Individual and Coupled Effects of Future Climate and Land Use Scenarios on Water Balance Components in an Australian Catchment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The SWAT Model
2.3. Data Preparation
2.3.1. DEM, Land Use, and Soil
2.3.2. Climate Data and Streamflow
2.4. Calibration and Evaluation Methods for the SWAT Model
2.5. Statistical Downscaling Method
2.6. Different Land Use Change Scenarios
2.7. Contribution Analysis of Uncertainty
3. Results
3.1. Streamflow Simulation
3.2. Hydrologic Response to Land Use Change
3.3. Projected Changes in Climatic Variables
3.4. Hydrologic Responses to Future Climate Change
3.5. Combined Effects of Climate and Land Use Changes
4. Discussion
4.1. SWAT Modeling Assessment
4.2. Modeled Hydrologic Response to Land Use Change Scenarios
4.3. Modeled Hydrologic Response to Future Climate Change
4.4. Modeled Hydrologic Responses to Combined Effects and Uncertainties
4.5. Caveats and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeng, Z.; Wang, T.; Zhou, F.; Ciais, P.; Mao, J.; Shi, X.; Piao, S. A worldwide analysis of spatiotemporal changes in water balance-based evapotranspiration from 1982 to 2009. J. Geophys. Res. Atmos. 2014, 119, 1186–1202. [Google Scholar] [CrossRef]
- Joseph, J.; Ghosh, S.; Pathak, A.; Sahai, A. Hydrologic impacts of climate change: Comparisons between hydrological parameter uncertainty and climate model uncertainty. J. Hydrol. 2018, 566, 1–22. [Google Scholar]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Milly, P.C.; Dunne, K.A.; Vecchia, A.V. Global pattern of trends in streamflow and water availability in a changing climate. Nature 2005, 438, 347–350. [Google Scholar] [CrossRef]
- Jones, R.N.; Chiew, F.H.; Boughton, W.C.; Zhang, L. Estimating the sensitivity of mean annual runoff to climate change using selected hydrological models. Adv. Water Resour. 2006, 29, 1419–1429. [Google Scholar] [CrossRef]
- Reshmidevi, T.; Kumar, D.N.; Mehrotra, R.; Sharma, A. Estimation of the climate change impact on a catchment water balance using an ensemble of GCMs. J. Hydrol. 2018, 556, 1192–1204. [Google Scholar] [CrossRef]
- Labat, D.; Goddéris, Y.; Probst, J.L.; Guyot, J.L. Evidence for global runoff increase related to climate warming. Adv. Water Resour. 2004, 27, 631–642. [Google Scholar] [CrossRef]
- Legates, D.R.; Lins, H.F.; Mccabe, G.J. Comments on “Evidence for global runoff increase related to climate warming” by Labat et al. Adv. Water Resour. 2005, 28, 1310–1315. [Google Scholar] [CrossRef]
- Sterling, S.M.; Ducharne, A.; Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Change 2013, 3, 385. [Google Scholar] [CrossRef]
- IPCC. Climate Change and Land: An IPCC Special Report on climate change, desertifcation, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. In Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Switzerland: Geneva, Switzerland, 2019; pp. 1–41. [Google Scholar]
- Mohammady, M.; Moradi, H.R.; Zeinivand, H.; Temme, A.J.A.M.; Yazdani, M.R.; Pourghasemi, H.R. Modeling and assessing the effects of land use changes on runoff generation with the CLUE-s and WetSpa models. Theor. Appl. Climatol. 2018, 133, 459–471. [Google Scholar] [CrossRef]
