface temperature of the NE Atlantic Ocean using AVHRR/2. Q. J. R. Meteorol. Soc. 1984, 110, 613–631. [Google Scholar] [CrossRef]
- Murray, M.J.; Allen, M.R.; Merchant, C.J.; Harris, A.R.; Donlon, C.J. Direct observations of skin-bulk SST variability. Geophys. Res. Lett. 2000, 27, 1171–1174. [Google Scholar] [CrossRef]
- Al-Shehhi, M.R. Uncertainty in satellite sea surface temperature with respect to air temperature, dust level, wind speed and solar position. Reg. Stud. Mar. Sci. 2022, 53, 102385. [Google Scholar] [CrossRef]
- Clayson, C.A.; Curry, J.A. Determination of surface turbulent fluxes for the Tropical Ocean-Global Atmosphere Coupled Ocean Atmosphere Response Experiment: Comparison of satellite retrievals and in situ measurements. J. Geophys. Res. 1996, 101, 515–528. [Google Scholar] [CrossRef]
- Gentemann, C.L.; Donlon, C.J.; Stuart-Menteth, A.; Wentz, F.J. Diurnal signals in satellite sea surface temperature measurements. Geophys. Res. Lett. 2003, 30, 1140. [Google Scholar] [CrossRef]
- Zeng, X.; Zhao, M.; Dickinson, R.E.; He, Y. A multi-year hourly sea surface skin temperature dataset derived from the TOGA TAO bulk temperature and wind speed over the tropical Pacific. J. Geophys. Res. 1999, 104, 1525–1536. [Google Scholar] [CrossRef]
- Beljaars, A.C.M. Air-sea interaction in the ECMWF model. In Proceedings of the Seminar on Atmosphere-Surface Interactions, Reading, UK, 8–12 September 1997; Eur. Cent. for Med. Range Weather Forecasts: Reading, UK, 1997. [Google Scholar]
- Zeng, X.; Beljaars, A. A prognostic scheme of sea surface skin temperature for modeling and data assimilation. Geophys. Res. Lett. 2005, 32, L14605. [Google Scholar] [CrossRef]
- Brunke, M.A.; Zeng, X.; Misra, V.; Beljaars, A. Integration of a prognostic sea surface skin temperature scheme into weather and climate models. J. Geophys. Res. 2008, 113, D21117. [Google Scholar] [CrossRef]
- Takaya, Y.; Bidlot, J.-R.; Beljaars, A.C.M.; Janssen, P.A.E.M. Refinements to a prognostic scheme of skin sea surface temperature. J. Geophys. Res. 2010, 115, C06009. [Google Scholar] [CrossRef]
- Shelly, A.; Xavier, P.; Copsey, D.; Johns, T.; Rodríguez, J.M.; Milton, S.; Klingaman, N. Coupled versus uncoupled hindcast simulations of the Madden–Julian Oscillation in the year of tropical convection. Geophys. Res. Lett. 2014, 41, 5670–5677. [Google Scholar] [CrossRef]
- Perlin, N.; Kamenkovich, I.; Gao, Y.; Kirtman, B.P. A study of mesoscale air–sea interaction in the Southern Ocean with a regional coupled model. Ocean Model. 2020, 153, 101660. [Google Scholar] [CrossRef]
- Valdivieso, M.; Peatman, S.C.; Klingaman, N.P. The influence of air–sea coupling on forecasts of the 2016 Indian summer monsoon and its intraseasonal variability. Q. J. R. Meteorol. Soc. 2020, 147, 202–228. [Google Scholar] [CrossRef]
- Smith, G.C.; Bélanger, J.-M.; Roy, F.; Pellerin, P.; Ritchie, H.; Onu, K.; Roch, M.; Zadra, A.; Colan, D.S.; Winter, B.; et al. Impact of coupling with an ice–ocean model on global medium-range NWP forecast skill. Mon. Weather Rev. 2018, 146, 1157–1180. [Google Scholar] [CrossRef]
