Organic Acids in Sequential Volume-Based Rainwater Samples in Shanghai: Seasonal Variations and Origins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Location
2.2. Sampling Equipment and Sampling Method
2.3. Analysis of Chemical Components in Rainwater
2.4. The Data Analysis
2.4.1. Ionic Balance Analysis
2.4.2. The Contribution of Organic Acids to Total Free Acidity
2.4.3. Backward Trajectory Analysis
2.4.4. The Formic to Acetic Acid (F/A) Ratio
3. Results and Discussion
3.1. General Variation Patterns of Chemical Compositions in the Sequential Rainwater Samples
3.2. Concentrations and Seasonal Changes of Organic Acids in Rainfall Events, Early Sequences of Rainfall Events and Cloud Water
3.2.1. Chemical Characteristics of Organic Acids in Rainfall Events, Early Sequences of Rainfall Events and Cloud Water
3.2.2. Seasonal Changes of Organic Acids in Rainfall Events, Early Sequences of Rainfall Events and Cloud Water
3.3. Sources of Organic Acids in Rainfall Events, Early Sequences of Rainfall Events and Cloud Water
3.4. Atmospheric Environmental Implications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barbaro, E.; Padoan, S.; Kirchgeorg, T.; Zangrando, R.; Toscano, G.; Barbante, C.; Gambaro, A. Particle size distribution of inorganic and organic ions in coastal and inland Antarctic aerosol. Environ. Sci. Pollut. Res. 2016, 24, 2724–2733. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Hegg, D.A.; Hobbs, P.V.; Kirchstetter, T.W.; Magi, B.; Sadilek, M. Water-soluble organic components in aerosols associated with savanna fires in southern Africa: Identification, evolution, and distribution. J. Geophys. Res. Earth Surf. 2003, 108, 8491. [Google Scholar] [CrossRef]
- Kawamura, K.; Bikkina, S. A review of dicarboxylic acids and related compounds in atmospheric aerosols: Molecular distributions, sources and transformation. Atmos. Res. 2016, 170, 140–160. [Google Scholar] [CrossRef]
- Niu, Y.; Li, X.; Pu, J.; Huang, Z. Organic acids contribute to rainwater acidity at a rural site in eastern China. Air Qual. Atmos. Health 2018, 11, 459–469. [Google Scholar] [CrossRef]
- Zhang, R. Getting to the Critical Nucleus of Aerosol Formation. Science 2010, 328, 5984. [Google Scholar] [CrossRef]
- Gioda, A.; Reyes-Rodríguez, G.J.; Santos-Figueroa, G.; Collett, J.L., Jr.; Decesari, S.; Ramos, M.D.C.K.V.; Netto, H.J.C.B.; Neto, F.R.D.A.; Mayol-Bracero, O.L. Speciation of water-soluble inorganic, organic, and total nitrogen in a background marine environment: Cloud water, rainwater, and aerosol particles. J. Geophys. Res. Earth Surf. 2011, 116, D05203. [Google Scholar] [CrossRef]
- Ovadnevaite, J.; Ceburnis, D.; Leinert, S.; Dall’Osto, M.; Canagaratna, M.; O’Doherty, S.; Berresheim, H.; O’Dowd, C. Submicron NE Atlantic marine aerosol chemical composition and abundance: Seasonal trends and air mass categorization. J. Geophys. Res. Atmos. 2014, 119, 11850–11863. [Google Scholar] [CrossRef]
- Bardouki, H.; Berresheim, H.; Vrekoussis, M.; Sciare, J.; Kouvarakis, G.; Oikonomou, K.; Schneider, J.; Mihalopoulos, N. Gaseous (DMS, MSA, SO2, H2SO4 and DMSO) and particulate (sulfate and methanesulfonate) sulfur species over the northeastern coast of Crete. Atmos. Chem. Phys. 2003, 3, 1871–1886. [Google Scholar] [CrossRef]
- Gondwe, M.; Krol, M.; Klaassen, W.; Gieskes, W.; de Baar, H. Comparison of modeled versus measured MSA:nss SO4= ratios: A global analysis. Glob. Biogeochem. Cycles 2004, 18, 1–18. [Google Scholar] [CrossRef]
- Sorooshian, A.; Padró, L.T.; Nenes, A.; Feingold, G.; McComiskey, A.; Hersey, S.P.; Gates, H.; Jonsson, H.H.; Miller, S.D.; Stephens, G.L.; et al. On the link between ocean biota emissions, aerosol, and maritime clouds: Airborne, ground, and satellite measurements off the coast of California. Glob. Biogeochem. Cycles 2009, 23, 34. [Google Scholar] [CrossRef] [Green Version]
