Particulate Matter Accumulation and Leaf Traits of Ten Woody Species Growing with Different Air Pollution Conditions in Cheongju City, South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Analysis of Accumulation of Surface PM, In-Wax PM, and Epicuticular Wax on Leaves
2.4. Leaves Traits
2.4.1. Leaf Extract pH (pH)
2.4.2. Relative Leaf Water Content (RWC)
2.4.3. Chlorophyll and Carotenoid Contents
2.4.4. Specific Leaf Area (SLA)
3. Statistical Analysis
4. Results and Discussion
4.1. PM Accumulation in Plant Species
4.2. Leaf Traits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Myong, J.P. Health effects of particulate matter. Korean J. Med. 2016, 91, 106–113. [Google Scholar] [CrossRef]
- Łukowski, A.; Popek, R.; Karolewski, P. Particulate matter on foliage of Betula pendula, Quercus robur, and Tilia cordata: Deposition and ecophysiology. Environ. Sci. Pollut. Res. 2020, 27, 10296–10307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iriti, M.; Piscitelli, P.; Missoni, E.; Miani, A. Air pollution and health: The need for a medical reading of environmental monitoring data. Int. J. Environ. Res. Public Health 2020, 17, 2174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barwise, Y.; Kumar, P. Designing vegetation barriers for urban air pollution abatement: A practical review for appropriate plant species selection. Npj Clim. Atmos. Sci. 2020, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Chiam, Z.; Song, X.P.; Lai, H.R.; Tan, H.T.W. Particulate matter mitigation via plants: Understanding complex relationships with leaf traits. Sci. Total Environ. 2019, 688, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Jin, E.J.; Yoon, J.H.; Bae, E.J.; Jeong, B.R.; Yong, S.H.; Choi, M.S. Particulate matter removal ability of ten evergreen trees planted in Korea urban greening. Forests 2021, 12, 438. [Google Scholar] [CrossRef]
- Popek, R.; Gawrońska, H.; Wrochna, M.; Gawroński, S.W.; Sæbø, A. Particulate matter on foliage of 13 woody species: Deposition on surfaces and phytostabilisation in waxes–a 3-year study. Int. J. Phytoremediation 2013, 15, 245–256. [Google Scholar] [CrossRef]
- Singh, H.; Yadav, M.; Kumar, N.; Kumar, A.; Kumar, M. Assessing adaptation and mitigation potential of roadside trees under the influence of vehicular emissions: A case study of Grevillea robusta and Mangifera indica planted in an urban city of India. PLoS ONE 2020, 15, e0227380. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.Y.; Kim, T.; Ham, S.; Choi, S.; Park, C.R. Importance of urban green at reduction of particulate matters in Sihwa Industrial Complex, Korea. Sustainability 2020, 12, 7647. [Google Scholar] [CrossRef]
- Reichenauer, T.G.; Germida, J.J. Phytoremediation of organic contaminants in soil and groundwater. ChemSusChem 2008, 1, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Klingberg, J.; Broberg, M.; Strandberg, B.; Thorsson, P.; Pleijel, H. Influence of urban vegetation on air pollution and noise exposure–a case study in Gothenburg, Sweden. Sci. Total Environ. 2017, 599, 1728–1739. [Google Scholar] [CrossRef] [PubMed]
