Parameterization of a Rising Smoke Plume for a Large Moving Ship Based on CFD
Abstract
:1. Introduction
2. Methods
2.1. Physical Model and Governing Equations
2.2. Experimental Case Simulation Parameter Scheme
2.3. Computational Domains, Boundary Conditions, and Simulation Settings
3. Results and Discussion
3.1. Rising Height of the Smoke Plume for the Stationary and Moving Source Simulation Schemes
3.2. Smoke Plume Rising Height Difference between the Stationary Source and the Moving Source Simulation Schemes
3.3. The Flow Field Characteristics That Cause Differences in the Smoke Plume Rising Height
3.4. Simplified Calculation Methods for Simulating the Rising Smoke Plume of a Moving Ship with a Stationary Source Scheme
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Main Engine Stack Information | |||||
---|---|---|---|---|---|
Number | Sample of Ship | Diameter (m) | ME Power (kW) | Exhaust Gas Temperature (℃) | Speed Far away 1 km from Port (Knots) |
1 | MSC DEILA | 2.55 | 72,240 | / | 5.6 |
2 | AXEL MAERSK | 2 | 53,600 | 200 | 12.8 |
3 | MATHILDE MAERSK | 3.5 | 58,600 | 350 | 6.6 |
4 | CZECH | 1.38 | 38,590 | 200 | 12 |
5 | HYUNDAI HONGKONG | 0.8 | 93,120 | 60 | 15.4 |
6 | MAERSK EINDHOVEN | 2.866 | 68,640 | 400 | 6 |
7 | MSC BERYL | 3.3 | 45,716 | 250 | 6.3 |
8 | SEAMAX BRIDGEPORT | 2.1 | 69,467.5 | 320 | 12.8 |
9 | MOL TRADITION | 1 | 59,250 | 275 | 3.3 |
10 | MSC BETTINA | 1.8 | 45,500 | 305 | 5.3 |
11 | NORTHERN JUVENILE | 2.2 | 57,100 | 157 | 12.8 |
12 | MAERSK SARNIA | 6.455 | 61,900 | 323 | 8.2 |
13 | MOL CONTINUITY | 2.3 | 56,185 | 250 | 11.5 |
14 | MALIK AL ASHTAR | 2.8 | 71,770 | 350 | 5.5 |
15 | MSC LAURENCE | 1 | 61,365 | 300 | 11.3 |
16 | MSC SONIA | 3 | 73,316.88 | 220 | 4.4 |
17 | APL LION CITY | 2.766 | 62,030 | 300 | 7.6 |
18 | APL PARIS | 3.318 | 54,120 | 220 | 11 |
19 | CMA CGM COLUMBA | 3.165 | 72,240 | 327 | 5.6 |
20 | HYUNDAI DREAM | 2.416 | 48,510 | 280 | 2.2 |
21 | KOTA PANJANG | 2.26 | 42,350 | 200 | 8.7 |
22 | MONACO MAERSK | 1.722 | 62,000 | 340 | 0.8 |
23 | MSC MIRJAM | 2.6 | 60,850 | 323 | 5 |
24 | MSC PALOMA | 3.12 | 45,511 | / | 4 |
25 | MSC ROMA | 2.8 | 68,520 | 300 | 10.9 |
26 | NYK WREN | 10.45 | 28,310 | 170 | 3.8 |
27 | OSAKA EXPRESS | 2.846 | 34,500 | 188 | 14.5 |
28 | OOCL SEOUL | 2.6 | 68,443.2 | 330 | 10.7 |
29 | TOLEDO TRIUMPH | 2.3 | 48,900 | 300 | 5.2 |
Exhaust Gas Exit Velocity Corresponding to Ship Speed (m/s) | |||||
---|---|---|---|---|---|
Number | Sample of Ship | Ship Speed at 2 Knots | Ship Speed at 6 Knots | Ship Speed at 10 Knots | Ship Speed at 14 Knots |
1 | MSC DEILA | 0.09 | 1.38 | 5.66 | 14.07 |
2 | AXEL MAERSK | 0.07 | 1.49 | 6.74 | 17.04 |
3 | MATHILDE MAERSK | 0.30 | 0.63 | 2.73 | 6.80 |
4 | CZECH | 1.26 | 2.35 | 10.37 | 26.15 |
5 | HYUNDAI HONGKONG | 9.06 | 14.05 | 55.70 | 146.23 |
6 | MAERSK EINDHOVEN | 0.52 | 0.64 | 2.84 | 6.80 |
7 | MSC BERYL | 0.26 | 0.46 | 1.94 | 5.01 |