- Li, G.; Zhang, F.; Jing, Y.; Liu, Y.; Sun, G. Response of evapotranspiration to changes in land use and land cover and climate in China during 2001–2013. Sci. Total Environ. 2017, 596–597, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Tian, H.; Chen, G.; Ren, W.; Zhang, C.; Liu, J. Effects of Land-Use and Land-Cover Change on Evapotranspiration and Water Yield in China During 1900–2000. J. Am. Water Resour. Assoc. 2008, 44, 1193–1207. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Shangguan, Z.P. The change of soil water storage in three land use types after 10years on the Loess Plateau. Catena 2016, 147, 87–95. [Google Scholar] [CrossRef]
- Li, Q.; Cai, T.; Yu, M.; Lu, G.; Xie, W.; Bai, X. Investigation into the impacts of land-use change on runoff generation characteristics in the upper Huaihe River Basin, China. J. Hydrol. Eng. 2013, 18, 1464–1470. [Google Scholar]
- Siriwardena, L.; Finlayson, B.; McMahon, T. The impact of land use change on catchment hydrology in large catchments: The Comet River, Central Queensland, Australia. J. Hydrol. 2006, 326, 199–214. [Google Scholar] [CrossRef]
- Bruijnzeel, L.A. Hydrological Functions of Tropical Forests: Not Seeing the Soil for the Trees? Agric. Ecosyst. Environ. 2004, 10401, 185–228. [Google Scholar] [CrossRef]
- Sun, G.; Zhou, G.; Zhang, Z.; Wei, X.G.; McNulty, S.; Vose, J.M. Potential water yield reduction due to forestation across China. J. Hydrol. 2006, 328, 548–558. [Google Scholar] [CrossRef]
- Buttle, J.M.; Metcalfe, R.A. Boreal forest disturbance and streamflow response, northeastern Ontario. Can. J. Fish. Aquat. Sci. 2000, 57, 5–18. [Google Scholar] [CrossRef]
- Ceballos-Barbancho, A.; Morán-Tejeda, E.; Luengo-Ugidos, M.; Llorente-Pinto, J.M. Water resources and environmental change in a Mediterranean environment: The south-west sector of the Duero river basin (Spain). J. Hydrol. 2008, 351, 126–138. [Google Scholar]
- Zhou, G.; Wei, X.; Luo, Y.; Zhang, M.; Li, Y.; Qiao, Y.; Liu, H.; Wang, C. Forest recovery and river discharge at the regional scale of Guangdong Province, China. Water Resour. Res. 2010, 46, 5109–5115. [Google Scholar] [CrossRef]
- Zhou, G.; Wei, X.; Chen, X.; Zhou, P.; Liu, X.; Xiao, Y.; Sun, G.; Scott, D.F.; Zhou, S.; Han, L. Global pattern for the effect of climate and land cover on water yield. Nat. Commun. 2015, 6, 5918. [Google Scholar] [CrossRef] [PubMed]
- CSIRO and Bureau of Meteorology. Climate Change in Australia Information for Australia’s Natural Resource Management Regions: Technical Report; CSIRO and Bureau of Meteorology: Canberra, Australia, 2015. [Google Scholar]
- Heinzeller, D.; Junkermann, W.; Kunstmann, H. Anthropogenic aerosol emissions and rainfall decline in Southwestern Australia: Coincidence or causality? J. Clim. 2016, 29, 8471–8493. [Google Scholar]
- Silberstein, R.; Aryal, S.; Durrant, J.; Pearcey, M.; Braccia, M.; Charles, S.; Boniecka, L.; Hodgson, G.; Bari, M.; Viney, N. Climate change and runoff in south-western Australia. J. Hydrol. 2012, 475, 441–455. [Google Scholar] [CrossRef]
- Petrone, K.C.; Hughes, J.D.; Van Niel, T.G.; Silberstein, R.P. Streamflow decline in southwestern Australia, 1950–2008. Geophys. Res. Lett. 2010, 37, L11401. [Google Scholar] [CrossRef]
