Long-Term Variability of Summer Temperature in the Southern Part of South America—Is There a Connection with Changes in Solar Activity?
Abstract
:1. Introduction
2. Materials and Methods
Reference | Type of Proxy Data | Reconstructed Value | Period |
---|---|---|---|
Neucom et al. [10] | Multiproxy | Austral summer temperature | AD 900–1995 |
Bard et al. [11] | 14C, 10Be from South Pole | TSI | AD 843–1961 |
Delaygue and Bard [12] | 10Be from South Pole and Dome Fuji (77°19′ S, 39°42′ E) | Φ | AD 695–1982 |
Delaygue and Bard [12] | 10Be from South Pole and Dome Fuji (77°19′ S, 39°42′ E) | 10Be | AD 695–1982 |
3. Results
4. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gray, L.; Beer, J.; Geller, M.; Haigh, J.; Lockwood, M.; Matthes, K.; Cubasch, U.; Fleitmann, D.; Harrison, G.; Hood, L.; et al. Solar influence on climate. Rev. Geophys. 2010, 48, RG4001. [Google Scholar] [CrossRef]
- Lockwood, M. Solar Influence on Global and Regional Climates. Surv. Geophys. 2012, 33, 503–534. [Google Scholar] [CrossRef]
- Schmutz, W.K. Changes in the total solar irradiance and climatic effects. J. Space Weather Space Clim. 2021, 11, 40. [Google Scholar] [CrossRef]
- Biktash, L. Long-term global temperature variations under total solar irradiance, cosmic rays, and volcanic activity. J. Adv Res. 2017, 8, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Marsh, N.; Svensmark, H. Low cloud properties influenced by cosmic rays. Phys. Rev. Lett. 2000, 85, 5004–5007. [Google Scholar] [CrossRef] [PubMed]
- Veretenenko, S.; Thejll, P. Influence of energetic Solar Proton Events on the development of cyclonic processes at extratropical latitudes. J. Phys. Conf. Ser. 2013, 409, 012237. [Google Scholar] [CrossRef]
- Veretenenko, S.; Ogurtsov, M. Cloud cover anomalies at middle latitudes: Links to troposphere dynamics and solar variability. J. Atmos. Solar-Terr. Phys. 2016, 149, 207–218. [Google Scholar] [CrossRef]
- Usoskin, I.; Kovaltsov, G. Cosmic rays and climate of the Earth: Possible connection. Comptes Rendus. Geeosci. 2008, 340, 441–450. [Google Scholar] [CrossRef]
- Ogurtsov, M. A Study on Possible Solar Influence on the Climate of the Southern Hemisphere. Atmosphere 2022, 13, 680. [Google Scholar] [CrossRef]
- Ogurtsov, M.; Helama, S.; Jalkanen, R.; Jungner, H.; Lindholm, N.; Vereteneko, S. Solar-type periodicities in the climate variability of Northern Fennoscandia during the last three centuries: Real influence of solar activity or natural instability in the climate system. Holocene 2022, 32, 99–112. [Google Scholar] [CrossRef]
- Neukom, R.; Luterbacher, J.; Villalba, R.; Kuttel, M.; Frank, D.; Jones, D.; Grosjean, M.; Wanner, H.; Aravena, J.; Black, D.; et al. Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries. Clim. Dyn. 2011, 37, 35–51. [Google Scholar] [CrossRef]
- Bard, E.; Raisbeck, G.; Yiou, F.; Jouzel, J. Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus B 2000, 52, 985–992. [Google Scholar] [CrossRef]
- Delaygue, G.; Bard, E. An Antarctic view of Beryllium-10 and solar activity for the past millennium. Clim. Dyn. 2011, 36, 2201–2218. [Google Scholar] [CrossRef]
- Beer, J.; Siegenthaler, U.; Bonani, G.; Finkel, R.; Oesgher, H.; Suter, M.; Wolfli, W. Information on past solar activity and geomagnetism from 10Be in the Camp Century ice core. Nature 1988, 331, 675–679. [Google Scholar] [CrossRef]
- Stuiver, M.; Braziunas, T.F.; Becker, B.; Kromer, B. Climatic, solar, oceanic and geomagnetic influences on late-glacial and holocene atmospheric 14C/12C changes. Quat. Res. 1991, 35, 1–24. [Google Scholar] [CrossRef]