- van Drooge, B.L.; Grimalt, J.O. Particle size-resolved source apportionment of primary and secondary organic tracer compounds at urban and rural locations in Spain. Atmos. Chem. Phys. 2015, 15, 7735–7752. [Google Scholar] [CrossRef]
- Sun, M.; Wang, Y.; Wang, T.; Fan, S.; Wang, W.; Li, P.; Guo, J.; Li, Y. Cloud and the corresponding precipitation chemistry in south China: Water-soluble components and pollution transport. J. Geophys. Res. Earth Surf. 2010, 115, D22303. [Google Scholar] [CrossRef]
- Keene, W.C.; Galloway, J.; Holden, J.D. Measurement of weak organic acidity in precipitation from remote areas of the world. J. Geophys. Res. Earth Surf. 1983, 88, 5122–5130. [Google Scholar] [CrossRef]
- Fornaro, A.; Gutz, I.G. Wet deposition and related atmospheric chemistry in the São Paulo metropolis, Brazil: Part 2—Contribution of formic and acetic acids. Atmos. Environ. 2003, 37, 117–128. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.; Li, H.; Yang, X.; Sun, L.; Wang, X.; Wang, T.; Wang, W. Organic acids in cloud water and rainwater at a mountain site in acid rain areas of South China. Environ. Sci. Pollut. Res. 2016, 23, 9529–9539. [Google Scholar] [CrossRef]
- Sorooshian, A.; Lu, M.-L.; Brechtel, F.J.; Jonsson, H.; Feingold, G.; Flagan, R.C.; Seinfeld, J.H. On the Source of Organic Acid Aerosol Layers above Clouds. Environ. Sci. Technol. 2007, 41, 4647–4654. [Google Scholar] [CrossRef]
- Karşı, M.B.B.; Yenïsoy-Karakaş, S.; Karakaş, D. Investigation of washout and rainout processes in sequential rain samples. Atmos. Environ. 2018, 190, 53–64. [Google Scholar] [CrossRef]
- Kavouras, I.; Mihalopoulos, N.; Stephanou, E.G. Formation of atmospheric particles from organic acids produced by forests. Nature 1998, 395, 683–686. [Google Scholar] [CrossRef]
- Wu, S.-P.; Schwab, J.; Liu, B.-L.; Li, T.-C.; Yuan, C.-S. Seasonal variations and source identification of selected organic acids associated with PM10 in the coastal area of Southeastern China. Atmos. Res. 2015, 155, 37–51. [Google Scholar] [CrossRef]
- Gomez, S.L.; Carrico, C.M.; Allen, C.; Lam, J.; Dabli, S.; Sullivan, A.P.; Aiken, A.C.; Rahn, T.; Romonosky, D.; Chylek, P.; et al. Biomass Burning Smoke Hygroscopicity: The Role of Plant Phenology, Chemical Composition, and Combustion Properties. J. Geophys. Res. Atmos. 2018, 123, 5416–5432. [Google Scholar] [CrossRef]
- Huang, X.-F.; He, L.-Y.; Hu, M.; Zhang, Y.-H. Annual variation of particulate organic compounds in PM2.5 in the urban atmosphere of Beijing. Atmos. Environ. 2006, 40, 2449–2458. [Google Scholar] [CrossRef]
- Cheung, K.L.; Ntziachristos, L.; Tzamkiozis, T.; Schauer, J.J.; Samaras, Z.; Moore, K.F.; Sioutas, C. Emissions of Particulate Trace Elements, Metals and Organic Species from Gasoline, Diesel, and Biodiesel Passenger Vehicles and Their Relation to Oxidative Potential. Aerosol Sci. Technol. 2010, 44, 500–513. [Google Scholar] [CrossRef]
- Altieri, K.E.; Hastings, M.G.; Peters, A.J.; Sigman, D.M. Molecular characterization of water soluble organic nitrogen in marine rainwater by ultra-high resolution electrospray ionization mass spectrometry. Atmos. Chem. Phys. 2012, 12, 3557–3571. [Google Scholar] [CrossRef]
- da Rocha, G.O.; Allen, A.G.; Cardoso, A.A. Influence of Agricultural Biomass Burning on Aerosol Size Distribution and Dry Deposition in Southeastern Brazil. Environ. Sci. Technol. 2005, 39, 5293–5301. [Google Scholar] [CrossRef]
- Mphepya, J.N.; Pienaar, J.J.; Galy-Lacaux, C.; Held, G.; Turner, C.R. Precipitation Chemistry in Semi-Arid Areas of Southern Africa: A Case Study of a Rural and an Industrial Site. J. Atmos. Chem. 2004, 47, 1–24. [Google Scholar] [CrossRef]