- Charles, S.; Silberstein, R.; Teng, J.; Fu, G.; Hodgson, G.; Gabrovsek, C.; Crute, J.; Chiew, F.H.S.; Smith, I.N.; Kirono, D.G.C.; et al. Climate Analyses for South-West Western Australia. In A Report to the Australian Government from the CSIRO South-West Western Australia Sustainable Yields Project; CSIRO: Canberra, Australia, 2010; 83p. [Google Scholar]
- Fraser, E.D.; Simelton, E.; Termansen, M.; Gosling, S.N.; South, A. “Vulnerability hotspots”: Integrating socio-economic and hydrological models to identify where cereal production may decline in the future due to climate change induced drought. Agric. For. Meteorol. 2013, 170, 195–205. [Google Scholar] [CrossRef]
- Teng, J.; Chiew, F.; Vaze, J.; Marvanek, S.; Kirono, D. Estimation of climate change impact on mean annual runoff across continental Australia using Budyko and Fu equations and hydrological models. J. Hydrometeorol. 2012, 13, 1094–1106. [Google Scholar] [CrossRef]
- Mpelasoka, F.; Hennessy, K.; Jones, R.; Bates, B. Comparison of suitable drought indices for climate change impacts assessment over Australia towards resource management. Int. J. Climatol. 2008, 28, 1283–1292. [Google Scholar] [CrossRef]
- Callow, J.N. River Response to Land Clearing and Landscape Salinisation in Southwestern Australia; University of Western Australia: Perth, WA, Australia, 2007. [Google Scholar]
- Gilfedder, M.; Walker, G.R.; Dawes, W.R.; Stenson, M.P. Prioritisation approach for estimating the biophysical impacts of land-use change on stream flow and salt export at a catchment scale. Environ. Model. Softw. 2009, 24, 262–269. [Google Scholar] [CrossRef]
- McFarlane, D.; Stone, R.; Martens, S.; Thomas, J.; Silberstein, R.; Ali, R.; Hodgson, G. Climate change impacts on water yields and demands in south-western Australia. J. Hydrol. 2012, 475, 488–498. [Google Scholar] [CrossRef]
- Barron, O.; Silberstein, R.; Ali, R.; Donohue, R.; McFarlane, D.; Davies, P.; Hodgson, G.; Smart, N.; Donn, M. Climate change effects on water-dependent ecosystems in south-western Australia. J. Hydrol. 2012, 434, 95–109. [Google Scholar] [CrossRef]
- Wilson, M. Identifying Rainfall Decline and Land Use Impacts on Runoff from Catchments in Southwest Western Australia; University of Western Australia: Perth, WA, Australia, 2012. [Google Scholar]
- Chen, J.; Brissette, F.P.; Poulin, A.; Leconte, R. Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed. Water Resour. Res. 2011, 47, W12509. [Google Scholar]
- Crosbie, R.S.; McCallum, J.L.; Walker, G.R.; Chiew, F.H. Modelling climate-change impacts on groundwater recharge in the Murray-Darling Basin, Australia. Hydrogeol. J. 2010, 18, 1639–1656. [Google Scholar] [CrossRef]
- Shen, M.; Chen, J.; Zhuan, M.; Chen, H.; Xu, C.-Y.; Xiong, L. Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology. J. Hydrol. 2018, 556, 10–24. [Google Scholar]
- Zhang, H.; Huang, G.H. Development of climate change projections for small watersheds using multi-model ensemble simulation and stochastic weather generation. Clim. Dyn. 2013, 40, 805–821. [Google Scholar] [CrossRef]
- Notebaert, B.; Verstraeten, G.; Ward, P.; Renssen, H.; Van Rompaey, A. Modeling the sensitivity of sediment and water runoff dynamics to Holocene climate and land use changes at the catchment scale. Geomorphology 2011, 126, 18–31. [Google Scholar] [CrossRef]
