Attribution Analysis of Runoff Change in the Upper Reaches of the Kaidu River Basin Based on a Modified Budyko Framework
Abstract
:1. Introduction
2. Study Area and Data
3. Method
3.1. Mann-Kendall Nonparametric Test
3.2. The Budyko Framework
3.3. Contribution Analysis of Runoff Change
3.4. Climate Elasticity Method
4. Results
4.1. Trends and Variations of Precipitation, Snowfall, EP, and Runoff
4.2. Attribution Analysis of Runoff Change
4.3. The Influence of the Snowmelt on Runoff Change
4.4. The First-Order Hydro-Climatic Relationship
5. Discussion
5.1. Effects of Different Methods for Distinguishing Precipitation Types on the Results
5.2. The Physical Response of Runoff to Different Variables
5.3. Uncertainties and Limitations
6. Conclusions
- (1)
- From 1960 to 2010, the precipitation, snowfall, air temperature, and runoff exhibited an upward trend in the upper reaches of the Kaidu River basin, while EP showed a downward trend, but the snowfall ratio did not change significantly. In the two periods divided by 1995, the relative change in runoff was evident.
- (2)
- From the base period to the change period, the runoff increased by 27.76%. The major factor leading to the increase in runoff was the change in precipitation, whose contribution rate was 81.42%. The contributions of landscape, snow ratio, and EP change to the runoff alteration accounted for 9.07%, 2.64%, and 1.83%, respectively. The elasticity coefficients of runoff to precipitation, landscape, snow ratio, and EP in the base period were 1.24, −0.74, 0.22, and −0.24, and that in the change period were 1.23, −0.69, 0.19, and −0.23, respectively.
- (3)
- Compared with the original Budyko framework, the contribution of precipitation and EP to the runoff change decreased, and that of landscape increased after considering the snowmelt in the modified Budyko framework. This is because the snowmelt did not participate in the evapotranspiration process, which altered the water-energy condition.
- (4)
- A larger snow ratio led to a larger runoff elasticity coefficient, suggesting that the variation of runoff increases with the increase in the snow ratio.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) IPCC, 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. [Google Scholar]
- Elsner, M.M.; Cuo, L.; Voisin, N.; Deems, J.S.; Hamlet, A.F.; Vano, J.A.; Mickelson, K.E.B.; Lee, S.-Y.; Lettenmaier, D.P. Implications of 21st century climate change for the hydrology of Washington State. Clim. Chang. 2010, 102, 225–260. [Google Scholar] [CrossRef]
- Milner, A.M.; Brown, L.E.; Hannah, D.M. Hydroecological response of river systems to shrinking glaciers. Hydrol. Process. 2009, 23, 62–77. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, X.; Du, J.; Wang, H. Evaluating the different responses to climatic factors between snow water equivalent and snow cover area in the Central Tianshan Mountains. Theor. Appl. Climatol. 2022, 148, 1563–1576. [Google Scholar] [CrossRef]
- Adam, J.C.; Hamlet, A.F.; Lettenmaier, D.P. Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrol. Process. 2009, 23, 962–972. [Google Scholar] [CrossRef]
- Nohara, D.; Kitoh, A.; Hosaka, M.; Oki, T. Impact of climate change on river discharge projected by multimodel ensemble. J. Hydrometeorol. 2006, 7, 1076–1089. [Google Scholar] [CrossRef]
- Barnhart, T.B.; Molotch, N.P.; Livneh, B.; Harpold, A.A.; Knowles, J.F.; Schneider, D. Snowmelt rate dictates streamflow. Geophys. Res. Lett. 2016, 43, 8006–8016. [Google Scholar] [CrossRef]