8 | SEAMAX BRIDGEPORT | / | / | / | 15.46 |
9 | MOL TRADITION | 0.30 | 7.34 | 31.38 | 78.86 |
10 | MSC BETTINA | 0.06 | 1.28 | 6.10 | 15.94 |
11 | NORTHERN JUVENILE | 0.73 | 1.03 | 5.07 | 12.82 |
12 | MAERSK SARNIA | 0.09 | 0.09 | 0.88 | 2.23 |
13 | MOL CONTINUITY | 0.66 | 0.66 | 2.92 | 8.00 |
14 | MALIK AL ASHTAR | 0.03 | 0.77 | 3.53 | 8.89 |
15 | MSC LAURENCE | / | 5.34 | 23.49 | 60.43 |
16 | MSC SONIA | 0.03 | 0.88 | 3.79 | 9.80 |
17 | APL LION CITY | / | 0.50 | 2.65 | 7.01 |
18 | APL PARIS | / | 0.54 | 2.44 | 6.08 |
19 | CMA CGM COLUMBA | / | 0.94 | 3.94 | 10.03 |
20 | HYUNDAI DREAM | / | 0.96 | 4.03 | 10.27 |
21 | KOTA PANJANG | 0.05 | 1.03 | 4.04 | 10.25 |
22 | MONACO MAERSK | / | 2.59 | 9.85 | 24.38 |
23 | MSC MIRJAM | / | 1.04 | 4.31 | 11.25 |
24 | MSC PALOMA | / | 0.75 | 3.26 | 8.05 |
25 | MSC ROMA | / | 0.99 | 4.34 | 11.089 |
26 | NYK WREN | / | 0.04 | 0.19 | / |
27 | OSAKA EXPRESS | 0.27 | 0.72 | 3.12 | 7.33 |
28 | OOCL SEOUL | / | 0.91 | 3.93 | 10.18 |
29 | TOLEDO TRIUMPH | / | 0.62 | 2.57 | 6.84 |
References
- Zhang, Y.; Yang, X.; Brown, R.; Yang, L.P.; Morawska, L.; Ristovski, Z.; Fu, Q.Y.; Huang, C. Shipping emissions and their impacts on air quality in China. Sci. Total Environ. 2017, 581, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Merico, E.; Cesari, D.; Gregoris, E.; Gambaro, A.; Cordella, M.; Contini, D. Shipping and Air Quality in Italian Port Cities: State-of-the-Art Analysis of Available Results of Estimated Impacts. Atmosphere 2021, 12, 536. [Google Scholar] [CrossRef]
- Viana, M.; Hammingh, P.; Colette, A.; Querol, X.; Degraeuwe, B.; de Vlieger, I.; van Aardenne, J. Impact of maritime transport emissions on coastal air quality in Europe. Atmos. Environ. 2014, 90, 96–105. [Google Scholar] [CrossRef]
- Fan, Q.Z.; Zhang, Y.; Ma, W.C.; Ma, H.X.; Feng, J.L.; Yu, Q.; Yang, X.; Ng, S.K.W.; Fu, Q.Y.; Chen, L.M. Spatial and Seasonal Dynamics of Ship Emissions over the Yangtze River Delta and East China Sea and Their Potential Environmental Influence. Environ. Sci. Technol. 2016, 50, 1322–1329. [Google Scholar] [CrossRef]
- Zhang, C.; Shi, Z.B.; Zhao, J.R.; Zhang, Y.; Yu, Y.; Mu, Y.C.; Yao, X.H.; Feng, L.M.; Zhang, F.; Chen, Y.J.; et al. Impact of air emissions from shipping on marine phytoplankton growth. Sci. Total Environ. 2021, 769, 145488. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.Y.; Badia, A.; Fernandez, R.P.; Mahajan, A.S.; Lopez-Norena, A.; Zhang, Y.; Wang, S.S.; Puliafito, E.; Cuevas, C.A.; Saiz-Lopez, A. Chemical Interactions Between Ship-Originated Air Pollutants and Ocean-Emitted Halogens. J. Geophys. Res.-Atmos. 2021, 126, e2020JD034175. [Google Scholar] [CrossRef]
- Wang, X.N.; Shen, Y.; Lin, Y.F.; Pan, J.; Zhang, Y.; Louie, P.K.K.; Li, M.; Fu, Q.Y. Atmospheric pollution from ships and its impact on local air quality at a port site in Shanghai. Atmos. Chem. Phys. 2019, 19, 6315–6330. [Google Scholar] [CrossRef]