- Anache, J.A.; Flanagan, D.C.; Srivastava, A.; Wendland, E.C. Land use and climate change impacts on runoff and soil erosion at the hillslope scale in the Brazilian Cerrado. Sci. Total Environ. 2018, 622, 140–151. [Google Scholar]
- Liu, J.; Zhang, C.; Kou, L.; Zhou, Q. Effects of climate and land use changes on water resources in the Taoer river. Adv. Meteorol. 2017, 2017, 1031854. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Wang, S.; Kang, S.; Zhang, L.; Li, F. Modelling hydrological response to different land-use and climate change scenarios in the Zamu River basin of northwest China. Hydrol. Processes Int. J. 2008, 22, 2502–2510. [Google Scholar]
- Arnold, J.G.; Fohrer, N. SWAT2000: Current capabilities and research opportunities in applied watershed modelling. Hydrol. Processes Int. J. 2005, 19, 563–572. [Google Scholar] [CrossRef]
- Wu, F.; Zhan, J.; Su, H.; Yan, H.; Ma, E. Scenario-based impact assessment of land use/cover and climate changes on watershed hydrology in Heihe River Basin of northwest China. Adv. Meteorol. 2015, 2015, 410198. [Google Scholar]
- Park, J.-Y.; Park, M.-J.; Joh, H.-K.; Shin, H.-J.; Kwon, H.-J.; Srinivasan, R.; Kim, S.-J. Assessment of MIROC3. 2 HiRes climate and CLUE-s land use change impacts on watershed hydrology using SWAT. Trans. ASABE 2011, 54, 1713–1724. [Google Scholar] [CrossRef]
- Gabiri, G.; Diekkrüger, B.; Näschen, K.; Leemhuis, C.; Linden, R.v.d.; Majaliwa, J.-G.M.; Obando, J.A. Impact of Climate and Land Use/Land Cover Change on the Water Resources of a Tropical Inland Valley Catchment in Uganda, East Africa. Climate 2020, 8, 83. [Google Scholar] [CrossRef]
- Shrestha, M.K.; Recknagel, F.; Frizenschaf, J.; Meyer, W. Future climate and land uses effects on flow and nutrient loads of a Mediterranean catchment in South Australia. Sci. Total Environ. 2017, 590, 186–193. [Google Scholar] [CrossRef]
- Degens, B.; Muirden, P.; Kelly, B.; Allen, M. Acidification of salinised waterways by saline groundwater discharge in south-western Australia. J. Hydrol. 2012, 470, 111–123. [Google Scholar] [CrossRef]
- Viney, N.R.; Sivapalan, M. A conceptual model of sediment transport: Application to the Avon River Basin in Western Australia. Hydrol. Processes Int. J. 1999, 13, 727–743. [Google Scholar] [CrossRef]
- Mulligan, D.R. Environmental Management in the Australian Minerals and Energy Industries: Principles and Practices; UNSW Press: Sydney, NSW, Australia, 1996. [Google Scholar]
- Garnett, S.; Szabo, J.; Dutson, G. The Action Plan for Australian Birds 2010; CSIRO Publishing: Victoria, Australia, 2011. [Google Scholar]
- CSIRO. Surface Water Yields in South-West Western Australia. A Report to the Australian Government from the CSIRO South-West Western Australia Sustainable Yields Project; CSIRO Water for a Healthy Country Flagship: Canberra, Australia, 2009. [Google Scholar]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Bondelid, T.R.; McCuen, R.H.; Jackson, T.J. Sensitivity of SCS Models to Curve Number Variation 1. J. Am. Water Resour. Assoc. 1982, 18, 111–116. [Google Scholar] [CrossRef]