- Sexstone, G.A.; Driscoll, J.M.; Hay, L.E.; Hammond, J.C.; Barnhart, T.B. Runoff sensitivity to snow depletion curve representation within a continental scale hydrologic model. Hydrol. Process. 2020, 34, 2365–2380. [Google Scholar] [CrossRef]
- Kure, S.; Jang, S.; Ohara, N.; Kavvas, M.L.; Chen, Z.Q. Hydrologic impact of regional climate change for the snow-fed and glacier-fed river basins in the Republic of Tajikistan: Statistical downscaling of global climate model projections. Hydrol. Process. 2013, 27, 4071–4090. [Google Scholar] [CrossRef]
- Xiang, Y.; Wang, Z.; Zhang, H.; Chen, Y. Study of snowmelt runoff simulation in arid regions: Progress and prospect. J. Glaciol. Geocryol. 2017, 39, 892–901. [Google Scholar]
- Immerzeel, W.W.; van Beek, L.P.; Bierkens, M.F. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Liu, J.; Long, A.; Deng, X.; Yin, Z.; Deng, M.; An, Q.; Gu, X.; Li, S.; Liu, G. The Impact of Climate Change on Hydrological Processes of the Glacierized Watershed and Projections. Remote Sens. 2022, 14, 1314. [Google Scholar] [CrossRef]
- Xie, J.; Xu, Y.-P.; Guo, Y.; Wang, Y. Detecting the dominant contributions of runoff variance across the source region of the Yellow River using a new decomposition framework. Hydrol. Res. 2021, 52, 1015–1032. [Google Scholar] [CrossRef]
- Budyko, M.I. Climate and Life; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Fu, B.P. On the calculation of the evaporation from land surface. Sci. Atmos. Sin. 1981, 5, 23–31. [Google Scholar]
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Western, A.W.; Briggs, P.R. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, W02502. [Google Scholar] [CrossRef]
- Greve, P.; Gudmundsson, L.; Orlowsky, B.; Seneviratne, S.I. A two-parameter Budyko function to represent conditions under which evapotranspiration exceeds precipitation. Hydrol. Earth Syst. Sci. 2016, 20, 2195–2205. [Google Scholar] [CrossRef]
- De Lavenne, A.; Andréassian, V. Impact of climate seasonality on catchment yield: A parameterization for commonly-used water balance formulas. J. Hydrol. 2018, 558, 266–274. [Google Scholar] [CrossRef]
- Bai, L.; Chen, Z.; Xu, J.; Li, W. Multi-scale response of runoff to climate fluctuation in the headwater region of Kaidu River in Xinjiang of China. Theor. Appl. Climatol. 2015, 125, 703–712. [Google Scholar] [CrossRef]
- Liu, Y.; Bao, A.; Chen, X.; Zhong, R. A Model Study of the Discharges Effects of Kaidu River on the Salinity Structure of Bosten Lake. Water 2018, 11, 8. [Google Scholar] [CrossRef]
- Shen, Y.J.; Shen, Y.; Fink, M.; Kralisch, S.; Brenning, A. Unraveling the Hydrology of the Glacierized Kaidu Basin by Integrating Multisource Data in the Tianshan Mountains, Northwestern China. Water Resour. Res. 2018, 54, 557–580. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Bao, A.; Zhou, C.; Chen, X.; Zhang, X. Study on snowmelt runoff simulation in the Kaidu River basin. Sci. China Ser. D Earth Sci. 2007, 50, 26–35. [Google Scholar] [CrossRef]
- Stewart, I.T. Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol. Process. 2009, 23, 78–94. [Google Scholar] [CrossRef]
- Song, Y.; Zuo, Q.; Ma, J. Variation and dynamic drivers of drought in Kaidu River Basin based on the SWAT model. Arid Zone Res. 2021, 38, 610–617. [Google Scholar]
- Hao, Y.; Sun, F.; Wang, H.; Liu, W.; Shen, Y.-J.; Li, Z.; Hu, S. Understanding climate-induced changes of snow hydrological processes in the Kaidu River Basin through the CemaNeige-GR6J model. Catena 2022, 212, 106082. [Google Scholar] [CrossRef]