- Blatcher, D.J.; Eames, I. Compliance of Royal Naval ships with nitrogen oxide emissions legislation. Mar. Pollut. Bull. 2013, 74, 10–18. [Google Scholar] [CrossRef]
- Zhao, J.R.; Zhang, Y.; Xu, H.R.; Tao, S.; Wang, R.; Yu, Q.; Chen, Y.; Zou, Z.; Ma, W.C. Trace Elements from Ocean-Going Vessels in East Asia: Vanadium and Nickel Emissions and Their Impacts on Air Quality. J. Geophys. Res.-Atmos. 2021, 126, e2020JD033984. [Google Scholar] [CrossRef]
- Zhao, M.J.; Zhang, Y.; Ma, W.C.; Fu, Q.Y.; Yang, X.; Li, C.L.; Zhou, B.; Yu, Q.; Chen, L.M. Characteristics and ship traffic source identification of air pollutants in China’s largest port. Atmos. Environ. 2013, 64, 277–286. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, Y.J.; Cui, M.; Feng, Y.L.; Yang, X.; Chen, J.M.; Zhang, Y.; Gao, H.W.; Tian, C.G.; Matthias, V.; et al. Emission factors and environmental implication of organic pollutants in PM emitted from various vessels in China. Atmos. Environ. 2019, 200, 302–311. [Google Scholar] [CrossRef]
- Sun, J.F.; Chen, H.; Mao, J.B.; Zhao, J.R.; Zhang, Y.; Wang, L.; Wang, X.K.; Ouyang, H.L.; Tang, X.; George, C.; et al. Secondary Inorganic Ions Characteristics in PM2.5 Along Offshore and Coastal Areas of the Megacity Shanghai. J. Geophys. Res.-Atmos. 2021, 126, e2021JD035139. [Google Scholar] [CrossRef]
- Lloret, J.; Carreno, A.; Caric, H.; San, J.; Fleming, L.E. Environmental and human health impacts of cruise tourism: A review. Mar. Pollut. Bull. 2021, 173, 112979. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Fu, M.L.; Jin, X.X.; Shang, Y.; Shindell, D.; Faluvegi, G.; Shindell, C.; He, K.B. Health and climate impacts of ocean-going vessels in East Asia. Nat. Clim. Chang. 2016, 6, 1037–1041. [Google Scholar] [CrossRef]
- Barregard, L.; Molnar, P.; Jonson, J.E.; Stockfelt, L. Impact on Population Health of Baltic Shipping Emissions. Int. J. Environ. Res. Public Health 2019, 16, 1954. [Google Scholar] [CrossRef]
- Jahangiri, S.; Nikolova, N.; Tenekedjiev, K. Health risk assessment of engine exhaust emissions within Australian ports: A case study of Port of Brisbane. Environ. Pract. 2019, 21, 20–35. [Google Scholar] [CrossRef]
- Mandal, A.; Biswas, J.; Farooqui, Z.; Roychowdhury, S. A detailed perspective of marine emissions and their environmental impact in a representative Indian port. Atmos. Pollut. Res. 2021, 12, 101194. [Google Scholar] [CrossRef]
- Lateb, M.; Meroney, R.N.; Yataghene, M.; Fellouah, H.; Saleh, F.; Boufadel, M.C. On the use of numerical modelling for near-field pollutant dispersion in urban environments-A review. Environ. Pollut. 2016, 208, 271–283. [Google Scholar] [CrossRef]
- Marelle, L.; Thomas, J.L.; Raut, J.C.; Law, K.S.; Jalkanen, J.P.; Johansson, L.; Roiger, A.; Schlager, H.; Kim, J.; Reiter, A.; et al. Air quality and radiative impacts of Arctic shipping emissions in the summertime in northern Norway: From the local to the regional scale. Atmos. Chem. Phys. 2016, 16, 2359–2379. [Google Scholar] [CrossRef]