- Chebbi, A.; Carlier, P. Carboxylic acids in the troposphere, occurrence, sources, and sinks: A review. Atmos. Environ. 1996, 30, 4233–4249. [Google Scholar] [CrossRef]
- Zhang, Y.; Lee, X.; Cao, F. Chemical characteristics and sources of organic acids in precipitation at a semi-urban site in Southwest China. Atmos. Environ. 2011, 45, 413–419. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, Z.; Zheng, N.; Luo, L.; Xiao, H.; Xiao, H. Chemical characterization and source analysis of water-soluble inorganic ions in PM2.5 from a plateau city of Kunming at different seasons. Atmos. Res. 2019, 234, 104687. [Google Scholar] [CrossRef]
- Xie, Y.; Lu, H.; Yi, A.; Zhang, Z.; Zheng, N.; Fang, X.; Xiao, H. Characterization and source analysis of water–soluble ions in PM2.5 at a background site in Central China. Atmos. Res. 2020, 239, 104881. [Google Scholar] [CrossRef]
- Niu, Y.; Li, X.; Huang, Z.; Zhu, C. Chemical characteristics and possible causes of acid rain at a regional atmospheric background site in eastern China. Air Qual. Atmos. Health 2017, 10, 971–980. [Google Scholar] [CrossRef]
- Sakugawa, H.; Kaplan, I.R.; Shepard, L.S. Measurements of H2O2, aldehydes and organic acids in Los Angeles rainwater: Their sources and deposition rates. Atmos. Environ. Part B Urban Atmos. 1993, 27, 203–219. [Google Scholar] [CrossRef]
- Wang, Y.Q. MeteoInfo: GIS software for meteorological data visualization and analysis. Meteorol. Appl. 2012, 21, 360–368. [Google Scholar] [CrossRef]
- Andreae, M.; Talbot, R.W.; Berresheim, H.; Beecher, K.M. Precipitation chemistry in central Amazonia. J. Geophys. Res. Earth Surf. 1990, 95, 16987–16999. [Google Scholar] [CrossRef]
- Winiwarter, W.; Puxbaum, H.; Fuzzi, S.; Facchini, M.C.; Orsi, G.; Beltz, N.; Enderle, K.; Jaeschke, W. Organic acid gas and liquid-phase measurements in Po Valley fall-winter conditions in the presence of fog. Tellus B Chem. Phys. Meteorol. 1988, 40B, 348–357. [Google Scholar] [CrossRef]
- Johnson, B.J.; Dawson, G.A. A preliminary study of the carbon-isotopic content of ambient formic acid and two selected sources: Automobile exhaust and formicine ants. J. Atmos. Chem. 1993, 17, 123–140. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Xu, Y.; Xiao, H.-Y.; Wu, D.; Long, C. Abiotic and Biological Degradation of Atmospheric Proteinaceous Matter Can Contribute Significantly to Dissolved Amino Acids in Wet Deposition. Environ. Sci. Technol. 2020, 54, 6551–6561. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiao, H.; Guan, H.; Zheng, N.; Zhang, Z.; Tian, J.; Qu, L.; Zhao, J.; Xiao, H. Chemical composition and seasonal variations of PM2.5 in an urban environment in Kunming, SW China: Importance of prevailing westerlies in cold season. Atmos. Environ. 2020, 237, 117704. [Google Scholar] [CrossRef]
- Al-Khashman, O.A. Chemical characteristics of rainwater collected at a western site of Jordan. Atmos. Res. 2009, 91, 53–61. [Google Scholar] [CrossRef]
- Akoto, O.; Darko, G.; Nkansah, M. Chemical Composition of Rainwater over a Mining Area in Ghana. Int. J. Environ. Res. 2011, 5, 847–854. [Google Scholar] [CrossRef]
- White, E.M.; Landis, M.S.; Keeler, G.J.; Barres, J.A. Investigation of mercury wet deposition physicochemistry in the Ohio River Valley through automated sequential sampling. Sci. Total Environ. 2013, 448, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Anil, I.; Alagha, O.; Karaca, F. Effects of transport patterns on chemical composition of sequential rain samples: Trajectory clustering and principal component analysis approach. Air Qual. Atmos. Health 2017, 10, 1193–1206. [Google Scholar] [CrossRef]
- Aikawa, M.; Hiraki, T.; Eiho, J. Study on the acidification and pollution of precipitation based on a data set collected on a 0.5-mm precipitation basis. Atmos. Environ. 2008, 42, 7043–7049. [Google Scholar] [CrossRef]
