Developing the New Thermal Climate Zones of China for Building Energy Efficiency Using the Cluster Approach
Abstract
:1. Introduction
2. Thermal Climate Zones
3. Method
3.1. Overview of Methodology
3.2. Clustering Analysis Method
3.2.1. Defining Distance
3.2.2. Determining the Number of Categories
3.2.3. Clustering Quality Metrics
3.3. Meteorological Data Sources
4. Results and Discussion
4.1. Determining the Optimum Cluster Method
4.2. The Cluster Result Obtained by Average-Linkage Clustering Method
4.3. Comparison with the Current Thermal Climate Zones
4.4. Feature of New Thermal Climate Zones and Its Impact on Building Energy Efficiency Design
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huo, T.; Ren, H.; Zhang, X.; Cai, W.; Feng, W.; Zhou, N.; Wang, X. China’s energy consumption in the building sector: A Statistical Yearbook-Energy Balance Sheet based splitting method. J. Clean. Prod. 2018, 185, 665–679. [Google Scholar] [CrossRef]
- Peng, C.; Yan, D.; Guo, S.; Hu, S.; Jiang, Y. Building energy use in China: Ceiling and scenario. Energy Build. 2015, 102, 307–316. [Google Scholar] [CrossRef]
- Li, J.; Shui, B. A comprehensive analysis of building energy efficiency policies in China: Status quo and development perspective. J. Clean. Prod. 2015, 90, 326–344. [Google Scholar] [CrossRef]
- MOHURD. Code for Thermal Design of Civil Building (GB 50176-2016), 1st ed.; China Architecture & Building Press: Beijing, China, 2016; pp. 17–18.
- Zhou, S.; Zhang, R.; Zhang, C. Meteorology and Climatology, 3rd ed.; China Higher Education Press: Beijing, China, 1997; pp. 2–15. [Google Scholar]
- Givoni, B. Climate Consideration in Building and Urban Design, 1st ed.; John Wiley and Sons Inc.: New York, NY, USA, 1998; pp. 17–22. [Google Scholar]
- Olgyay, V. Design with Climate: Bioclimatic Approach to Architectural Regionalism, 1st ed.; Princeton University Press: New Jersey, NJ, USA, 1962; pp. 1–10. [Google Scholar]
- Szokolay, S.V. Introduction to Architectural Science the Basis of Sustainable Design, 1st ed.; Architectural Press: Burlington, VT, USA, 2004; pp. 34–40. [Google Scholar]
- Walsh, A.; Cóstola, D.; Labaki, L.C. Review of methods for climatic zoning for building energy efficiency programs. Build. Environ. 2017, 112, 337–350. [Google Scholar] [CrossRef]
- Verichev, K.; Carpio, M. Climatic zoning for building construction in a temperate climate of Chile. Sustain. Cities Soc. 2018, 40, 352–364. [Google Scholar] [CrossRef]
- Ali, S.; Sharma, M.R.; Maiteya, V.K. Climatic classification for building design in India. Archit. Sci. Rev. 1993, 36, 31–34. [Google Scholar] [CrossRef]
- Rakoto-Joseph, O.; Garde, F.; David, M.; Adelard, L.; Randriamanantany, Z.A. Development of climatic zones and passive solar design in Madagascar. Energy Convers. Manag. 2009, 50, 1004–1010. [Google Scholar] [CrossRef]
- Briggs, R.S.; Lucas, R.G.; Taylor, Z.T. Climate classification for building energy codes and standards: Part 1–Development process. ASHRAE Trans. 2003, 109, 109–121. [Google Scholar]
- Walsh, A.; Cóstola, D.; Labaki, L.C. Performance-based validation of climatic zoning for building energy efficiency applications. Appl. Energy 2018, 212, 416–427. [Google Scholar] [CrossRef]
- Tsikaloudaki, K.; Laskos, K.; Bikas, D. On the establishment of climatic zones in Europe with regard to the energy performance of buildings. Energies 2011, 5, 32–44. [Google Scholar] [CrossRef]
- Bai, L.; Yang, L.; Song, B.; Liu, N. A new approach to develop a climate classification for building energy efficiency addressing Chinese climate characteristics. Energy 2020, 195, 116982. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Briggs, R.S.; Lucas, R.G.; Taylor, Z.T. Climate classification for building energy codes and standards: Part 2–Zone definitions, maps, and comparisons. ASHRAE Trans. 2003, 109, 122–130. [Google Scholar]
- Kozjek, K.; Dolinar, M.; Skok, G. Objective climate classification of Slovenia. Int. J. Climatol. 2017, 37, 848–860. [Google Scholar] [CrossRef]
- Erell, E.; Portnov, B.A.; Etzion, Y. Mapping the potential for climate-conscious design of buildings. Build. Environ. 2003, 38, 271–281. [Google Scholar] [CrossRef]
- Madhulatha, T.S. An Overview on Clustering Methods. IOSR J. Eng. 2012, 2, 719–725. [Google Scholar] [CrossRef]