- Browne, P.A.; de Rosnay, P.; Zuo, H.; Bennett, A.; Dawson, A. Weakly coupled ocean–atmosphere data assimilation in the ECMWF NWP system. Remote Sens. 2019, 11, 23. [Google Scholar] [CrossRef]
- Vellinga, M.; Copsey, D.; Graham, T.; Milton, S.; Johns, T. Evaluating benefits of two-way ocean–atmosphere coupling for global NWP forecasts. Weather Forecast. 2020, 35, 2127–2144. [Google Scholar] [CrossRef]
- Roberts, C.D.; Vitart, F.; Balmaseda, M.A.; Molteni, F. The time-scale-dependent response of the wintertime North Atlantic to increased ocean model resolution in a coupled forecast model. J. Clim. 2020, 33, 3663–3689. [Google Scholar] [CrossRef]
- Patoux, J.; Kelly, K.A. Sensitivity of midlatitude storm intensification to perturbations in the sea surface temperature near the Gulf Stream. Mon. Weather Rev. 2012, 140, 1241–1256. [Google Scholar]
- Crnivec, N.; Smith, R.K.; Kilroy, G. Dependence of tropical cyclone intensification rate on sea-surface temperature. Q. J. R. Meteorol. Soc. 2016, 142, 1618–1627. [Google Scholar] [CrossRef]
- Khan, M.Z.K.; Sharma, A.; Mehrotra, R. Global seasonal precipitation forecasts using improved sea surface temperature predictions. J. Geophys. Res. Atmos. 2017, 122, 4773–4785. [Google Scholar] [CrossRef]
- Seroka, G.; Miles, T.; Xu, Y.; Kohut, J.; Schofield, O.; Glenn, S. Rapid shelf-wide cooling response of a stratified coastal ocean to hurricanes. J. Geophys. Res. Ocean. 2017, 122, 4845–4867. [Google Scholar] [CrossRef] [PubMed]
- Schadea, L.R.; Emanuel, K.A. The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere-ocean model. J. Atmos. Sci. 1999, 56, 642–651. [Google Scholar] [CrossRef]
- Jiang, X.P.; Liu, C.X.; Qi, Y.Q. The simulation of Typhoon Krovanh using a coupled air-sea model. Chin. J. Atmos. Sci. 2009, 33, 99–108. [Google Scholar]
- Wu, Z.; Jiang, C.B.; Deng, B.; Chen, J.; Long, Y.N.; Qu, K.; Liu, X.J. Numerical investigation of Typhoon Kai-tak (1213) using a mesoscale coupled WRF-ROMS model. Ocean. Eng. 2019, 175, 1–15. [Google Scholar] [CrossRef]
- Zhao, X.; Chan, J.C.L. Changes in tropical cyclone intensity with translation speed and mixed-layer depth: Idealized WRF-ROMS coupled model simulations. Q. J. R. Meteorol. Soc. 2017, 143, 152–163. [Google Scholar] [CrossRef]
- Heo, K.Y.; Ha, T.; Park, K.S. The effects of a typhoon-induced oceanic cold wake on typhoon intensity and typhoon-induced ocean waves. J. Hydro-Environ. Res. 2017, 14, 61–75. [Google Scholar] [CrossRef]
- Sun, J.; Li, J.; Ruan, Z.X.; Wu, K.; Li, F.Z. Simulation study on the effect of atmosphere-ocean-wave interactions on Typhoon Rammasun (2014) in the South China Sea. J. Atmos. Sol.-Terr. Phys. 2021, 212, 105490. [Google Scholar] [CrossRef]
- Lim Kam Sian, K.T.C.; Dong, C.; Liu, H.; Wu, R.; Zhang, H. Effects of Model Coupling on Typhoon Kalmaegi (2014) Simulation in the South China Sea. Atmosphere 2020, 11, 32. [Google Scholar] [CrossRef]
- ECMWF. Physical Processes, IFS DOCUMENTATION – Cy47r3 Operational Implementation. Available online: https://www.ecmwf.int/sites/default/files/elibrary/2007/9224-part-vii-ecmwf-wave-model.pdf (accessed on 12 October 2021).