- Basher, M.A.; Liu, T.; Kabir, M.A.; Ntegeka, V.; Willems, P. Climate change impact on the hydrological extremes in the Kaidu river basin, China. J. Flood Eng. 2010, 1, 93–108. [Google Scholar]
- Chen, Z.; Chen, Y. Effects of climate fluctuations on runoff in the headwater region of the Kaidu River in northwestern China. Front. Earth Sci. 2014, 8, 309–318. [Google Scholar] [CrossRef]
- Zhuang, X.W.; Li, Y.P.; Huang, G.H.; Liu, J. Assessment of climate change impacts on watershed in cold-arid region: An integrated multi-GCM-based stochastic weather generator and stepwise cluster analysis method. Clim. Dyn. 2015, 47, 191–209. [Google Scholar] [CrossRef]
- Gordon, B.L.; Brooks, P.D.; Krogh, S.A.; Boisrame, G.F.S.; Carroll, R.W.H.; McNamara, J.P.; Harpold, A.A. Why does snowmelt-driven streamflow response to warming vary? A data-driven review and predictive framework. Environ. Res. Lett. 2022, 17, 053004. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, T.; Han, J.; Yang, W.; Yang, H. Decreases in Mean Annual Streamflow and Interannual Streamflow Variability Across Snow-Affected Catchments Under a Warming Climate. Geophys. Res. Lett. 2022, 49, e2021GL097442. [Google Scholar] [CrossRef]
- Tao, H.; Wang, G.; Shao, C.; Song, Y.; Zou, S. Climate Change and Its Effects on Runoff at the Headwater of Kaidu River. J. Glaciol. Geocryol. 2007, 29, 413–417. [Google Scholar]
- Xie, Y.; Zhu, J. Hydrological Characteristics of Kaidou River Basin. Hydrology 2011, 31, 92–96. [Google Scholar]
- Xu, J.; Chen, Y.; Ji, M.; Lu, F. Climate change and its effects on runoff of Kaidu River, Xinjiang, China: A multiple time-scale analysis. Chin. Geogr. Sci. 2008, 18, 331–339. [Google Scholar] [CrossRef]
- Shen, Y.; Su, H.; Wang, G.; Mao, W.; Wang, S.; Han, P.; Wang, N.; Li, Z. The Responses of Glaciers and Snow Cover to Climate Change in Xinjiang(I): Hydrological Effect. J. Glaciol. Geocryol. 2013, 35, 513–527. [Google Scholar]
- Ding, B.; Yang, K.; Qin, J.; Wang, L.; Chen, Y.; He, X. The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization. J. Hydrol. 2014, 513, 154–163. [Google Scholar] [CrossRef]
- Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop evapotranspiration estimation with FAO56: Past and future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Xin, J.; Sun, X.; Liu, L.; Li, H.; Liu, X.; Li, X.; Cheng, L.; Xu, Z. Quantifying the contribution of climate and underlying surface changes to alpine runoff alterations associated with glacier melting. Hydrol. Process. 2021, 35, e14069. [Google Scholar] [CrossRef]
- Yang, H.; Yang, D.; Lei, Z.; Sun, F. New analytical derivation of the mean annual water-energy balance equation. Water Resour. Res. 2008, 44, W03410. [Google Scholar] [CrossRef]
- Du, C.; Sun, F.; Yu, J.; Liu, X.; Chen, Y. New interpretation of the role of water balance in an extended Budyko hypothesis in arid regions. Hydrol. Earth Syst. Sci. 2016, 20, 393–409. [Google Scholar] [CrossRef]
- Zhang, D.; Cong, Z.; Ni, G.; Yang, D.; Hu, S. Effects of snow ratio on annual runoff within the Budyko framework. Hydrol. Earth Syst. Sci. 2015, 19, 1977–1992. [Google Scholar] [CrossRef]
- Anderson, E.A. Development and testing of snow pack energy balance equations. Water Resour. Res. 1968, 4, 19–37. [Google Scholar] [CrossRef]
- Fu, G.; Charles, S.P.; Chiew, F.H.S. A two-parameter climate elasticity of streamflow index to assess climate change effects on annual streamflow. Water Resour. Res. 2007, 43, W11419. [Google Scholar] [CrossRef]