- Wang, R.N.; Tie, X.X.; Li, G.H.; Zhao, S.Y.; Long, X.; Johansson, L.; An, Z.S. Effect of ship emissions on O-3 in the Yangtze River Delta region of China: Analysis of WRF-Chem modeling. Sci. Total Environ. 2019, 683, 360–370. [Google Scholar] [CrossRef]
- Feng, J.L.; Zhang, Y.; Li, S.S.; Mao, J.B.; Patton, A.P.; Zhou, Y.Y.; Ma, W.C.; Liu, C.; Kan, H.D.; Huang, C.; et al. The influence of spatiality on shipping emissions, air quality and potential human exposure in the Yangtze River Delta/Shanghai, China. Atmos. Chem. Phys. 2019, 19, 6167–6183. [Google Scholar] [CrossRef]
- Murena, F.; Mocerino, L.; Quaranta, F.; Toscano, D. Impact on air quality of cruise ship emissions in Naples, Italy. Atmos. Environ. 2018, 187, 70–83. [Google Scholar] [CrossRef]
- Iris, C.; Lam, J.S.L. A review of energy efficiency in ports: Operational strategies, technologies and energy management systems. Renew. Sustain. Energy Rev. 2019, 112, 170–182. [Google Scholar] [CrossRef]
- Lonati, G.; Cernuschi, S.; Sidi, S. Air quality impact assessment of at-berth ship emissions. Case-study for the project of a new freight port. Sci. Total Environ. 2010, 409, 192–200. [Google Scholar] [CrossRef]
- Holmes, N.S.; Morawska, L. A review of dispersion modelling and its application to the dispersion of particles: An overview of different dispersion models available. Atmos. Environ. 2006, 40, 5902–5928. [Google Scholar] [CrossRef]
- Poplawski, K.; Setton, E.; McEwen, B.; Hrebenyk, D.; Graham, M.; Keller, P. Impact of cruise ship emissions in Victoria, BC, Canada. Atmos. Environ. 2011, 45, 824–833. [Google Scholar] [CrossRef]
- Toscano, D.; Marro, M.; Mele, B.; Murena, F.; Salizzoni, P. Assessment of the impact of gaseous ship emissions in ports using physical and numerical models: The case of Naples. Build. Environ. 2021, 196, 107812. [Google Scholar] [CrossRef]
- Xu, Y.N.; Yu, Q.; Zhang, Y.; Ma, W.C. Numerical Study on the Plume Behavior of Multiple Stacks of Container Ships. Atmosphere 2021, 12, 600. [Google Scholar] [CrossRef]
- Pasquill, F.; Michael, P. Atmospheric Diffusion, 2nd edition. Phys. Today 1977, 30, 55–57. [Google Scholar] [CrossRef]
- Seshadri, V.; Singh, S.; Kulkarni, P. Study of Problem of Exhaust Smoke Ingress into GT Intakes of a Naval Ship. J. Ship Technol. 2006, 2. [Google Scholar]
- Huang, J.T.; Carrica, P.M.; Stern, F. A method to compute ship exhaust plumes with waves and wind. Int. J. Numer. Methods Fluids 2012, 68, 160–180. [Google Scholar] [CrossRef]
- Tominaga, Y.; Stathopoulos, T. CFD simulation of near-field pollutant dispersion in the urban environment: A review of current modeling techniques. Atmos. Environ. 2013, 79, 716–730. [Google Scholar] [CrossRef]