- Usoskin, I.G.; Horiuchi, K.; Solanki, S.; Kovaltsov, G.; Bard, E. On the common solar signal in different cosmogenic isotope data sets. J. Geophys. Res. 2009, 114, A03112. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Amer. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Waple, F.M.; Mann, M.E.; Bradly, R.S. Long-term pattern of solar irradiation forcing in model experiments and proxy based surface temperature reconstruction. Clim. Dyn. 2002, 18, 563–778. [Google Scholar] [CrossRef]
- Mann, M.E.; Park, J.; Bradley, R.S. Global interdecadal and century-scale climate oscillations during the past five centuries. Nature 1995, 378, 266–270. [Google Scholar] [CrossRef]
- Datsenko, N.M.; Shabalova, M.V.; Sonechkin, D.M. Seasonality of multidecadal and centennial variability in European temperatures: The wavelet approach. J. Geophys. Res. 2001, 106, 12449–12461. [Google Scholar] [CrossRef]
- Raspopov, O.M.; Dergachev, V.A.; Esper, J.; Kozyreva, O.V.; Frank, D.; Ogurtsov, M.; Kolström, T.; Shao, X. The influence of the de Vries (~200-year) solar cycle on climate variations: Results from the Central Asian Mountains and their global link. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 259, 6–16. [Google Scholar] [CrossRef]
- Chapman, M.R.; Shackleton, N.J. Evidence of 550-year and 1000-year cyclicities in North Atlantic circulation patterns during the Holocene. Holocene 2000, 10, 287–291. [Google Scholar] [CrossRef]
- Xu, D.; Lu, H.; Chu, G.; Wu, N.; Shen, C.; Wang, C.; Mao, L. 500-year climate cycles stacking of recent centennial warming documented in an East Asian pollen record. Sci. Rep. 2014, 4, 3611. [Google Scholar] [CrossRef] [PubMed]
- Usoskin, I.G. A history of solar activity over millennia. Living Rev. Sol. Phys. 2017, 14, 3. [Google Scholar] [CrossRef]
- Ma, L.; Yin, Z.; Han, Y. Quasi ~500-year Cycle Signals in Solar Activity. Earth Sci. Res. 2018, 7, 131–136. [Google Scholar] [CrossRef]
- Ogurtsov, M.G.; Kocharov, G.E.; Lindholm, M.; Merilainen, J.; Eronen, M.; Nagovytsin, Y. Evidence of solar variation in tree-ring-based climate reconstructions. Solar Phys. 2002, 205, 403–417. [Google Scholar] [CrossRef]
- Ogurtsov, M.; Lindholm, M.; Jalkanen, R.; Veretenenko, S.V. New evidence of solar variation in temperature proxies from Northern Fennoscandia. Adv. Space Res. 2013, 52, 1647–1654. [Google Scholar] [CrossRef]
- Wright, N.M.; Krause, C.E.; Phipps, S.J.; Boschat, G.; Abram, N. Influence of long-term changes in solar irradiance forcing on the Southern Annular Mode. Clim. Past 2022, 18, 1509–1528. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogurtsov, M. Long-Term Variability of Summer Temperature in the Southern Part of South America—Is There a Connection with Changes in Solar Activity? Atmosphere 2022, 13, 1360. https://doi.org/10.3390/atmos13091360
Ogurtsov M. Long-Term Variability of Summer Temperature in the Southern Part of South America—Is There a Connection with Changes in Solar Activity? Atmosphere. 2022; 13(9):1360. https://doi.org/10.3390/atmos13091360
Chicago/Turabian StyleOgurtsov, Maxim. 2022. "Long-Term Variability of Summer Temperature in the Southern Part of South America—Is There a Connection with Changes in Solar Activity?" Atmosphere 13, no. 9: 1360. https://doi.org/10.3390/atmos13091360
APA StyleOgurtsov, M. (2022). Long-Term Variability of Summer Temperature in the Southern Part of South America—Is There a Connection with Changes in Solar Activity? Atmosphere, 13(9), 1360. https://doi.org/10.3390/atmos13091360