- Baker, T.J.; Miller, S.N. Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. J. Hydrol. 2013, 486, 100–111. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, C.; Fu, G.; Wang, B.; Bao, Z.; Zheng, H. Assessments of impacts of climate change and human activities on runoff with SWAT for the Huifa River Basin, Northeast China. Water Resour. Manag. 2012, 26, 2199–2217. [Google Scholar] [CrossRef]
- Narsimlu, B.; Gosain, A.K.; Chahar, B.R. Assessment of future climate change impacts on water resources of Upper Sind River Basin, India using SWAT model. Water Resour. Manag. 2013, 27, 3647–3662. [Google Scholar] [CrossRef]
- Saha, P.P.; Zeleke, K. Rainfall-Runoff modelling for sustainable water resources management: SWAT model review in Australia. In Sustainability of Integrated Water Resources Management; Springer: Berlin/Heidelberg, Germany, 2015; pp. 563–578. [Google Scholar]
- Brown, S.C.; Versace, V.L.; Lester, R.E.; Walter, M.T. Assessing the impact of drought and forestry on streamflows in south-eastern Australia using a physically based hydrological model. Environ. Earth Sci. 2015, 74, 6047–6063. [Google Scholar] [CrossRef]
- Liu, D.L.; Zuo, H. Statistical downscaling of daily climate variables for climate change impact assessment over New South Wales, Australia. Clim. Chang. 2012, 115, 629–666. [Google Scholar] [CrossRef]
- Roti, V.; Kashyap, P.; Anilkumar, S.R.; Srivastava, R.; Harish, C. Runoff and sediment yield estimation by SWAT model: Review and outlook. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 879–886. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Y.-P.; Fu, G. Uncertainties in SWAT extreme flow simulation under climate change. J. Hydrol. 2014, 515, 205–222. [Google Scholar] [CrossRef]
- Saha, P.P.; Zeleke, K.; Hafeez, M. Streamflow modeling in a fluctuant climate using SWAT: Yass River catchment in south eastern Australia. Environ. Earth Sci. 2014, 71, 5241–5254. [Google Scholar] [CrossRef]
- McKenzie, N.; Jacquier, D.; Ashton, L.; Cresswell, H. Estimation of soil properties using the Atlas of Australian Soils. CSIRO Land Water Tech. Rep. 2000, 11, 1–12. [Google Scholar]
- Sirisena, T.; Maskey, S.; Ranasinghe, R.; Babel, M.S. Effects of different precipitation inputs on streamflow simulation in the Irrawaddy River Basin, Myanmar. J. Hydrol. 2018, 19, 265–278. [Google Scholar] [CrossRef]
- Ghaffari, G.; Keesstra, S.; Ghodousi, J.; Ahmadi, H. SWAT-simulated hydrological impact of land-use change in the Zanjanrood basin, Northwest Iran. Hydrol. Processes Int. J. 2010, 24, 892–903. [Google Scholar]
- Abbaspour, K.C. SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs–A User Manual; Eawag: Dübendorf, Switzerland, 2013; Volume 103. [Google Scholar]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Shi, P.; Chen, C.; Srinivasan, R.; Zhang, X.; Cai, T.; Fang, X.; Qu, S.; Chen, X.; Li, Q. Evaluating the SWAT model for hydrological modeling in the Xixian watershed and a comparison with the XAJ model. Water Resour. Manag. 2011, 25, 2595–2612. [Google Scholar] [CrossRef]
- Wang, B.; Deveson, E.D.; Waters, C.; Spessa, A.; Lawton, D.; Feng, P.; Li Liu, D. Future climate change likely to reduce the Australian plague locust (Chortoicetes terminifera) seasonal outbreaks. Sci. Total Environ. 2019, 668, 947–957. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Pai, N.; Steiner, J.L.; Gowda, P.H.; Winchell, M.; Rathjens, H.; Starks, P.J.; Verser, J.A. SWAT-LUT: A Desktop Graphical User Interface for Updating Land Use in SWAT. J. Am. Water Resour. Assoc. 2019, 55, 1102–1115. [Google Scholar] [CrossRef]