- Kulkarni, P.R.; Singh, S.N.; Seshadri, V. Comparison of CFD simulation of Exhaust Smoke-Superstructure Interaction on a Ship with Experimental Data. In Proceedings of the 10th Naval Platform Technology Seminar NPTS-05, Singapore, 17 May 2005. [Google Scholar]
- Duy, T.N.; Hino, T.; Suzuki, K. Numerical study on stern flow fields of ship hulls with different transom configurations. Ocean. Eng. 2017, 129, 401–414. [Google Scholar] [CrossRef]
- Watson, N.A.; Kelly, M.F.; Owen, I.; Hodge, S.J.; White, M.D. Computational and experimental modelling study of the unsteady airflow over the aircraft carrier HMS Queen Elizabeth. Ocean. Eng. 2019, 172, 562–574. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, S.K.; Ngae, P.; Feiz, A.A.; Turbelin, G. Assessment of a CFD model for short-range plume dispersion: Applications to the Fusion Field Trial 2007 (FFT-07) diffusion experiment. Atmos. Res. 2017, 197, 84–93. [Google Scholar] [CrossRef]
- Mao, J.B.; Zhang, Y.; Yu, F.Q.; Chen, J.M.; Sun, J.F.; Wang, S.S.; Zou, Z.; Zhou, J.; Yu, Q.; Ma, W.C.; et al. Simulating the impacts of ship emissions on coastal air quality: Importance of a high-resolution emission inventory relative to cruise-and land-based observations. Sci. Total Environ. 2020, 728, 138454. [Google Scholar] [CrossRef]
- Vijayakumar, R.; Singh, S.N.; Seshadri, V. CFD prediction of the trajectory of hot exhaust from the funnel of a naval ship in the presence of ship superstructure. Int. J. Marit. Eng. 2014, 156, 1–23. [Google Scholar] [CrossRef]
- Bayraktar, S.; Safa, A.; Yilmaz, T. Cfd and analytical analysis of exhaust system of a gas turbine used in a ship. In Proceedings of the International Conference on Numerical Analysis and Applied Mathematics, Corfu, Greece, 16–20 September 2007. [Google Scholar]
- Fujimura, A.; Matt, S.; Soloviev, A.; Maingot, C.; Rhee, S.H. The impact of thermal stratification and wind stress on sea surface features in sar imagery. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 24–29 July 2011. [Google Scholar]
- Kumaresh, S.; Kim, M.Y.; Kim, C. Numerical investigation of plume dispersion characteristics for various ambient flow velocities. J. Mech. Sci. Technol. 2019, 33, 4511–4519. [Google Scholar] [CrossRef]
- Marro, M.; Salizzoni, P.; Cierco, F.X.; Korsakissok, I.; Danzi, E.; Soulhac, L. Plume rise and spread in buoyant releases from elevated sources in the lower atmosphere. Environ. Fluid Mech. 2014, 14, 201–219. [Google Scholar] [CrossRef]
- Edalati-nejad, A.; Ghodrat, M.; Fanaee, S.A.; Simeoni, A. Numerical Simulation of the Effect of Fire Intensity on Wind Driven Surface Fire and Its Impact on an Idealized Building. Fire-Switz. 2022, 5, 17. [Google Scholar] [CrossRef]
- Edalati-nejad, A.; Fanaee, S.A.; Ghodrat, M.; Salehi, F.; Khadem, J. The time dependent investigation of methane-air counterflow diffusion flames with detailed kinetic and pollutant effects into a micro/macro open channel. Case Stud. Therm. Eng. 2020, 18, 100603. [Google Scholar] [CrossRef]