- Löflund, M.; Kasper-Giebl, A.; Schuster, B.; Giebl, H.; Hitzenberger, R.; Puxbaum, H. Formic, acetic, oxalic, malonic and succinic acid concentrations and their contribution to organic carbon in cloud water. Atmos. Environ. 2002, 36, 1553–1558. [Google Scholar] [CrossRef]
- Wan, X.; Kang, S.; Xin, J.; Liu, B.; Wen, T.; Wang, P.; Wang, Y.; Cong, Z. Chemical composition of size-segregated aerosols in Lhasa city, Tibetan Plateau. Atmos. Res. 2016, 174–175, 142–150. [Google Scholar] [CrossRef]
- Zhou, S.; Wu, L.; Guo, J.; Chen, W.; Wang, X.; Zhao, J.; Cheng, Y.; Huang, Z.; Zhang, J.; Sun, Y.; et al. Measurement report: Vertical distribution of atmospheric particulate matter within the urban boundary layer in southern China—Size-segregated chemical composition and secondary formation through cloud processing and heterogeneous reactions. Atmos. Chem. Phys. 2020, 20, 6435–6453. [Google Scholar] [CrossRef]
- Wanqing, L. The characterization of hydrogen ion concentration in sequential cumulative rainwater. Atmos. Environ. 2001, 35, 6219–6225. [Google Scholar] [CrossRef]
- Lim, B.; Jickells, T.; Davies, T. Sequential sampling of particles, major ions and total trace metals in wet deposition. Atmos. Environ. Part A Gen. Top. 1991, 25, 745–762. [Google Scholar] [CrossRef]
- Kawamura, K.; Kaplan, I.R. Compositional change of organic matter in rainwater during precipitation events. Atmos. Environ. 1986, 20, 527–535. [Google Scholar] [CrossRef]
- Sorooshian, A.; Ng, N.L.; Chan, A.W.H.; Feingold, G.; Flagan, R.C.; Seinfeld, J.H. Particulate organic acids and overall water-soluble aerosol composition measurements from the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS). J. Geophys. Res. Earth Surf. Atmos. 2007, 112, D13201. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Balasubramanian, R. Semi-volatile organic compounds (SVOCs) in ambient air and rainwater in a tropical environment: Concentrations and temporal and seasonal trends. Chemosphere 2010, 78, 742–751. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Tsatsral, B.; Kim, Y.J.; Kawamura, K. Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the cold winter of 2007 to 2008: Dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls. J. Geophys. Res. Earth Surf. 2010, 115, D22203. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Y.; Yue, T.; Yang, X.; Xue, L.; Wang, W. Evaluation of the behavior of clouds in a region of severe acid rain pollution in southern China: Species, complexes, and variations. Environ. Sci. Pollut. Res. 2015, 22, 14280–14290. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Zhuang, G.; Xu, C.; Wang, Y.; Tang, A. The chemistry of the severe acidic precipitation in Shanghai, China. Atmos. Res. 2008, 89, 149–160. [Google Scholar] [CrossRef]
- Martinelango, P.K.; Dasgupta, P.; Al-Horr, R.S. Atmospheric production of oxalic acid/oxalate and nitric acid/nitrate in the Tampa Bay airshed: Parallel pathways. Atmos. Environ. 2007, 41, 4258–4269. [Google Scholar] [CrossRef]
- Wang, B.; Kelly, S.T.; Sellon, R.; Shilling, J.; Tivanski, A.V.; Moffet, R.C.; Gilles, M.K.; Laskin, A. Field and laboratory studies of reactions between atmospheric water soluble organic acids and inorganic particles. In Proceedings of the Paper presented at the AIP Conference Proceedings, Fort Collins, CO, USA, 23–28 June 2013; Colorado State University: Fort Collins, CO, USA, 2013. [Google Scholar]
- Chowhan, Z. pH–Solubility Profiles of Organic Carboxylic Acids and Their Salts. J. Pharm. Sci. 1978, 67, 1257–1260. [Google Scholar] [CrossRef]