- Murtagh, F.; Pedro, C. Methods of hierarchical clustering. arXiv 2011, arXiv:1105.0121. [Google Scholar]
- Mahlstein, I.; Knutti, R. Regional climate change patterns identified by cluster analysis. Clim. Dyn. 2010, 35, 587–600. [Google Scholar] [CrossRef]
- Unal, Y.; Kindap, T.; Karaca, M. Redefining the climate zones of Turkey using cluster analysis. Int. J. Climatol. A J. R. Meteorol. Soc. 2003, 23, 1045–1055. [Google Scholar] [CrossRef]
- Kalkstein, L.S.; Tan, G.; Skindlov, J.A. An evaluation of three clustering procedures for use in synoptic climatological classification. J. Appl. Meteorol. Climatol. 1987, 26, 717–730. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, X. Further climatic zoning of building energy efficiency based on principal component analysis and cluster analysis. J. HV AC 2012, 42, 119–124. [Google Scholar]
- Fu, X.; Zhang, H.; Huang, G. Discussion of climatic regions of building energy efficiency in China. J. HV AC 2008, 38, 44–47. [Google Scholar]
- Bai, L.; Wang, S. Definition of new thermal climate zones for building energy efficiency response to the climate change during the past decades in China. Energy 2019, 170, 709–719. [Google Scholar] [CrossRef]
- Xiong, J.; Yao, R.; Grimmond, S.; Zhang, Q.; Li, B. A hierarchical climatic zoning method for energy efficient building design applied in the region with diverse climate characteristics. Energy Build. 2019, 186, 355–367. [Google Scholar] [CrossRef]
- Wang, R.; Lu, S. A novel method of building climate subdivision oriented by reducing building energy demand. Energy Build. 2020, 216, 109999. [Google Scholar] [CrossRef]
- Hao, Z.; Zhang, X.; Xie, J.; Wang, J.; Liu, J. Building climate zones of major marine islands in China defined using two-stage zoning method and clustering analysis. Front. Archit. Res. 2021, 10, 134–147. [Google Scholar] [CrossRef]
- Huang, Y.; Luo, X. Geography in China. Reshaping Econ. Geogr. East Asia 2008, 196, 196–217. [Google Scholar]
- Veeck, G.; Pannell, C.W.; Smith, C.J.; Huang, Y.Q. China’s Geography: Globalization and the Dynamics of Political, Economic, and Social Change; Rowman & Littlefield Publishers: Lanham, MD, USA, 2007; pp. 5–7. [Google Scholar]
- MOHURD. Thermal Design Code for Civil Building (GB 50176-93), 1st ed.; China Architecture & Building Press: Beijing, China, 1993; pp. 1–12.
- Wan, K.K.; Li, D.H.; Yang, L.; Lam, J.C. Climate classifications and building energy use implications in China. Energy Build. 2010, 42, 1463–1471. [Google Scholar] [CrossRef]
- National Climate Center (NCC). Available online: https://www.ncc-cma.net/ (accessed on 8 August 2022).
- Wang, X.; Mai, X.; Lei, B.; Bi, H.; Zhao, B.; Mao, G. Collaborative optimization between passive design measures and active heating systems for building heating in Qinghai-Tibet plateau of China. Renew. Energy 2020, 147, 683–694. [Google Scholar] [CrossRef]
- Tang, M.; Zuo, X. Critical temperature for energy-saving building in winter. J. Xi’an Univ. Arch. Technol. 2011, 33, 321–324. [Google Scholar]
Zone Name | Zoning Criteria | |
---|---|---|
Main Criteria | Complementary Criteria | |
Severe cold zone (SCZ) | ≤ −10 °C | ≥ 145 days |
Cold zone (CZ) | = 0–−10 °C | = 90–145 days |
Hot summer and cold winter zone (HSCWZ) | = 25–30 °C | = 40–110 days |
Hot summer and warm winter zone (HSWWZ) | = 25–29 °C | = 100–200 days |
Mild zone (MZ) | = 18–25 °C | = 0–90 days |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, L.; Song, B.; Yang, L. Developing the New Thermal Climate Zones of China for Building Energy Efficiency Using the Cluster Approach. Atmosphere 2022, 13, 1498. https://doi.org/10.3390/atmos13091498
Bai L, Song B, Yang L. Developing the New Thermal Climate Zones of China for Building Energy Efficiency Using the Cluster Approach. Atmosphere. 2022; 13(9):1498. https://doi.org/10.3390/atmos13091498
Chicago/Turabian StyleBai, Lujian, Bing Song, and Liu Yang. 2022. "Developing the New Thermal Climate Zones of China for Building Energy Efficiency Using the Cluster Approach" Atmosphere 13, no. 9: 1498. https://doi.org/10.3390/atmos13091498
APA StyleBai, L., Song, B., & Yang, L. (2022). Developing the New Thermal Climate Zones of China for Building Energy Efficiency Using the Cluster Approach. Atmosphere, 13(9), 1498. https://doi.org/10.3390/atmos13091498