- Popek, R.; Przybysz, A.; Gawrońska, H.; Klamkowski, K.; Gawroński, S.W. Impact of particulate matter accumulation on the photosynthetic apparatus of roadside woody plants growing in the urban conditions. Ecotoxicol. Environ. Saf. 2018, 163, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Jeong, N.R.; Kim, J.H.; Han, S.W.; Kim, J.C.; Kim, W.Y. Assessment of the particulate matter reduction potential of climbing plants on green walls for air quality management. J. People Plants Environ. 2021, 24, 377–387. [Google Scholar] [CrossRef]
- Kwon, K.J.; Urrintuya, O.; Kim, S.Y.; Yang, J.C.; Sung, J.W.; Park, B.J. Removal potential of particulate matter of 12 woody plant species for landscape planting. J. People Plants Environ. 2020, 23, 647–654. [Google Scholar] [CrossRef]
- Kwon, K.J.; Odsuren, U.; Kim, S.Y.; Yang, J.C.; Park, B.J. Comparison of the particulate matter removal capacity of 11 herbaceous landscape plants. J. People Plants Environ. 2021, 24, 267–275. [Google Scholar] [CrossRef]
- Pandit, J.; Sharma, A.K. A review of effects of air pollution on physical and biochemical characteristics of plants. Int. J. Chem. Stud. 2020, 8, 1684–1688. [Google Scholar] [CrossRef]
- Goude, M.; Nilsson, U.; Holmström, E. Comparing direct and indirect leaf area measurements for Scots pine and Norway spruce plantations in Sweden. Eur. J. For. Res. 2019, 138, 1033–1047. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Qiu, K.; Pott, R. Reduction of urban traffic–related particulate matter—leaf trait matters. Environ. Sci. Pollut. Res. 2020, 27, 5825–5844. [Google Scholar] [CrossRef]
- Sgrigna, G.; Baldacchini, C.; Dreveck, S.; Cheng, Z.; Calfapietra, C. Relationships between air particulate matter capture efficiency and leaf traits in twelve tree species from an Italian urban-industrial environment. Sci. Total Environ. 2020, 718, 137310. [Google Scholar] [CrossRef]
- Viecco, M.; Vera, S.; Jorquera, H.; Bustamante, W.; Gironás, J.; Dobbs, C.; Leiva, E. Potential of particle matter dry deposition on green roofs and living walls vegetation for mitigating urban atmospheric pollution in semiarid climates. Sustainability 2018, 10, 2431. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Wang, B.; Niu, X. Relationship between leaf surface characteristics and particle capturing capacities of different tree species in Beijing. Forests 2017, 8, 92. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhou, Z.; Teng, M.; Wang, P.; Zhou, L. Accumulation of three different sizes of particulate matter on plant leaf surfaces: Effect on leaf traits. Arch. Biol. Sci. 2015, 67, 1257–1267. [Google Scholar] [CrossRef]
- Popek, R.; Łukowski, A.; Grabowski, M. Influence of particulate matter accumulation on photosynthetic apparatus of Physocarpus opulifolius and Sorbaria sorbifolia. Pol. J. Environ. Stud. 2018, 27, 2391–2396. [Google Scholar] [CrossRef]
- Przybysz, A.; Popek, R.; Gawrońska, H.; Grab, K.; Łoskot, K.; Wrochna, M.; Gawroński, S.W. Efficiency of photosynthetic apparatus of plants grown in sites differing in level of particulate matter. Acta Sci. Pol. Hortorum Cultus 2014, 13, 17–30. [Google Scholar]
- Lu, T.; Lin, X.; Chen, J.; Huang, D.; Li, M. Atmospheric particle retention capacity and photosynthetic responses of three common greening plant species under different pollution levels in Hangzhou. Glob. Ecol. Conserv. 2019, 20, e00783. [Google Scholar] [CrossRef]