- Huo, M.; Sun, Q.; Bai, Y.; Xie, P.; Liu, Z.; Li, J.; Wang, X.; Lu, S. Chemical character of precipitation and related particles and trace gases in the North and South of China. J. Atmos. Chem. 2010, 67, 29–43. [Google Scholar] [CrossRef]
- Du, W.; Hong, Z.; Chen, Y.; Deng, J.; Chen, J.; Xu, L.; Hong, Y.-W.; Xiao, H. Spatiotemporal distribution and source apportionment of low molecular weight organic acids in wet precipitation at a coastal city, China. Environ. Sci. Pollut. Res. 2017, 24, 8399–8410. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, J.; Wu, Z. Chemical compositions of precipitation and scavenging of particles in Beijing. Sci. China Ser. B Chem. 2005, 48, 265–272. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, M.; Li, P.; Li, Y.; Xue, L.; Wang, W. Variation of low molecular weight organic acids in precipitation and cloudwater at high elevation in South China. Atmos. Environ. 2011, 45, 6518–6525. [Google Scholar] [CrossRef]
- Souza, S. Low molecular weight carboxylic acids in an urban atmosphere: Winter measurements in São Paulo City, Brazil. Atmos. Environ. 1999, 33, 2563–2574. [Google Scholar] [CrossRef]
- Sanhueza, E.; Figueroa, L.; Santana, M. Atmospheric formic and acetic acids in Venezuela. Atmos. Environ. 1996, 30, 1861–1873. [Google Scholar] [CrossRef]
- Xu, J.; Chen, J.; Shi, Y.; Zhao, N.; Qin, X.; Yu, G.; Liu, J.; Lin, Y.; Fu, Q.; Weber, R.J.; et al. First Continuous Measurement of Gaseous and Particulate Formic Acid in a Suburban Area of East China: Seasonality and Gas–Particle Partitioning. ACS Earth Space Chem. 2019, 4, 157–167. [Google Scholar] [CrossRef]
- Gang, X.; Lee, X.; Lü, Y.; Chen, Y.; Huang, D. Seasonal Variations of Carboxylic Acids and Their Contributions to the Rainwater Acidity: A Case Study of Guiyang and Shangzhong, China. Chin. Sci. Bull. 2010, 55, 1667–1673. [Google Scholar] [CrossRef]
- Willey, J.D.; Glinski, D.A.; Southwell, M.; Long, M.S.; Avery, G.B., Jr.; Kieber, R.J. Decadal variations of rainwater formic and acetic acid concentrations in Wilmington, NC, USA. Atmos. Environ. 2011, 45, 1010–1014. [Google Scholar] [CrossRef]
- Peña, R.M.; García, S.; Herrero, C.; Losada, M.; Vázquez, A.; Lucas, T. Organic acids and aldehydes in rainwater in a northwest region of Spain. Atmos. Environ. 2002, 36, 5277–5288. [Google Scholar] [CrossRef]
- Coelho, C.H.; Allen, A.G.; Fornaro, A.; Orlando, E.A.; Grigoletto, T.L.; Campos, M.L.A. Wet deposition of major ions in a rural area impacted by biomass burning emissions. Atmos. Environ. 2011, 45, 5260–5265. [Google Scholar] [CrossRef]
- Tsai, Y.I.; Kuo, S.-C. Contributions of low molecular weight carboxylic acids to aerosols and wet deposition in a natural subtropical broad-leaved forest environment. Atmos. Environ. 2013, 81, 270–279. [Google Scholar] [CrossRef]
- Nolte, C.G.; Fraser, M.P.; Cass, G.R. Gas Phase C2−C10 Organic Acids Concentrations in the Los Angeles Atmosphere. Environ. Sci. Technol. 1999, 33, 540–545. [Google Scholar] [CrossRef]
- Salve, P.R.; Maurya, A.; Wate, S.R.; Devotta, S. Chemical Composition of Major Ions in Rainwater. Bull. Environ. Contam. Toxicol. 2008, 80, 242–246. [Google Scholar] [CrossRef]
- Gierlus, K.M.; Laskina, O.; Abernathy, T.L.; Grassian, V.H. Laboratory study of the effect of oxalic acid on the cloud condensation nuclei activity of mineral dust aerosol. Atmos. Environ. 2012, 46, 125–130. [Google Scholar] [CrossRef]
- Carlton, A.G.; Turpin, B.J.; Lim, H.-J.; Altieri, K.E.; Seitzinger, S. Link between isoprene and secondary organic aerosol (SOA): Pyruvic acid oxidation yields low volatility organic acids in clouds. Geophys. Res. Lett. 2006, 33, 6822. [Google Scholar] [CrossRef]
- Davis, D.; Chen, G.; Kasibhatla, P.; Jefferson, A.; Tanner, D.; Eisele, F.; Lenschow, D.; Neff, W.; Berresheim, H. DMS oxidation in the Antarctic marine boundary layer: Comparison of model simulations and held observations of DMS, DMSO, DMSO2, H2SO4(g), MSA(g), and MSA(p). J. Geophys. Res. Earth Surf. 1998, 103, 1657–1678. [Google Scholar] [CrossRef]