- Dey, P.; Mishra, A. Separating the impacts of climate change and human activities on streamflow: A review of methodologies and critical assumptions. J. Hydrol. 2017, 548, 278–290. [Google Scholar] [CrossRef]
- Yin, X.; Wu, Y.; Zhao, W.; Zhao, F.; Sun, P.; Song, Y.; Qiu, L. Drought characteristics and sensitivity of potential evapotranspiration to climatic factors in the arid and semi-arid areas of northwest China. Hydrogeol. Eng. Geol. 2021, 48, 20–30. [Google Scholar]
- Ni, G.; Li, X.; Cong, Z.; Sun, F.; Liu, Y. Temporal and spatial characteristics of reference evapotranspiration in China. Trans. Chin. Soc. Agric. Eng. 2006, 22, 1–4. [Google Scholar]
- Zhang, S.; Yang, Y.; McVicar, T.R.; Yang, D. An Analytical Solution for the Impact of Vegetation Changes on Hydrological Partitioning within the Budyko Framework. Water Resour. Res. 2018, 54, 519–537. [Google Scholar] [CrossRef]
- Padrón, R.S.; Gudmundsson, L.; Greve, P.; Seneviratne, S.I. Large-Scale Controls of the Surface Water Balance over Land: Insights from a Systematic Review and Meta-Analysis. Water Resour. Res. 2017, 53, 9659–9678. [Google Scholar] [CrossRef]
- Xu, X.; Liu, W.; Scanlon, B.R.; Zhang, L.; Pan, M. Local and global factors controlling water-energy balances within the Budyko framework. Geophys. Res. Lett. 2013, 40, 6123–6129. [Google Scholar] [CrossRef]
- Ning, T.; Li, Z.; Feng, Q.; Liu, W.; Li, Z. Comparison of the effectiveness of four Budyko-based methods in attributing long-term changes in actual evapotranspiration. Sci. Rep. 2018, 8, 12665. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wang, L.; Li, C.; Zhang, Y.; Wei, J.; Xie, X.; Lv, J. Separating the contributions of climate change and human activities to regional AET variability by using a developed analytical framework. Stoch. Environ. Res. Risk Assess. 2020, 34, 1831–1845. [Google Scholar] [CrossRef]
- Wilson, G.; Green, M.; Brown, J.; Campbell, J.; Groffman, P.; Durán, J.; Morse, J. Snowpack affects soil microclimate throughout the year. Clim. Chang. 2020, 163, 705–722. [Google Scholar] [CrossRef]
- Lu, Z.; Peng, S.; Slette, I.; Cheng, G.; Li, X.; Chen, A. Soil moisture seasonality alters vegetation response to drought in the Mongolian Plateau. Environ. Res. Lett. 2021, 16, 014050. [Google Scholar] [CrossRef]
- Han, C.; Chen, R.; Liu, J.; Yang, Y.; Qing, W. A Discuss of the Separating Solid and Liquid Precipitations. J. Glaciol. Geocryol. 2010, 32, 249–256. [Google Scholar]
- Yang, D.; Shao, W.; Yeh, P.J.F.; Yang, H.; Kanae, S.; Oki, T. Impact of vegetation coverage on regional water balance in the nonhumid regions of China. Water Resour. Res. 2009, 45, W00A14. [Google Scholar] [CrossRef]
- Du, J.; Jiaerheng, A.; Zhao, C.; Fang, G.; Yin, J.; Xiang, B.; Yuan, X.; Fang, S. Dynamic changes in vegetation NDVI from 1982 to 2012 and its responses to climate change and human activities in Xinjiang, China. J. Appl. Ecol. 2015, 26, 3567–3578. [Google Scholar]
- Tian, L.; Li, H.; Li, F.; Li, X.; Du, X.; Ye, X. Identification of key influence factors and an empirical formula for spring snowmelt-runoff: A case study in mid-temperate zone of northeast China. Sci. Rep. 2018, 8, 16950. [Google Scholar] [CrossRef]
- Zhu, W.; Shangguan, D.; Guo, W.; Xu, J. Glaciers in some representative basins in the middle of the Tianshan Mountains: Change and response to climate change. J. Glaciol. Geocryol. 2014, 36, 1376–1384. [Google Scholar]