- Aryal, A.; Shrestha, S.; Babel, M.S. Quantifying the sources of uncertainty in an ensemble of hydrological climate-impact projections. Theor. Appl. Climatol. 2019, 135, 193–209. [Google Scholar] [CrossRef]
- Shi, L.; Feng, P.; Wang, B.; Li Liu, D.; Cleverly, J.; Fang, Q.; Yu, Q. Projecting potential evapotranspiration change and quantifying its uncertainty under future climate scenarios: A case study in southeastern Australia. J. Hydrol. 2020, 584, 124756. [Google Scholar] [CrossRef]
- Guo, J.; Su, X. Parameter sensitivity analysis of SWAT model for streamflow simulation with multisource precipitation datasets. Hydrol. Res. 2019, 50, 861–877. [Google Scholar] [CrossRef]
- Abbas, N.; Wasimi, S.A.; Bhattarai, S.; Al-Ansari, N. The Impacts of Climate Change on Fitzroy River Basin, Queensland, Australia: The Impacts of Climate Change on Fitzroy River Basin, Queensland, Australia. J. Civ. Eng. Archit. 2017, 11, 38–47. [Google Scholar]
- Feyereisen, G.; Strickland, T.; Bosch, D.; Sullivan, D. Evaluation of SWAT manual calibration and input parameter sensitivity in the Little River watershed. Trans. ASABE 2007, 50, 843–855. [Google Scholar] [CrossRef]
- Das, B.; Jain, S.; Singh, S.; Thakur, P. Evaluation of multisite performance of SWAT model in the Gomti River Basin, India. Appl. Water Sci. 2019, 9, 134. [Google Scholar] [CrossRef]
- Nossent, J.; Elsen, P.; Bauwens, W. Sobol’sensitivity analysis of a complex environmental model. Environ. Model. Softw. 2011, 26, 1515–1525. [Google Scholar] [CrossRef]
- Wallace, C.W.; Flanagan, D.C.; Engel, B.A. Evaluating the effects of watershed size on SWAT calibration. Water 2018, 10, 898. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Lee, S.; Yeo, I.Y.; Sadeghi, A.M.; Mccarty, G.W.; Hively, W.D.; Lang, M.W.; Sharifi, A. Comparative Analyses of Hydrological Responses of Two Adjacent Watersheds to Climate Variability and Change Using the SWAT Model; Copernicus GmbH: Göttingen, Germary, 2017. [Google Scholar]
- Fukunaga, D.C.; Cecílio, R.A.; Zanetti, S.S.; Oliveira, L.T.; Caiado, M.A.C. Application of the SWAT hydrologic model to a tropical watershed at Brazil. Catena 2015, 125, 206–213. [Google Scholar] [CrossRef]
- Shrestha, M.K.; Recknagel, F.; Frizenschaf, J.; Meyer, W. Assessing SWAT models based on single and multi-site calibration for the simulation of flow and nutrient loads in the semi-arid Onkaparinga catchment in South Australia. Agric. Water Manag. 2016, 175, 61–71. [Google Scholar] [CrossRef]
- Kim, N.W.; Lee, J. Enhancement of the channel routing module in SWAT. Hydrol. Processes Int. J. 2010, 24, 96–107. [Google Scholar] [CrossRef]
- Fekete, B.M.; Vörösmarty, C.J.; Roads, J.O.; Willmott, C.J. Uncertainties in Precipitation and Their Impacts on Runoff Estimates. J. Clim. 2004, 17, 294–304. [Google Scholar] [CrossRef]
- Chiew, F.H.; McMahon, T.A. Modelling the impacts of climate change on Australian streamflow. Hydrol. Processes Int. J. 2002, 16, 1235–1245. [Google Scholar] [CrossRef]