- Sorooshian, A.; Crosbie, E.; Maudlin, L.C.; Youn, J.; Wang, Z.; Shingler, T.; Ortega, A.M.; Hersey, S.; Woods, R.K. Surface and airborne measurements of organosulfur and methanesulfonate over the western United States and coastal areas. J. Geophys. Res. Atmos. 2015, 120, 8535–8548. [Google Scholar] [CrossRef]
- Xu, Y.; Miyazaki, Y.; Tachibana, E.; Sato, K.; Ramasamy, S.; Mochizuki, T.; Sadanaga, Y.; Nakashima, Y.; Sakamoto, Y.; Matsuda, K.; et al. Aerosol Liquid Water Promotes the Formation of Water-Soluble Organic Nitrogen in Submicrometer Aerosols in a Suburban Forest. Environ. Sci. Technol. 2020, 54, 1406–1414. [Google Scholar] [CrossRef]
- Helin, A.; Sietiö, O.-M.; Heinonsalo, J.; Bäck, J.; Riekkola, M.-L.; Parshintsev, J. Characterization of free amino acids, bacteria and fungi in size-segregated atmospheric aerosols in boreal forest: Seasonal patterns, abundances and size distributions. Atmos. Chem. Phys. 2017, 17, 13089–13101. [Google Scholar] [CrossRef]
- Orué, M.R.; Gaiero, D.; Kirschbaum, A. Seasonal characteristics of the chemical composition of rainwaters from Salta city, NW Argentina. Environ. Earth Sci. 2019, 78, 16. [Google Scholar] [CrossRef]
- Khan, I.; Brimblecombe, P.; Clegg, S.L. Solubilities of pyruvic acid and the lower (C1-C6) carboxylic acids. Experimental determination of equilibrium vapour pressures above pure aqueous and salt solutions. J. Atmos. Chem. 1995, 22, 285–302. [Google Scholar] [CrossRef]
- Calvert, J.G.; Lazrus, A.L.; Kok, G.L.; Heikes, B.G.; Walega, J.G.; Lind, J.A.; Cantrell, C.A. Chemical mechanisms of acid generation in the troposphere. Nature 1985, 317, 27–35. [Google Scholar] [CrossRef]
- Marion, A.; Brigante, M.; Mailhot, G. A new source of ammonia and carboxylic acids in cloud water: The first evidence of photochemical process involving an iron-amino acid complex. Atmos. Environ. 2018, 195, 179–186. [Google Scholar] [CrossRef]
- Ervens, B.; Wang, Y.; Eagar, J.; Leaitch, W.R.; Macdonald, A.M.; Valsaraj, K.T.; Herckes, P. Dissolved organic carbon (DOC) and select aldehydes in cloud and fog water: The role of the aqueous phase in impacting trace gas budgets. Atmos. Chem. Phys. 2013, 13, 5117–5135. [Google Scholar] [CrossRef]
- Chen, G.; Hanukovich, S.; Chebeir, M.; Christopher, P.; Liu, H. Nitrate Removal via a Formate Radical-Induced Photochemical Process. Environ. Sci. Technol. 2018, 53, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, W.; Andreae, M.; Helas, G. Measurements of organic acids over central Germany. Atmos. Environ. 1989, 23, 1531–1533. [Google Scholar] [CrossRef]
- Meng, Y.; Zhao, Y.; Li, R.; Li, J.; Cui, L.; Kong, L.; Fu, H. Characterization of inorganic ions in rainwater in the megacity of Shanghai: Spatiotemporal variations and source apportionment. Atmos. Res. 2019, 222, 12–24. [Google Scholar] [CrossRef]
- Khare, P.; Satsangi, G.; Kumar, N.; Kumari, K.M.; Srivastava, S. HCHO, HCOOH and CH3COOH in air and rain water at a rural tropical site in North Central India. Atmos. Environ. 1997, 31, 3867–3875. [Google Scholar] [CrossRef]
- Li, Z.; Walters, W.W.; Hastings, M.G.; Zhang, Y.; Song, L.; Liu, D.; Zhang, W.; Pan, Y.; Fu, P.; Fang, Y. Nitrate Isotopic Composition in Precipitation at a Chinese Megacity: Seasonal Variations, Atmospheric Processes, and Implications for Sources. Earth Space Sci. 2019, 6, 2200–2213. [Google Scholar] [CrossRef]
- Hu, G.; Balasubramanian, R.; Wu, C. Chemical characterization of rainwater at Singapore. Chemosphere 2003, 51, 747–755. [Google Scholar] [CrossRef]