- Sorg, A.; Bolch, T.; Stoffel, M.; Solomina, O.; Beniston, M. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat. Clim. Chang. 2012, 2, 725–731. [Google Scholar] [CrossRef]
- Strasser, U.; Bernhardt, M.; Weber, M.; Liston, G.E.; Mauser, W. Is snow sublimation important in the alpine water balance? Cryosphere 2008, 2, 53–66. [Google Scholar] [CrossRef]
- Xu, Z.; Cheng, L.; Liu, P.; Makarieva, O.; Chen, M. Detecting and quantifying the impact of long-term terrestrial water storage changes on the runoff ratio in the head regions of the two largest rivers in China. J. Hydrol. 2021, 601, 126668. [Google Scholar] [CrossRef]
Station Number | Station Name | Latitude and Longitude | Elevation (m) | Station Type |
---|---|---|---|---|
51,241 | Tuoli | (45.56 N, 83.36 E) | 1077.8 | Meteorological station |
51,243 | Kelamayi | (45.37 N, 84.51 E) | 449.5 | Meteorological station |
51,334 | Jinghe | (44.34 N, 82.49 E) | 329.2 | Meteorological station |
51,367 | Hutubi | (44.1 N, 86.51 E) | 575.1 | Meteorological station |
51,469 | Urumqi Mushizhan | (43.27 N, 87.11 E) | 1930 | Meteorological station |
51,470 | Tianchi | (43.53 N, 88.07 E) | 1942.5 | Meteorological station |
51,477 | Dabancheng | (43.21 N, 88.19 E) | 1103.5 | Meteorological station |
51,542 | Bayinbuluke | (43.02 N, 84.09 E) | 2458 | Meteorological station |
51,567 | Yanqi | (42.05 N, 86.34 E) | 1055.3 | Meteorological station |
51,639 | Shaya | (41.14 N, 82.47 E) | 980.4 | Meteorological station |
51,656 | Kuerle | (41.45 N, 86.08 E) | 931.5 | Meteorological station |
705,700 | Dashankou | (42.25 N, 85.73 E) | 1270 | Hydrological station |
Runoff Period | Precipitation (mm) | Snowfall (mm) | Temperature (°C) | EP (mm) | Snow Ratio | Runoff (mm) | Basin Parameter | Wind Speed (m/s) | Sunshine Time (h) | Relative Humidity |
---|---|---|---|---|---|---|---|---|---|---|
1960–1995 | 339.9 | 92.7 | −2.7 | 1151.3 | 0.275 | 171.4 | 0.735 | 3.4 | 7.9 | 0.53 |
1996–2010 | 401.8 | 114.0 | −1.7 | 1127.0 | 0.284 | 219.0 | 0.710 | 2.9 | 7.7 | 0.55 |
Variable | Trend | Linear Change Rate |
---|---|---|
Precipitation | increase | 1.78 (mm/year) |
Snowfall | increase | 0.86 (mm/year) |
EP | decrease | −1.43 (mm/year) |
Runoff | increase | 1.03 (mm/year) |
Temperature | increase | 0.03 (°C/year) |
Snow ratio | increase | 0.001 |
Runoff Period | Precipitation (mm) | Snowfall (mm) | Temperature (°C) | EP (mm) | Snow Ratio | Runoff (mm) | Basin Parameter |
---|---|---|---|---|---|---|---|
1960–1995 | 339.9 | 100.0 | −2.7 | 1151.3 | 0.295 | 171.4 | 0.756 |
1996–2010 | 401.8 | 121.5 | −1.7 | 1127.0 | 0.302 | 219.0 | 0.726 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, G.; Gao, B. Attribution Analysis of Runoff Change in the Upper Reaches of the Kaidu River Basin Based on a Modified Budyko Framework. Atmosphere 2022, 13, 1385. https://doi.org/10.3390/atmos13091385
Shi G, Gao B. Attribution Analysis of Runoff Change in the Upper Reaches of the Kaidu River Basin Based on a Modified Budyko Framework. Atmosphere. 2022; 13(9):1385. https://doi.org/10.3390/atmos13091385
Chicago/Turabian StyleShi, Guosen, and Bing Gao. 2022. "Attribution Analysis of Runoff Change in the Upper Reaches of the Kaidu River Basin Based on a Modified Budyko Framework" Atmosphere 13, no. 9: 1385. https://doi.org/10.3390/atmos13091385
APA StyleShi, G., & Gao, B. (2022). Attribution Analysis of Runoff Change in the Upper Reaches of the Kaidu River Basin Based on a Modified Budyko Framework. Atmosphere, 13(9), 1385. https://doi.org/10.3390/atmos13091385