- Brown, A.E.; Zhang, L.; McMahon, T.A.; Western, A.W.; Vertessy, R.A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, B.; Li Liu, D.; Zhang, M.; Leslie, L.M.; Yu, Q. Using an improved SWAT model to simulate hydrological responses to land use change: A case study of a catchment in tropical Australia. J. Hydrol. 2020, 585, 124822. [Google Scholar] [CrossRef]
- Lin, B.; Chen, X.; Yao, H.; Chen, Y.; Liu, M.; Gao, L.; James, A. Analyses of landuse change impacts on catchment runoff using different time indicators based on SWAT model. Ecol. Indic. 2015, 58, 55–63. [Google Scholar] [CrossRef]
- Wattenbach, M.; Zebisch, M.; Hattermann, F.; Gottschalk, P.; Goemann, H.; Kreins, P.; Badeck, F.; Lasch, P.; Suckow, F.; Wechsung, F. Hydrological impact assessment of afforestation and change in tree-species composition–a regional case study for the Federal State of Brandenburg (Germany). J. Hydrol. 2007, 346, 1–17. [Google Scholar] [CrossRef]
- Hundecha, Y.; Bárdossy, A. Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model. J. Hydrol. 2004, 292, 281–295. [Google Scholar] [CrossRef]
- Mwangi, H.M.; Julich, S.; Patil, S.D.; McDonald, M.A.; Feger, K.H. Modelling the impact of agroforestry on hydrology of Mara River Basin in East Africa. Hydrol. Processes Int. J. 2016, 30, 3139–3155. [Google Scholar] [CrossRef]
- Jia, X.; Zhu, Y.; Luo, Y. Soil moisture decline due to afforestation across the Loess Plateau, China. J. Hydrol. 2017, 546, 113–122. [Google Scholar] [CrossRef]
- Hope, P.; Abbs, D.; Bhend, J.; Chiew, F.; Church, J.; Ekström, M.; Kirono, D.; Lenton, A.; Lucas, C.; McInnes, K. Southern and South-Western Flatlands cluster report, climate change in Australia: Projections for Australia’s natural resource management regions. In Cluster Reports; CSIRO and Bureau of Meteorology: Canberra, Australia, 2015. [Google Scholar]
- Sudmeyer, R.; Edward, A.; Fazakerley, V.; Simpkin, L.; Foster, I. Climate Change: Impacts and Adaptation for Agriculture in Western Australia; Bulletin 4870; Department of Agriculture and Food: Perth, WA, Australia, 2016. [Google Scholar]
- Phung, Q.A.; Thompson, A.L.; Baffaut, C.; Costello, C.; Sadler, E.J.; Svoma, B.M.; Lupo, A.; Gautam, S. Climate and Land Use Effects on Hydrologic Processes in a Primarily Rain-Fed, Agricultural Watershed. J. Am. Water Resour. Assoc. 2019, 55, 1196–1215. [Google Scholar]
- Nasonova, O.N.; Gusev, Y.M.; Kovalev, E.E.; Ayzel, G.V. Climate change impact on streamflow in large-scale river basins: Projections and their uncertainties sourced from GCMs and RCP scenarios. Proc. Int. Assoc. Hydrol. Sci. 2018, 379, 139. [Google Scholar] [CrossRef]
- Karlsson, I.B.; Sonnenborg, T.O.; Refsgaard, J.C.; Trolle, D.; Børgesen, C.D.; Olesen, J.E.; Jeppesen, E.; Jensen, K.H. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change. J. Hydrol. 2016, 535, 301–317. [Google Scholar]
- Chen, J.; Brissette, F.P.; Leconte, R. Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J. Hydrol. 2011, 401, 190–202. [Google Scholar]
- CSIRO. Description of Project Methods. South-West Western Australia Sustainable Yields Project; CSIRO: Canberra, Australia, 2010; 83p. [Google Scholar]
- Grose, M.R.; Narsey, S.; Delage, F.; Dowdy, A.J.; Bador, M.; Boschat, G.; Chung, C.; Kajtar, J.; Rauniyar, S.; Freund, M. Insights from CMIP6 for Australia’s future climate. Earth’s Future 2020, 8, e2019EF001469. [Google Scholar] [CrossRef] [Green Version]