- Lee, S.; Liu, W.; Wang, Y.; Russell, A.G.; Edgerton, E.S. Source apportionment of PM2.5: Comparing PMF and CMB results for four ambient monitoring sites in the southeastern United States. Atmos. Environ. 2008, 42, 4126–4137. [Google Scholar] [CrossRef]
- Scalabrin, E.; Zangrando, R.; Barbaro, E.; Kehrwald, N.M.; Gabrieli, J.; Barbante, C.; Gambaro, A. Amino acids in Arctic aerosols. Atmos. Chem. Phys. 2012, 12, 10453–10463. [Google Scholar] [CrossRef]
- Bates, T.S.; Lamb, B.K.; Guenther, A.; Dignon, J.; Stoiber, R.E. Sulfur emissions to the atmosphere from natural sourees. J. Atmos. Chem. 1992, 14, 315–337. [Google Scholar] [CrossRef] [Green Version]
- Kerminen, V.-M.; Aurela, M.; Hillamo, R.E.; Virkkula, A. Formation of particulate MSA: Deductions from size distribution measurements in the Finnish Arctic. Tellus B Chem. Phys. Meteorol. 1997, 49, 159–171. [Google Scholar] [CrossRef]
- Pui, D.Y.; Chen, S.-C.; Zuo, Z. PM 2.5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology 2014, 13, 1–26. [Google Scholar] [CrossRef]
- Cottrell, B.A.; Gonsior, M.; Isabelle, L.M.; Luo, W.; Perraud, V.; McIntire, T.M.; Pankow, J.F.; Schmitt-Kopplin, P.; Cooper, W.J.; Simpson, A.J. A regional study of the seasonal variation in the molecular composition of rainwater. Atmos. Environ. 2013, 77, 588–597. [Google Scholar] [CrossRef]
- Kumar, N.; Kulshrestha, U.C.; Saxena, A.; Khare, P.; Kumari, K.M.; Srivastava, S.S. Formate and acetate levels compared in monsoon and winter rainwater at Dayalbagh, Agra (India). J. Atmos. Chem. 1996, 23, 81–87. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, C.; Ding, X.; Wang, X.; Fu, Q.; Zhao, Q.; Zhang, Y.; Duan, Y.; Qiu, X.; Zheng, M. Sources and spatial distribution of particulate polycyclic aromatic hydrocarbons in Shanghai, China. Sci. Total Environ. 2017, 584/585, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Clements, N.; Eav, J.; Xie, M.; Hannigan, M.P.; Miller, S.L.; Navidi, W.; Peel, J.L.; Schauer, J.J.; Shafer, M.M.; Milford, J.B. Concentrations and source insights for trace elements in fine and coarse particulate matter. Atmos. Environ. 2014, 89, 373–381. [Google Scholar] [CrossRef]
- Amato, F.; Viana, M.; Richard, A.; Furger, M.; Prévôt, A.S.H.; Nava, S.; Lucarelli, F.; Bukowiecki, N.; Alastuey, A.; Reche, C.; et al. Size and time-resolved roadside enrichment of atmospheric particulate pollutants. Atmos. Chem. Phys. 2011, 11, 2917–2931. [Google Scholar] [CrossRef]
- Corrigendum on Seasonal and Spatial Coarse Particle Elemental Concentrations in the Los Angeles Area. Aerosol Sci. Technol. 2011, 45, 1528–1529. [CrossRef]
- Weber, R.J.; Sullivan, A.P.; Peltier, R.E.; Russell, A.; Yan, B.; Zheng, M.; De Gouw, J.; Warneke, C.; Brock, C.; Holloway, J.S.; et al. A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States. J. Geophys. Res. 2007, 112, D13302. [Google Scholar] [CrossRef]
- Boone, E.J.; Laskin, A.; Laskin, J.; Wirth, C.; Shepson, P.B.; Stirm, B.H.; Pratt, K.A. Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling. Environ. Sci. Technol. 2015, 49, 8523–8530. [Google Scholar] [CrossRef]
- Avery, G.; Tang, Y.; Kieber, R.J.; Willey, J.D. Impact of recent urbanization on formic and acetic acid concentrations in coastal North Carolina rainwater. Atmos. Environ. 2001, 35, 3353–3359. [Google Scholar] [CrossRef]
- Huang, X.-F.; Li, X.; He, L.-Y.; Feng, N.; Hu, M.; Niu, Y.-W.; Zeng, L.-W. 5-Year study of rainwater chemistry in a coastal mega-city in South China. Atmos. Res. 2010, 97, 185–193. [Google Scholar] [CrossRef]
- Ye, S.; Yusen, D.; Qing, L. The Trend of Acidity and Ion Compositions of Precipitation During 2000–2019 in Shanghai. Environ. Chem. 2021, 40, 3672–3680. [Google Scholar] [CrossRef]
- Monteith, D.T.; Stoddard, J.; Evans, C.; de Wit, H.A.; Forsius, M.; Høgåsen, T.; Wilander, A.; Skjelkvåle, B.L.; Jeffries, D.S.; Vuorenmaa, J.; et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 2007, 450, 537–540. [Google Scholar] [CrossRef]