- Wang, B.; Wei-kang, Z.; Niu, X.; Wang, X. Particulate matter adsorption capacity of 10 evergreen species in Beijing. Huanjing Kexue/Environ. Sci. 2015, 36, 408–414. [Google Scholar] [CrossRef]
- Kong, L.; Yu, H.; Chen, M.; Piao, Z.; Dang, J.; Sui, Y. Effects of particle matters on plant: A review. Phyton 2019, 88, 367. [Google Scholar] [CrossRef] [Green Version]
- Rai, P.K. Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring. Ecotoxicol. Environ. Saf. 2016, 129, 120–136. [Google Scholar] [CrossRef]
- Singh, S.; Rao, D.; Agrawal, M.; Pandey, J.; Naryan, D. Air pollution tolerance index of plants. J. Environ. Manag. 1991, 32, 45–55. [Google Scholar] [CrossRef]
- Gupta, G.P.; Kumar, B.; Kulshrestha, U. Impact and pollution indices of urban dust on selected plant species for green belt development: Mitigation of the air pollution in NCR Delhi, India. Arab. J. Geosci. 2016, 9, 1–15. [Google Scholar] [CrossRef]
- Bharti, S.K.; Trivedi, A.; Kumar, N. Air pollution tolerance index of plants growing near an industrial site. Urban Clim. 2018, 24, 820–829. [Google Scholar] [CrossRef]
- Rai, P.K. Particulate matter tolerance of plants (APTI and API) in a biodiversity hotspot located in a tropical region: Implications for eco-control. Part Sci. Technol. 2020, 38, 193–202. [Google Scholar] [CrossRef]
- Dzierżanowski, K.; Popek, R.; Gawrońska, H.; Sæbø, A.; Gawroński, S.W. Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. Int. J. Phytoremediation 2011, 13, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Noh, K.; Thi, L.T.; Jeong, B.R. Particulate matter in the cultivation area may contaminatie leafy vegetables with heavy metals above safe leves in Korea. Environ. Sci. Pollut. Res. 2019, 26, 25762–25774. [Google Scholar] [CrossRef] [Green Version]
- Turner, N.C. Techniques and experimental approaches for the measurement of plant water status. Plant Soil 1981, 58, 339–366. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1987; Volume 148, pp. 350–382. [Google Scholar]
- Chaturvedi, R.; Prasad, S.; Rana, S.; Obaidullah, S.; Pandey, V.; Singh, H. Effect of dust load on the leaf attributes of the tree species growing along the roadside. Environ. Monit. Assess. 2013, 185, 383–391. [Google Scholar] [CrossRef]
- Kwak, M.J.; Lee, J.K.; Park, S.; Kim, H.; Lim, Y.J.; Lee, K.A.; Son, J.A.; Oh, C.Y.; Kim, I.; Woo, S.Y. Surface-based analysis of leaf microstructures for adsorbing and retaining capability of airborne particulate matter in ten woody species. Forests 2020, 11, 946. [Google Scholar] [CrossRef]
- Chen, L.; Liu, C.; Zou, R.; Yang, M.; Zhang, Z. Experimental examination of effectiveness of vegetation as bio-filter of particulate matters in the urban environment. Environ. Pollut. 2016, 208, 198–208. [Google Scholar] [CrossRef]
- He, C.; Qiu, K.; Pott, R. Reduction of traffic-related particulate matter by roadside plants: Effect of traffic pressure and sampling height. Int. J. Phytoremediation 2020, 22, 184–200. [Google Scholar] [CrossRef]
- Leonard, R.J.; McArthur, C.; Hochuli, D.F. Particulate matter deposition on roadside plants and the importance of leaf trait combinations. Urban. For. Urban Green. 2016, 20, 249–253. [Google Scholar] [CrossRef]
