Simulation of the Impact of Instantaneous Solar UV Radiation Enhancements on the Middle Atmosphere via UV Radiation Reconstruction
Abstract
:1. Introduction
2. Model Description and Methods
2.1. Solar Spectral Irradiance Data
2.2. WACCM-X
2.3. Numerical Experiment
3. Results and Discussion
3.1. Atmospheric Ozone Differences between the Flare Simulation and Baseline Simulation
3.2. Atmospheric Temperature Differences between Flare Simulation and Baseline Simulation
3.3. Atmospheric Density Differences between the Flare Simulation and Baseline Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matthes, K.; Langematz, U.; Gray, L.L.; Kodera, K.; Labitzke, K. Improved 11-year solar signal in the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM). J. Geophys. Res. Earth Surf. 2004, 109, D06101. [Google Scholar] [CrossRef]
- Matthes, K.; Kuroda, Y.; Kodera, K.; Langematz, U. Transfer of the solar signal from the stratosphere to the troposphere: Northern winter. J. Geophys. Res. Earth Surf. 2006, 111, D06108. [Google Scholar] [CrossRef]
- Lean, J.L.; White, O.R.; Livingston, W.C.; Picone, J.M. Variability of a composite chromospheric irradiance index during the 11-year activity cycle and over longer time periods. J. Geophys. Res. Space Phys. 2001, 106, 10645–10658. [Google Scholar] [CrossRef]
- Lamarque, J.-F.; Kinnison, D.E.; Mills, M.J.; Marsh, D.R.; Calvo, N.; Polvani, L.M. Climate Change from 1850 to 2005 Simulated in CESM1(WACCM). J. Clim. 2013, 26, 7372–7391. [Google Scholar] [CrossRef]
- Taalas, P.; Damski, J.; Kyrö, E.; Ginzburg, M.; Talamoni, G. Effect of stratospheric ozone variations on UV radiation and on tropospheric ozone at high latitudes. J. Geophys. Res. Atmos. 1997, 102, 1533–1539. [Google Scholar] [CrossRef]
- Ward, W.; Lubken, F.-J.; Seppala, A. ROSMIC, a new project in the SCOSTEP VarSITI program. In Proceedings of the 40th COSPAR Scientific Assembly, Moscow, Russia, 2–10 August 2014; p. C2.2-1-14. Available online: https://ui.adsabs.harvard.edu/abs/2014cosp...40E3600W/abstract (accessed on 22 August 2022).
- Woods, T.N.; Eparvier, F.G.; Fontenla, J.; Harder, J.; Kopp, G.; McClintock, W.E.; Rottman, G.; Smiley, B.; Snow, M. Solar irradiance variability during the October 2003 solar storm period. Geophys. Res. Lett. 2004, 31, L10802. [Google Scholar] [CrossRef]
- Karpechko, A.Y.; Backman, L.; Thölix, L.; Ialongo, I.; Andersson, M.; Fioletov, V.; Heikkilä, A.; Johnsen, B.; Koskela, T.; Kyrölä, E.; et al. The link between springtime total ozone and summer UV radiation in Northern Hemisphere. J. Geophys. Res. Atmos. 2013, 118, 8649–8661. [Google Scholar] [CrossRef]
- Woods, T.N.; Eparvier, F.G.; Bailey, S.M.; Chamberlin, P.C.; Lean, J.; Rottman, G.J.; Solomon, S.C.; Tobiska, W.K.; Woodraska, D.L. Solar EUV Experiment (SEE): Mission overview and first results. J. Geophys. Res. Space Phys. 2005, 110, A01312. [Google Scholar] [CrossRef]
- Summers, M.E.; Strobel, D.F.; Bevilacqua, R.M.; Zhu, X.; DeLand, M.T.; Allen, M.; Keating, G.M. A model study of the response of mesospheric ozone to short-term solar ultraviolet flux variations. J. Geophys. Res. Atmos. 1990, 95, 22523–22538. [Google Scholar] [CrossRef]
- Keating, G.M.; Pitts, M.C.; Brasseur, G.; De Rudder, A. Response of middle atmosphere to short-term solar ultraviolet variations: 1. Observations. J. Geophys. Res. 1987, 92, 889–902. [Google Scholar] [CrossRef]
- Brasseur, G.; De Rudder, A.; Keating, G.M.; Pitts, M.C. Response of middle atmosphere to short-term solar ultraviolet variations: 2. Theory. J. Geophys. Res. 1987, 92, 903–914. [Google Scholar] [CrossRef]