Data | Source | Related Characteristics |
---|---|---|
DEM (Digital elevation model) | Geoscience Australia | 1 s resolution SRTM (Shuttle Rader Topography Mission) derived DEM |
Land use/land cover map | Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES) | 50 m spatial resolution |
Soil map | Bureau of rural sciences, Australia | Published at a scale of 1:2,000,000 |
Observed streamflow | Bureau of Meteorology (BOM) | Mean daily streamflow (1977–2007, 2009–2017) |
Observed climate data | BOM | Maximum and minimum daily temperature and rainfall (1974–2017) |
Climate data based on 34 GCMs under RCP4.5 and RCP8.5 scenarios | Office of Science, US Department of Energy, downscaled by Liu and Zuo [62] | Maximum and minimum daily temperature and rainfall (1900–2100) |
LU1 | Deforestation | Assumes that 50% of current FRST will be changed to RNGE while the remaining land uses stay unchanged, i.e., 25.3% increase of RNGE area |
LU2 | Urbanization/deforestation | Assumes that 100% of current FRST will be converted to URBN while the remaining land uses stay unchanged, i.e., 23.8% increase of URBN area |
LU3 | Afforestation | Assumes that 50% of current RNGE will be changed to FRST while the remaining land uses stay unchanged, i.e., 24.4% increase of FRST area |
LU4 | Urbanization | Assumes that 100% of current RNGE will be converted to URBN while the remaining land uses stay unchanged, i.e., 29.5% increase of URBN area |
Hydrologic Variables | LU0 | LU1 | LU2 | LU3 | LU4 | |
---|---|---|---|---|---|---|
Runoff | Value (mm) | 73 | 77 | 90 | 70 | 91 |
Absolute change (mm) | 0 | 4 | 17 | −3 | 18 | |
Percentage change (%) | 0.0 | 6.0 | 22.8 | −4.3 | 25.1 | |
ET | Value (mm) | 568 | 562 | 558 | 573 | 561 |
Absolute change (mm) | 0 | −6 | −10 | 5 | −7 | |
Percentage change (%) | 0.0 | −1.0 | −1.8 | 0.9 | −1.3 | |
SW | Value (mm) | 26.6 | 27.7 | 26.6 | 25.4 | 25.3 |
Absolute change (mm) | 0.0 | 1.2 | 0.0 | −1.1 | −1.2 | |
Percentage change (%) | 0.0 | 4.4 | 0.2 | −4.2 | −4.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Wang, B.; Liu, D.L.; Leslie, L.M.; Shi, L.; Zhang, M.; Yu, Q. Individual and Coupled Effects of Future Climate and Land Use Scenarios on Water Balance Components in an Australian Catchment. Atmosphere 2022, 13, 1428. https://doi.org/10.3390/atmos13091428
Zhang H, Wang B, Liu DL, Leslie LM, Shi L, Zhang M, Yu Q. Individual and Coupled Effects of Future Climate and Land Use Scenarios on Water Balance Components in an Australian Catchment. Atmosphere. 2022; 13(9):1428. https://doi.org/10.3390/atmos13091428
Chicago/Turabian StyleZhang, Hong, Bin Wang, De Li Liu, Lance M. Leslie, Lijie Shi, Mingxi Zhang, and Qiang Yu. 2022. "Individual and Coupled Effects of Future Climate and Land Use Scenarios on Water Balance Components in an Australian Catchment" Atmosphere 13, no. 9: 1428. https://doi.org/10.3390/atmos13091428
APA StyleZhang, H., Wang, B., Liu, D. L., Leslie, L. M., Shi, L., Zhang, M., & Yu, Q. (2022). Individual and Coupled Effects of Future Climate and Land Use Scenarios on Water Balance Components in an Australian Catchment. Atmosphere, 13(9), 1428. https://doi.org/10.3390/atmos13091428