- Zhang, W.K.; Wang, B.; Niu, X. Study on the adsorption capacities for airborne particulates of landscape plants in different polluted regions in Beijing (China). Int. J. Environ. Res. Public Health 2015, 12, 9623–9638. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhang, Z.; Meng, H.; Zhang, T. How does leaf surface micromorphology of different trees impact their ability to capture particulate matter? Forests 2018, 9, 681. [Google Scholar] [CrossRef] [Green Version]
- Shao, F.; Wang, L.; Sun, F.; Li, G.; Yu, L.; Wang, Y.; Zeng, X.; Yan, H.; Dong, L.; Bao, Z. Study on different particulate matter retention capacities of the leaf surfaces of eight common garden plants in Hangzhou, China. Sci. Total. Environ. 2019, 652, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Popek, R.; Łukowski, A.; Karolewski, P. Particulate matter accumulation-further differences between native Prunus padus and non-native P. serotina. Dendrobiology 2017, 78, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Przybysz, A.; Sæbø, A.; Hanslin, H.; Gawroński, S. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time. Sci. Total Environ. 2014, 481, 360–369. [Google Scholar] [CrossRef]
- Prusty, B.; Mishra, P.; Azeez, P. Dust accumulation and leaf pigment content in vegetation near the national highway at Sambalpur, Orissa, India. Ecotoxicol. Environ. Saf. 2005, 60, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Nagpal, A.K. Evaluation of air pollution tolerance index and anticipated performance index of plants and their application in development of green space along the urban areas. Environ. Sci. Pollut. Res. 2017, 24, 18881–18895. [Google Scholar] [CrossRef]
- Sharma, A.P.; Tripathi, B. Biochemical responses in tree foliage exposed to coal-fired power plant emission in seasonally dry tropical environment. Environ. Monit. Assess. 2009, 158, 197–212. [Google Scholar] [CrossRef]
- Tripathi, A.; Gautam, M. Biochemical parameters of plants as indicators of air pollution. J. Environ. Biol. 2007, 28, 127–132. [Google Scholar]
- Huttunen, S. Effects of air pollutants on epicuticular wax structure. In Air Pollutants and the Leaf Cuticle; Springer: Berlin/Heidelberg, Germany, 1994; pp. 81–96. [Google Scholar]
- Singh, S.; Bhattacharya, P.; Gupta, N. Dust particles characterization and innate resistance for Thevetia peruviana in different land-use pattern of urban area. Int. J. Environ. Sci. Technol. 2018, 15, 1061–1072. [Google Scholar] [CrossRef]
- Tak, A.A.; Kakde, U.B. Biochemical, morphological and anatomical changes in tree foliage exposed to vehicular-pollution. Int. J. Environ. Agric. Biotechnol. 2020, 5, 699–708. [Google Scholar] [CrossRef]
- Wen, D.; Kuang, Y.; Zhou, G. Sensitivity analyses of woody species exposed to air pollution based on ecophysiological measurements. Environ. Sci. Pollut. Res. 2004, 11, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Wuytack, T.; Verheyen, K.; Wuyts, K.; Kardel, F.; Adriaenssens, S.; Samson, R. The potential of biomonitoring of air quality using leaf characteristics of white willow (Salix alba L.). Environ. Monit. Assess. 2010, 171, 197–204. [Google Scholar] [CrossRef]