- Gan, Q.; Du, J.; Fomichev, V.I.; Ward, W.E.; Beagley, S.R.; Zhang, S.; Yue, J. Temperature responses to the 11 year solar cycle in the mesosphere from the 31 year (1979–2010) extended Canadian Middle Atmosphere Model simulations and a comparison with the 14 year (2002–2015) TIMED/SABER observations. J. Geophys. Res. Space Phys. 2017, 122, 4801–4818. [Google Scholar] [CrossRef]
- Thiéblemont, R.; Bekki, S.; Marchand, M.; Bossay, S.; Schmidt, H.; Meftah, M.; Hauchecorne, A. Nighttime Mesospheric/Lower Thermospheric Tropical Ozone Response to the 27-Day Solar Rotational Cycle: ENVISAT-GOMOS Satellite Observations Versus HAMMONIA Idealized Chemistry-Climate Model Simulations. J. Geophys. Res. Atmos. 2018, 123, 8883–8896. [Google Scholar] [CrossRef]
- Pikulina, P.; Mironova, I.; Rozanov, E.; Karagodin, A. September 2017 Solar Flares Effect on the Middle Atmosphere. Remote Sens. 2022, 14, 2560. [Google Scholar] [CrossRef]
- Pettit, J.; Randall, C.E.; Marsh, D.R.; Bardeen, C.G.; Qian, L.; Jackman, C.H.; Woods, T.N.; Coster, A.; Harvey, V.L. Effects of the September 2005 Solar Flares and Solar Proton Events on the Middle Atmosphere in WACCM. J. Geophys. Res. Space Phys. 2018, 123, 5747–5763. [Google Scholar] [CrossRef]
- Le, H.; Liu, L.; Ren, Z.; Chen, Y.; Zhang, H.; Wan, W. A modeling study of global ionospheric and thermospheric responses to extreme solar flare. J. Geophys. Res. Space Phys. 2016, 121, 832–840. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Verkhoglyadova, O.P.; Mannucci, A.J.; Lakhina, G.S.; Li, G.; Zank, G.P. A brief review of “solar flare effects” on the ionosphere. Radio Sci. 2009, 44, RS0A17. [Google Scholar] [CrossRef]
- Solomon, S.C.; Qian, L. Solar extreme-ultraviolet irradiance for general circulation models. J. Geophys. Res. Space Phys. 2005, 110, A10306. [Google Scholar] [CrossRef]
- Jackman, C.H.; DeLand, M.T.; Labow, G.J.; Fleming, E.L.; Weisenstein, D.K.; Ko, M.K.W.; Sinnhuber, M.; Russell, J.M. Neutral atmospheric influences of the solar proton events in October-November 2003. J. Geophys. Res. Space Phys. 2005, 110, A09S27. [Google Scholar] [CrossRef]
- Jackman, C.H.; Marsh, D.R.; Vitt, F.M.; Garcia, R.R.; Randall, C.E.; Fleming, E.L.; Frith, S.M. Long-term middle atmospheric influence of very large solar proton events. J. Geophys. Res. 2009, 114, D11304. [Google Scholar] [CrossRef]
- Jackman, C.H.; McPeters, R.D.; Labow, G.J.; Fleming, E.L.; Praderas, C.J.; Russell, J.M. Northern hemisphere atmospheric effects due to the July 2000 Solar Proton Event. Geophys. Res. Lett. 2001, 28, 2883–2886. [Google Scholar] [CrossRef]
- Bag, T. Impact of M-solar flare-induced solar proton event on mesospheric Na layer over Utah (41.8° N,112° W). J. Geophys. Res. Space Phys. 2017, 122, 8808–8815. [Google Scholar] [CrossRef]
- Denton, M.H.; Kivi, R.; Ulich, T.; Clilverd, M.A.; Rodger, C.J.; von der Gathen, P. Northern Hemisphere Stratospheric Ozone Depletion Caused by Solar Proton Events: The Role of the Polar Vortex. Geophys. Res. Lett. 2018, 45, 2115–2124. [Google Scholar] [CrossRef]
- Pedatella, N.M.; Chau, J.L.; Vierinen, J.; Qian, L.; Reyes, P.; Kudeki, E.; Lehmacher, G.; Oppenheim, M. Solar Flare Effects on 150-km Echoes Observed Over Jicamarca: WACCM-X Simulations. Geophys. Res. Lett. 2019, 46, 10951–10958. [Google Scholar] [CrossRef]