- Kulkarni, P.R.; Singh, S.N.; Seshadri, V. Parametric studies of exhaust smoke-superstructure interaction on a naval ship using CFD. Comput. Fluids 2007, 36, 794–816. [Google Scholar] [CrossRef]
- Liu, C.; Li, Q.L.; Zhao, W.; Wang, Y.Q.; Ali, R.; Huang, D.; Lu, X.X.; Zheng, H.; Wei, X.L. Spatiotemporal Characteristics of Near-Surface Wind in Shenzhen. Sustainability 2020, 12, 739. [Google Scholar] [CrossRef]
- Liu, Z.M.; Lu, X.H.; Feng, J.L.; Fan, Q.Z.; Zhang, Y.; Yang, X. Influence of Ship Emissions on Urban Air Quality: A Comprehensive Study Using Highly Time-Resolved Online Measurements and Numerical Simulation in Shanghai. Environ. Sci. Technol. 2017, 51, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.B.; Wen, Y.Q.; He, L.; Liu, Y.M.; Zhang, Y.; Yu, Q.; Ma, W.C. Single-Vessel Plume Dispersion Simulation: Method and a Case Study Using CALPUFF in the Yantian Port Area, Shenzhen (China). Int. J. Environ. Res. Public Health 2020, 17, 7831. [Google Scholar] [CrossRef]
- Tohidi, A.; Kaye, N.B. Highly buoyant bent-over plumes in a boundary layer. Atmos. Environ. 2016, 131, 97–114. [Google Scholar] [CrossRef]
- Velamati, R.K.; Vivek, M.; Goutham, K.; Sreekanth, G.R.; Dharmarajan, S.; Goel, M. Numerical study of a buoyant plume from a multi-flue stack into a variable temperature gradient atmosphere. Environ. Sci. Pollut. Res. 2015, 22, 16814–16829. [Google Scholar] [CrossRef]
- Villasenor, R.; Magdaleno, M.; Quintanar, A.; Gallardo, J.C.; Lopez, M.T.; Jurado, R.; Miranda, A.; Aguilar, M.; Melgarejo, L.A.; Palmerin, E.; et al. An air quality emission inventory of offshore operations for the exploration and production of petroleum by the Mexican oil industry. Atmos. Environ. 2003, 37, 3713–3729. [Google Scholar]
- Molders, N.; Porter, S.E.; Cahill, C.F.; Grell, G.A. Influence of ship emissions on air quality and input of contaminants in southern Alaska National Parks and Wilderness Areas during the 2006 tourist season. Atmos. Environ. 2010, 44, 1400–1413. [Google Scholar]
- Yim, S.H.L.; Fung, J.C.H.; Lau, A.K.H. Use of high-resolution MM5/CALMET/CALPUFF system SO2 apportionment to air quality in Hong Kong. Atmos. Environ. 2010, 44, 4850–4858. [Google Scholar]
Parameter | Value Range | Representative Value |
---|---|---|
Ship speed (Knots) | 0–4 | 2 (S1 *) |
4–8 | 6 (S2 *) | |
8–12 | 10 (S3 *) | |
12–16 | 14 (S4 *) | |
Wind speed (m/s) | 1.5–4.5 | 3 |
4.5–7.5 | 6 | |
7.5–10.5 | 9 | |
10.5–13.5 | 12 |
Emission Scenarios | Flue Gas Exit Velocity (m/s) | |||
---|---|---|---|---|
Ship Speed (Knots) | SO2 Mass Fraction of Exhaust Gas Exit (C1) | Emission Level | Number | |
2 | 2.67 × 10−3 | Low | S1-V1 | 0.26 |
Medium | S1-V2 | 0.66 | ||
High | S1-V3 | 1.26 | ||
6 | 1.79 × 10−3 | Low | S2-V1 | 0.46 |
Medium | S2-V2 | 1.04 | ||
High | S2-V3 | 2.35 | ||