- Sæbø, A.; Popek, R.; Nawrot, B.; Hanslin, H.M.; Gawronska, H.; Gawronski, S. Plant species differences in particulate matter accumulation on leaf surfaces. Sci. Total Environ. 2012, 427, 347–354. [Google Scholar] [CrossRef]
- Ter, S.; Chettri, M.K.; Shakya, K. Air pollution tolerance index of some tree species of Pashupati and Budhanilkantha Area, Kathmandu. Amrit. Res. J. 2020, 1, 20–28. [Google Scholar] [CrossRef]
- Yadav, R.; Pandey, P. Assessment of air pollution tolerance index (APTI) and anticipated performance index (API) of roadside plants for the development of greenbelt in urban area of Bathinda City, Punjab, India. Bull. Environ. Contam. Toxicol. 2020, 105, 906–914. [Google Scholar] [CrossRef]
Plant Species | Family | Foliage | Leaf Shape | Habit |
---|---|---|---|---|
Rhododendron yedoense f. poukhanense (H.Lév.) M. Sugim. ex T.Yamaz. | Ericaceae | Deciduous broad-leaved | Oval | Shrub |
Zelkova serrata (Thunb.) Makino | Ulmaceae | Deciduous broad-leaved | Ovate | Tree |
Acer palmatum Thunb. | Aceraceae | Deciduous broad-leaved | Palmate | Tree |
Magnolia denudata Desr. | Magnoliaceae | Deciduous broad-leaved | Obovate | Tree |
Syringa vulgaris L. | Oleaceae | Deciduous broad-leaved | Cordate | Shrub |
Metasequoia glyptostroboides Hu & W.C. Cheng | Cupressaceae | Deciduous conifer | Opposite | Tree |
Juniperus chinensis L. | Cupressaceae | Evergreen needle-leaved | Scale | Tree |
Taxus cuspidata Siebold & Zucc. | Taxaceae | Evergreen needle-leaved | Lanceolate | Tree |
Pinus densiflora Siebold & Zucc. | Pinaceae | Evergreen needle-leaved | Needle-like | Tree |
Pinus strobus L. | Pinaceae | Evergreen needle-leaved | Needle-like | Tree |
sPM (Mean ± SE) | wPM (Mean ± SE) | Total PM (μg·cm−2) | Epicuticular Wax (μg·cm−2) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10–100 (μg·cm−2) | 2.5–10 (μg·cm−2) | 10–100 (μg·cm−2) | 2.5–10 (μg·cm−2) | |||||||||||
S. vulgaris | Urban forest | 17.41 ± 13.05 | 4.87 ± 1.21 | 8.47 ± 4.48 | 9.27 ± 4.76 | 40.01 ± 13.63 | 161.08 ± 39.73 | |||||||
Roadside | 23.20 ± 6.52 | 26.41 ± 5.57 | 6.04 ± 2.30 | 13.60 ± 8.06 | 69.25 ± 11.50 | 154.53 ± 30.30 | ||||||||
M. denudata | Urban forest | 22.26 ± 3.86 | 9.14 ± 2.02 | 2.94 ± 1.26 | 3.27 ± 1.96 | 37.61 ± 4.47 | 20.59 ± 4.14 | |||||||
Roadside | 96.10 ± 37.37 | 8.07 ± 2.72 | 2.67 ± 1.67 | 2.60 ± 1.77 | 109.43 ± 35.49 | 38.92 ± 34.69 | ||||||||
A. palmatum | Urban forest | 12.45 ± 2.19 | 9.61 ± 3.07 | 3.73 ± 1.15 | 0.83 ± 0.26 | 26.62 ± 2.82 | 18.13 ± 2.25 | |||||||
Roadside | 23.23 ± 10.89 | 4.34 ± 1.15 | 14.67 ± 6.37 | 9.82 ± 4.35 | 52.06 ± 16.10 | 34.00 ± 9.02 | ||||||||
Z. serrata | Urban forest | 11.16 ± 3.24 | 6.82 ± 1.00 | 5.91 ± 2.62 | 3.08 ± 1.48 | 26.97 ± 4.33 | 60.02 ± 15.64 | |||||||
Roadside | 27.16 ± 5.76 | 5.85 ± 0.68 | 2.88 ± 1.14 | 4.56 ± 2.52 | 40.44 ± 7.53 | 30.18 ± 7.36 | ||||||||
R.yedoense | Urban forest | 8.66 ± 5.00 | 3.94 ± 2.52 | 2.37 ± 0.94 | 3.30 ± 1.72 | 18.27 ± 8.04 | 58.85 ± 4.32 | |||||||
Roadside | 21.56 ± 14.81 | 7.36 ± 5.22 | 4.60 ± 3.15 | 8.89 ± 6.93 | 42.40 ± 17.63 | 90.52 ± 25.80 | ||||||||
J. chinensis | Urban forest | 5.41 ± 2.00 | 3.61 ± 1.58 | 3.23 ± 2.17 | 4.57 ± 1.58 | 16.82 ± 4.70 | 368.71 ± 69.46 | |||||||
Roadside | 22.57 ± 8.33 | 23.37 ± 9.45 | 7.13 ± 4.40 | 4.60 ± 3.02 | 57.68 ± 9.29 | 578.64 ± 34.73 | ||||||||