- Chamberlain, J.W. Theory of Planetary Atmospheres: An Introduction to Their Physics and Chemistry; Elsevier: Amsterdam, The Netherlands, 1978. [Google Scholar]
- DeLand, M.T.; Floyd, L.E.; Marchenko, S.; Tiruchirapalli, R. Creation of the GSFCSSI2 Composite Solar Spectral Irradiance Data Set. Earth Space Sci. 2019, 6, 1284–1298. [Google Scholar] [CrossRef]
- Chamberlin, P.C.; Eparvier, F.G.; Knoer, V.; Leise, H.; Pankratz, A.; Snow, M.; Templeman, B.; Thiemann, E.M.B.; Woodraska, D.L.; Woods, T.N. The Flare Irradiance Spectral Model-Version 2 (FISM2). Space Weather 2020, 18, e2020SW002588. [Google Scholar] [CrossRef]
- McClintock, W.; Rottman, G.; Woods, T. Solar Stellar Irradiance Comparison Experiment II (SOLSTICE II) for the NASA Earth Observing System’s Solar Radiation and Climate Experiment mission. SPIE Proc. 2000, 4135, 225. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Holland, M.; Gent, P.R.; Ghan, S.J.; Kay, J.E.; Kushner, P.J.; Lamarque, J.-F.; Large, W.G.; Lawrence, D.; Lindsay, K.; et al. The Community Earth System Model: A Framework for Collaborative Research. Bull. Am. Meteorol. Soc. 2013, 94, 1339–1360. [Google Scholar] [CrossRef]
- Liu, H.-L.; Foster, B.T.; Hagan, M.E.; McInerney, J.M.; Maute, A.; Qian, L.; Richmond, A.D.; Roble, R.G.; Solomon, S.C.; Garcia, R.R.; et al. Thermosphere extension of the Whole Atmosphere Community Climate Model. J. Geophys. Res. Space Phys. 2010, 115, A12302. [Google Scholar] [CrossRef]
- Chamberlin, P.C.; Woods, T.N.; Eparvier, F.G. Flare Irradiance Spectral Model (FISM): Daily component algorithms and results. Space Weather 2007, 5, S07005. [Google Scholar] [CrossRef] [Green Version]
- Chamberlin, P.C.; Woods, T.N.; Eparvier, F.G. Flare Irradiance Spectral Model (FISM): Flare component algorithms and results. Space Weather 2008, 6, S05001. [Google Scholar] [CrossRef]
- Abalos, M.; Polvani, L.M.; Calvo, N.; Kinnison, D.; Ploeger, F.; Randel, W.; Solomon, S. New Insights on the Impact of Ozone-Depleting Substances on the Brewer-Dobson Circulation. J. Geophys. Res. Atmos. 2019, 124, 2435–2451. [Google Scholar] [CrossRef]
- Qian, L.; Burns, A.G.; Solomon, S.C.; Chamberlin, P.C. Solar flare impacts on ionospheric electrodyamics. Geophys. Res. Lett. 2012, 39, L06101. [Google Scholar] [CrossRef]
Case | ssi < 190 nm | 190 nm < ssi < 400 nm | ssi > 400 nm | ap | kp |
---|---|---|---|---|---|
Baseline | Daily | Daily | Daily | 10 | 1 |
Flare | 5-min flare data | 5-min simulation data | Daily | 10 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Yang, J.; Hu, X.; Cheng, X.; Xiao, C. Simulation of the Impact of Instantaneous Solar UV Radiation Enhancements on the Middle Atmosphere via UV Radiation Reconstruction. Atmosphere 2022, 13, 1386. https://doi.org/10.3390/atmos13091386
Liu D, Yang J, Hu X, Cheng X, Xiao C. Simulation of the Impact of Instantaneous Solar UV Radiation Enhancements on the Middle Atmosphere via UV Radiation Reconstruction. Atmosphere. 2022; 13(9):1386. https://doi.org/10.3390/atmos13091386
Chicago/Turabian StyleLiu, Dan, Junfeng Yang, Xiong Hu, Xuan Cheng, and Cunying Xiao. 2022. "Simulation of the Impact of Instantaneous Solar UV Radiation Enhancements on the Middle Atmosphere via UV Radiation Reconstruction" Atmosphere 13, no. 9: 1386. https://doi.org/10.3390/atmos13091386
APA StyleLiu, D., Yang, J., Hu, X., Cheng, X., & Xiao, C. (2022). Simulation of the Impact of Instantaneous Solar UV Radiation Enhancements on the Middle Atmosphere via UV Radiation Reconstruction. Atmosphere, 13(9), 1386. https://doi.org/10.3390/atmos13091386