10 | 6.48 × 10−4 | Low | S3-V1 | 2.01 |
Medium | S3-V2 | 4.31 | ||
High | S3-V3 | 10.37 | ||
14 | 5.01 × 10−4 | Low | S4-V1 | 5.01 |
Medium | S4-V2 | 11.25 | ||
High | S4-V3 | 26.15 |
Ship Speed (Knots) | Calculation Domain (m) | Number of Grids |
---|---|---|
0 | 1800 × 150 × 900 | 120 × 15 × 60 |
2 | 1800 × 150 × 450 | 120 × 15 × 30 |
6 | 1800 × 150 × 450 | 120 × 15 × 30 |
10 | 2400 × 150 × 450 | 160 × 15 × 30 |
14 | 3000 × 150 × 450 | 200 × 15 × 30 |
Validation Case | T (℃) | (m/s) | (°C) | ||||||
---|---|---|---|---|---|---|---|---|---|
Without Correction | |||||||||
Case1 | 10 | 3 | 4.31 | 200 | 2.77 | 70.55 | 18.49 | 5.19 | 0.17 |
Case2 | 10 | 3 | 4.31 | 300 | 2.77 | 139.29 | −12.61 | −21.54 | −21.84 |
Case3 | 10 | 3 | 4.31 | 400 | 2.77 | 208.03 | −11.02 | −32.90 | −32.47 |
Case4 | 10 | 3 | 2.01 | 300 | 1.64 | 139.73 | 43.77 | 36.02 | 17.91 |
Case5 | 10 | 3 | 10.37 | 300 | 5.75 | 138.13 | −10.10 | −53.25 | 107.37 |
Case6 | 10 | 6 | 4.31 | 200 | 2.61 | 38.16 | 86.14 | 3.55 | −51.11 |
Case7 | 10 | 6 | 4.31 | 300 | 2.61 | 106.90 | 33.56 | 1.48 | −27.81 |
Case8 | 10 | 6 | 4.31 | 400 | 2.60 | 175.64 | 49.37 | −2.59 | −17.84 |
Case9 | 10 | 6 | 2.01 | 300 | 1.48 | 107.34 | 34.96 | 11.23 | −30.51 |
Case10 | 10 | 6 | 10.37 | 300 | 5.59 | 105.74 | 5.59 | −22.40 | −14.24 |
Case11 | 14 | 3 | 11.25 | 200 | 6.16 | 70.97 | 643.08 | 12.73 | 312.61 |
Case12 | 14 | 3 | 11.25 | 300 | 6.15 | 139.71 | 561.45 | −11.51 | 341.44 |
Case13 | 14 | 3 | 11.25 | 400 | 6.15 | 208.45 | 535.64 | −10.43 | 352.02 |
Case14 | 14 | 3 | 5.01 | 300 | 3.08 | 140.91 | 66.4 | 37.62 | 41.75 |
Case15 | 14 | 3 | 26.15 | 300 | 13.48 | 136.87 | 284.94 | 161.89 | 164.09 |
Case16 | 14 | 6 | 11.25 | 200 | 6.00 | 38.59 | 93.24 | 16.27 | −14.57 |
Case17 | 14 | 6 | 11.25 | 300 | 5.99 | 107.33 | 39.14 | −3.04 | 18.48 |
Case18 | 14 | 6 | 11.25 | 400 | 5.99 | 176.07 | 34.25 | −15.39 | 14.69 |
Case19 | 14 | 6 | 5.01 | 300 | 2.92 | 108.52 | 85.67 | 41.17 | 3.65 |
Case20 | 14 | 6 | 26.15 | 300 | 13.32 | 104.48 | 125.59 | −44.55 | 37.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Song, J.; Xu, Y.; Yu, Q.; Zhang, Y.; Ma, W. Parameterization of a Rising Smoke Plume for a Large Moving Ship Based on CFD. Atmosphere 2022, 13, 1507. https://doi.org/10.3390/atmos13091507
Li J, Song J, Xu Y, Yu Q, Zhang Y, Ma W. Parameterization of a Rising Smoke Plume for a Large Moving Ship Based on CFD. Atmosphere. 2022; 13(9):1507. https://doi.org/10.3390/atmos13091507
Chicago/Turabian StyleLi, Jingqian, Jihong Song, Yine Xu, Qi Yu, Yan Zhang, and Weichun Ma. 2022. "Parameterization of a Rising Smoke Plume for a Large Moving Ship Based on CFD" Atmosphere 13, no. 9: 1507. https://doi.org/10.3390/atmos13091507
APA StyleLi, J., Song, J., Xu, Y., Yu, Q., Zhang, Y., & Ma, W. (2022). Parameterization of a Rising Smoke Plume for a Large Moving Ship Based on CFD. Atmosphere, 13(9), 1507. https://doi.org/10.3390/atmos13091507