- Wick, G.A.; Ohlmann, J.C.; Fairall, C.W.; Jessup, A.T. Improved oceanic cool skin correlation using a refined solar penetration model. J. Phys. Oceanogr. 2005, 35, 1986–1996. [Google Scholar] [CrossRef]
- Large, W.G.; McWilliams, J.C.; Doney, S.C. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 1994, 32, 363–403. [Google Scholar] [CrossRef]
- Chen, Z.T.; Dai, G.F.; Luo, Q.H.; Zhong, S.X.; Zhang, Y.X.; Dao-Sheng, X.U.; Huang, Y.Y. Study on the coupling of model dynamics and physical processes and its influence on the forecast of typhoons. J. Trop. Meteorol. 2016, 32, 1–8. [Google Scholar]
- Xu, D.S.; Zhang, Y.X.; Wang, G. Improvement of Meso-Sas cumulus parameterization scheme and its application in a model of 9 km resolution. J. Trop. Meteorol. 2015, 31, 608–618. [Google Scholar]
- Chen, Z.T.; Dai, G.F.; Zhong, S.X.; Huang, Y.; Zhang, Y.; Xu, D.; Li, M. Technical features and prediction performance of typhoon model for the South China Sea. J. Trop. Meteorol. 2016, 32, 831–840. [Google Scholar]
- Zhang, Y.X.; Chen, Z.; Meng, W.; Xu, D.S. Applicability of temperature discrete equation to NMRF boundary layer scheme in GRAPES model. J. Trop. Meteorol. 2022, 28, 12–28. [Google Scholar]
- Zhong, S.X.; Chen, Z.T.; Dai, G.F. Impacts of orographic gravity wave drag parameterization on typhoon intensity and path forecasting. Chin. J. Atmos. Sci. 2014, 38, 273–284. [Google Scholar]
- Xu, D.S.; Chen, Z.T.; Zhong, S.X.; Dai, G.F. Study of the coupling of cumulus convection parameterization with cloud microphysics and its influence on forecast of typhoon. Acta Meteorol. Sin. 2014, 72, 337–349. [Google Scholar]
- Dai, G.F.; Chen, Z.T. Sensitive experiments of the surface flux on a simulated typhoon in grapes. J. Trop. Meteorol. 2013, 29, 403–410. [Google Scholar]
- Huang, J.; Chan, P. Progress of marine meteorological observation experiment at Maoming of South China. J. Trop. Meteor. 2011, 17, 418–429. [Google Scholar]
- Huang, H.J.; Mao, W.K. The South China sea monsoon experiment—Boundary layer height (SCSMEX-BLH): Experimental design and preliminary results. Mon. Wea. Rev. 2015, 143, 5035–5053. [Google Scholar] [CrossRef]
Experiment Name | Parameter Configuration | Aim of the Experiment |
---|---|---|
ts-v0.1-d3.0 ts-v0.2-d3.0 ts-v0.3-d3.0 |
ν = 0.1 ν = 0.2 ν = 0.3 | To confirm the correct ν according to the amplitude of , where is at initial moment and d = 3 m (Figure 2). |
tsd-v0.2-d3.0 tsm-v0.2-d3.0 |
= tsd = tsm | To confirm correct according to the contrast between the forecasted and observed , where ν is the result of the first set of trials, d = 3 m and is with diurnal variation (tsd) and monthly averaged (tsm), respectively (Figure 3). |
tsm-v0.2-d2.5 tsm-v0.2-d3.5 |
d = 2.5 m d = 3.5 m | To confirm correct d according to the contrast between the forecasted and observed , where ν and are the result of the above two sets of trials and d = 3 m (Figure 4). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Xu, D.; Chen, Z.; Meng, W. Offline Diagnostics of Skin Sea Surface Temperature from a Prognostic Scheme and Its Application in Typhoon Forecasting Using the CMA-TRAMS Model over South China. Atmosphere 2022, 13, 1324. https://doi.org/10.3390/atmos13081324
Zhang Y, Xu D, Chen Z, Meng W. Offline Diagnostics of Skin Sea Surface Temperature from a Prognostic Scheme and Its Application in Typhoon Forecasting Using the CMA-TRAMS Model over South China. Atmosphere. 2022; 13(8):1324. https://doi.org/10.3390/atmos13081324
Chicago/Turabian StyleZhang, Yanxia, Daosheng Xu, Zitong Chen, and Weiguang Meng. 2022. "Offline Diagnostics of Skin Sea Surface Temperature from a Prognostic Scheme and Its Application in Typhoon Forecasting Using the CMA-TRAMS Model over South China" Atmosphere 13, no. 8: 1324. https://doi.org/10.3390/atmos13081324
APA StyleZhang, Y., Xu, D., Chen, Z., & Meng, W. (2022). Offline Diagnostics of Skin Sea Surface Temperature from a Prognostic Scheme and Its Application in Typhoon Forecasting Using the CMA-TRAMS Model over South China. Atmosphere, 13(8), 1324. https://doi.org/10.3390/atmos13081324