M. glyptostroboides | Urban forest | 5.03 ± 0.76 | 2.19 ± 2.14 | 1.88 ± 0.90 | 2.74 ± 0.73 | 11.84 ± 2.87 | 223.92 ± 60.21 | |||||||
Roadside | 14.36 ± 4.33 | 10.89 ± 1.49 | 2.26 ± 1.54 | 3.77 ± 3.00 | 31.28 ± 7.51 | 166.72 ± 40.32 | ||||||||
T. cuspidata | Urban forest | 10.59 ± 3.26 | 1.94 ± 0.51 | 4.10 ± 0.99 | 2.47 ± 0.79 | 19.10 ± 2.29 | 77.65 ± 4.54 | |||||||
Roadside | 18.33 ± 2.99 | 21.85 ± 4.92 | 6.30 ± 4.22 | 0.77 ± 0.63 | 47.25 ± 5.09 | 102.59 ± 35.07 | ||||||||
P. densiflora | Urban forest | 36.52 ± 10.31 | 5.28 ± 1.95 | 12.64 ± 1.87 | 7.08 ± 2.37 | 61.51 ± 13.22 | 723.04 ± 59.87 | |||||||
Roadside | 60.78 ± 11.63 | 12.66 ± 7.13 | 17.03 ± 8.51 | 8.15 ± 4.55 | 98.62 ± 20.29 | 883.46 ± 125.51 | ||||||||
P. strobus | Urban forest | 43.12 ± 16.64 | 6.82 ± 3.85 | 23.01 ± 5.10 | 16.37 ± 6.93 | 89.33 ± 28.13 | 1127.78 ± 242.82 | |||||||
Roadside | 73.75 ± 25.22 | 29.61 ± 9.51 | 49.97 ± 37.25 | 12.40 ± 5.56 | 165.73 ± 35.91 | 1055.31 ± 248.51 | ||||||||
ANOVA † | Df | Error | F | p | F | p | F | p | F | p | F | p | F | p |
Species | 9 | 80 | 23.19 | <0.0001 | 10.2 | <0.0001 | 13.11 | <0.0001 | 10.77 | <0.0001 | 40.33 | <0.0001 | 176.36 | <0.0001 |
Site | 1 | 80 | 65.79 | <0.0001 | 124.14 | <0.0001 | 6.3 | 0.0141 | 4.36 | 0.04 | 129.19 | <0.0001 | 2.77 | 0.1002 |
Species × site | 9 | 80 | 6.14 | <0.0001 | 15.17 | <0.0001 | 2.39 | 0.0186 | 2.37 | 0.0198 | 4.37 | 0.0001 | 2.57 | 0.0119 |
SLA (cm−2·g−1) | Chl a (mg·g−1 FW) | Chl b (mg·g−1 FW) | TChl (mg·g−1 FW) | Carotenoid (mg·g−1 FW) | pH | RWC (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S. vulgaris | Urban forest | 90.39 ± 24.02 | 0.105 ± 0.03 | 0.043 ± 0.01 | 0.148 ± 0.04 | 10.17 ± 2.79 | 5.72 ± 0.16 | 73.99 ± 3.16 | ||||||||
Roadside | 97.16 ± 37.64 | 0.047 ± 0.01 | 0.021 ± 0.00 | 0.068 ± 0.02 | 4.37 ± 1.18 | 5.39 ± 0.20 | 87.05 ± 2.81 | |||||||||
M. denudata | Urban forest | 203.34 ± 92.08 | 0.057 ± 0.01 | 0.027 ± 0.00 | 0.083 ± 0.02 | 5.58 ± 1.27 | 6.09 ± 0.09 | 78.79 ± 2.30 | ||||||||
Roadside | 183.27 ± 51.58 | 0.098 ± 0.03 | 0.041 ± 0.01 | 0.139 ± 0.04 | 9.13 ± 2.09 | 6.02 ± 0.14 | 77.90 ± 7.48 | |||||||||
A. palmatum | Urban forest | 289.523 ± 119.18 | 0.068 ± 0.02 | 0.032 ± 0.01 | 0.101 ± 0.02 | 6.75 ± 1.70 | 4.50 ± 0.42 | 92.79 ± 3.52 | ||||||||
Roadside | 246.55 ± 77.05 | 0.118 ± 0.04 | 0.052 ± 0.02 | 0.170 ± 0.06 | 11.09 ± 3.72 | 5.65 ± 0.15 | 97.75 ± 3.69 | |||||||||
Z. serrata | Urban forest | 300.10 ± 111.24 | 0.072 ± 0.03 | 0.035 ± 0.01 | 0.107 ± 0.04 | 7.61 ± 3.23 | 5.92 ± 0.09 | 67.65 ± 5.72 | ||||||||
Roadside | 76.74 ± 32.43 | 0.089 ± 0.02 | 0.036 ± 0.01 | 0.125 ± 0.02 | 8.00 ± 1.69 | 5.71 ± 0.11 | 69.91 ± 3.61 | |||||||||
R. yedoense | Urban forest | 115.93 ± 44.30 | 0.061 ± 0.02 | 0.029 ± 0.01 | 0.090 ± 0.02 | 5.73 ± 1.77 | 5.59 ± 0.33 | 72.97 ± 3.81 | ||||||||
Roadside | 198.35 ± 77.19 | 0.146 ± 0.01 | 0.060 ± 0.00 | 0.206 ± 0.02 | 13.84 ± 0.94 | 5.58 ± 0.12 | 86.72 ± 3.78 | |||||||||
J. chinensis | Urban forest | 54.12 ± 22.96 | 0.050 ± 0.02 | 0.020 ± 0.01 | 0.070 ± 0.03 | 4.10 ± 1.78 | 5.15 ± 0.18 | 71.07 ± 1.93 | ||||||||
Roadside | 51.49 ± 18.18 | 0.057 ± 0.01 | 0.023 ± 0.00 | 0.080 ± 0.02 | 4.81 ± 0.92 | 5.48 ± 0.25 | 83.52 ± 8.63 | |||||||||