- Chapman, P.J.; Clark, J.M.; Reynolds, B.; Adamson, J.K. The influence of organic acids in relation to acid deposition in controlling the acidity of soil and stream waters on a seasonal basis. Environ. Pollut. 2008, 151, 110–120. [Google Scholar] [CrossRef]
- Wu, J.; Liang, G.; Hui, D.; Deng, Q.; Xiong, X.; Qiu, Q.; Liu, J.; Chu, G.; Zhou, G.; Zhang, D. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China. Sci. Total Environ. 2016, 544, 94–102. [Google Scholar] [CrossRef]
- Müller, A.; Miyazaki, Y.; Tachibana, E.; Kawamura, K.; Hiura, T. Evidence of a Reduction in Cloud Condensation Nuclei Activity of Water-Soluble Aerosols Caused by Biogenic Emissions in a Cool-Temperate Forest. Sci. Rep. 2017, 7, 8452. [Google Scholar] [CrossRef]
- Brown, S.G.; Eberly, S.; Paatero, P.; Norris, G.A. Methods for Estimating Uncertainty in Pmf Solutions: Examples with Ambient Air and Water Quality Data and Guidance on Reporting PMF Results. Sci. Total Environ. 2015, 518, 626–635. [Google Scholar] [CrossRef]
- Wang, Q.; Zhuang, G.; Huang, K.; Liu, T.; Deng, C.; Xu, J.; Lin, Y.; Guo, Z.; Chen, Y.; Fu, Q.; et al. Probing the Severe Haze Pollution in Three Typical Regions of China: Characteristics, Sources and Regional Impacts. Atmos. Environ. 2015, 120, 76–88. [Google Scholar] [CrossRef]
- Dentener, F.J.; Crutzen, P.J. A Three-Dimensional Model of the Global Ammonia Cycle. J. Atmos. Chem. 1994, 19, 331–369. [Google Scholar] [CrossRef]
- Li, Y.C.; Zhang, M.; Shu, M.; Ho, S.S.H.; Liu, Z.F.; Wang, X.X.; Zhao, X.Q. Chemical Characteristics of Rainwater in Sichuan Basin, a Case Study of Ya’an. Environ. Sci. Pollut. Res. 2016, 23, 13088–13099. [Google Scholar] [CrossRef] [PubMed]
Location | Formic | Acetic | Oxalic | OA/TFA (%) | Time | Reference |
---|---|---|---|---|---|---|
Shanghai, China | 13.54 | 8.32 | 5.85 | 17.8 | 2020–2021 | This study |
Lin’an, China | 10.21 | 3.89 | 2.01 | 17.7 | 2014–2015 | [30] |
Xiamen, China | 4.62 | 1.84 | 0.44 | <2 | 2012–2013 | [59] |
Mt. Lu, China | 4.12 | 11.20 | 5.07 | 12.3 | 2011–2012 | [15] |
Mt. Heng, China | 14.30 | 16.46 | 3.31 | 16.8 | 2009 | [61] |
Mt. Mangdang, China | 7.90 | 9.90 | 3.60 | 18.4 | March–April 2009 | [58] |
Anshun, China | 4.95 | 6.93 | 2.84 | 58.1 | 2007–2008 | [27] |
Shangzhong, China | 2.26 | 1.35 | 2.31 | 2.9 | 2006–2007 | [65] |
Shenzhen, South China | 1.34 | 0.05 | 1.15 | 0.4 | 2005–2009 | [21] |
Beijing, China | 5.60 | 4.60 | 1.17 | / | 2003 | [60] |
Wilmington, NC, USA | 26.90 | 2.60 | / | 31.6 | 2008 | [66] |
Amersfoort, South Africa | 7.50 | 6.10 | / | 10.0 | 1986–1999 | [25] |
Los Angeles | 12.4 | 4.10 | / | 27.4 | 1985–1991 | [31] |
Northwest Spain | / | 9.50 | 3.00 | / | 1996–1997 | [67] |
São Paulo State, Brazil | 7.80 | 5.00 | 2.40 | 39.8 | 2003–2007 | [68] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Z.; Xiao, H.; Xu, Y. Organic Acids in Sequential Volume-Based Rainwater Samples in Shanghai: Seasonal Variations and Origins. Atmosphere 2022, 13, 1502. https://doi.org/10.3390/atmos13091502
Xie Z, Xiao H, Xu Y. Organic Acids in Sequential Volume-Based Rainwater Samples in Shanghai: Seasonal Variations and Origins. Atmosphere. 2022; 13(9):1502. https://doi.org/10.3390/atmos13091502
Chicago/Turabian StyleXie, Zhixiong, Huayun Xiao, and Yu Xu. 2022. "Organic Acids in Sequential Volume-Based Rainwater Samples in Shanghai: Seasonal Variations and Origins" Atmosphere 13, no. 9: 1502. https://doi.org/10.3390/atmos13091502
APA StyleXie, Z., Xiao, H., & Xu, Y. (2022). Organic Acids in Sequential Volume-Based Rainwater Samples in Shanghai: Seasonal Variations and Origins. Atmosphere, 13(9), 1502. https://doi.org/10.3390/atmos13091502