M. glyptostroboides | Urban forest | 226.94 ± 105.01 | 0.122 ± 0.02 | 0.049 ± 0.01 | 0.171 ± 0.03 | 11.19 ± 2.09 | 5.63 ± 0.05 | 72.71 ± 6.69 | ||||||||
Roadside | 297.92 ± 135.54 | 0.149 ± 0.04 | 0.058 ± 0.02 | 0.207 ± 0.06 | 13.30 ± 3.77 | 5.45 ± 0.12 | 73.39 ± 9.57 | |||||||||
T. cuspidata | Urban forest | 110.51 ± 32.16 | 0.063 ± 0.02 | 0.026 ± 0.01 | 0.089 ± 0.03 | 5.45 ± 1.80 | 5.25 ± 0.10 | 80.24 ± 4.78 | ||||||||
Roadside | 92.72 ± 27.21 | 0.063 ± 0.02 | 0.027 ± 0.01 | 0.090 ± 0.03 | 5.70 ± 1.63 | 5.34 ± 0.16 | 84.85 ± 2.45 | |||||||||
P. densiflora | Urban forest | 33.24 ± 10.61 | 0.059 ± 0.01 | 0.026 ± 0.00 | 0.085 ± 0.02 | 5.08 ± 1.05 | 4.80 ± 0.04 | 81.91 ± 2.91 | ||||||||
Roadside | 39.45 ± 7.25 | 0.082 ± 0.01 | 0.036 ± 0.01 | 0.188 ± 0.02 | 7.31 ± 0.94 | 5.09 ± 0.13 | 87.68 ± 2.25 | |||||||||
P. strobus | Urban forest | 16.01 ± 8.45 | 0.100 ± 0.01 | 0.044 ± 0.01 | 0.144 ± 0.02 | 8.27 ± 1.13 | 4.99 ± 0.04 | 72.70 ± 6.75 | ||||||||
Roadside | 8.58 ± 4.79 | 0.100 ± 0.02 | 0.042 ± 0.01 | 0.142 ± 0.03 | 9.29 ± 1.90 | 5.11 ± 0.15 | 75.52 ± 1.56 | |||||||||
ANOVA† | DF | Error | F | p | F | p | F | p | F | p | F | p | F | p | F | p |
Species | 9 | 80 | 19.18 | <0.0001 | 11.46 | <0.0001 | 11.28 | <0.0001 | 11.77 | <0.0001 | 11.85 | <0.0001 | 40.09 | <0.0001 | 21.97 | <0.0001 |
Site | 1 | 80 | 65.79 | <0.0001 | 124.14 | <0.0001 | 6.3 | 0.0141 | 4.36 | 0.04 | 129.19 | <0.0001 | 11.48 | 0.0011 | 2.77 | 0.1002 |
Species × site | 9 | 80 | 6.14 | <0.0001 | 15.17 | <0.0001 | 2.39 | 0.0186 | 2.37 | 0.0198 | 4.37 | 0.0001 | 14.28 | <.0001 | 2.57 | 0.0119 |
SLA | Chl a | Chl b | TChl | Carotenoid | pH | RWC | Epicuticular Wax | ||
---|---|---|---|---|---|---|---|---|---|
Urban forest | Total large PM | −0.442 ** | 0.078 | 0.067 | 0.093 | 0.005 | −0.260 | 0.071 | 0.810 *** |
Total coarse PM | −0.258 | 0.166 | 0.161 | 0.205 | 0.152 | −0.149 | 0.035 | 0.545 *** | |
Roadside | Total large PM | −0.317 * | 0.010 | 0.107 | 0.057 | 0.041 | −0.086 | −0.137 | 0.564 *** |
Total coarse PM | −0.434 ** | −0.391 * | −0.314 * | −0.384 ** | −0.386 ** | −0.510 *** | 0.085 | 0.479 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bui, H.-T.; Odsuren, U.; Kim, S.-Y.; Park, B.-J. Particulate Matter Accumulation and Leaf Traits of Ten Woody Species Growing with Different Air Pollution Conditions in Cheongju City, South Korea. Atmosphere 2022, 13, 1351. https://doi.org/10.3390/atmos13091351
Bui H-T, Odsuren U, Kim S-Y, Park B-J. Particulate Matter Accumulation and Leaf Traits of Ten Woody Species Growing with Different Air Pollution Conditions in Cheongju City, South Korea. Atmosphere. 2022; 13(9):1351. https://doi.org/10.3390/atmos13091351
Chicago/Turabian StyleBui, Huong-Thi, Uuriintuya Odsuren, Sang-Yong Kim, and Bong-Ju Park. 2022. "Particulate Matter Accumulation and Leaf Traits of Ten Woody Species Growing with Different Air Pollution Conditions in Cheongju City, South Korea" Atmosphere 13, no. 9: 1351. https://doi.org/10.3390/atmos13091351
APA StyleBui, H. -T., Odsuren, U., Kim, S. -Y., & Park, B. -J. (2022). Particulate Matter Accumulation and Leaf Traits of Ten Woody Species Growing with Different Air Pollution Conditions in Cheongju City, South Korea. Atmosphere, 13(9), 1351. https://doi.org/10.3390/atmos13091351