Extreme Heights of 15 January 2022 Tonga Volcanic Plume and Its Initial Evolution Inferred from COSMIC-2 RO Measurements
Abstract
:1. Introduction
2. Data and Methodology
3. Results and Discussion
3.1. Extreme Heights of Tonga Volcanic Plume
3.2. Initial Evolution of Bending Angle Pertubations
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Volcanism Program. Report on hunga tonga-hunga ha’apai (tonga). In Bulletin of the Global Volcanism Network; Smithsonian Institution: Washington, DC, USA, 2022; Volume 40, p. 1. [Google Scholar] [CrossRef]
- Adam, D. Tonga volcano eruption created puzzling ripples in earth’s atmosphere. Nature 2022, 601, 497. [Google Scholar] [CrossRef] [PubMed]
- Carvajal, M.; Sepulveda, I.; Gubler, A.; Garreaud, R. Worldwide signature of the 2022 Tonga volcanic tsunami. Geophys. Res. Lett. 2022, 49, e2022GL098153. [Google Scholar] [CrossRef]
- Wright, C.; Hindley, N.; Alexander, M.J.; Barlow, M.; Hoffmann, L.; Mitchell, C.; Prata, F.; Bouillon, M.; Carstens, J.; Clerbaux, C. Surface-to-space atmospheric waves from Hunga Tonga-Hunga Ha’apai eruption. Nature 2022, 609, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Matoza, R.S.; Fee, D.; Assink, J.D.; Iezzi, A.M.; Green, D.N.; Kim, K.; Toney, L.; Lecocq, T.; Krishnamoorthy, S.; Lalande, J.M.; et al. Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga. Science 2022, 377, 95–100. [Google Scholar] [CrossRef]
- Proud, S.R.; Prata, A.T.; Schmauß, S. The January 2022 Eruption of Hunga Tonga-Hunga Ha’apai Volcano Reached the Mesosphere. Science 2022, 378, 554–557. [Google Scholar] [CrossRef]
- Liu, X.; Xu, J.; Yue, J.; Kogure, M. Strong gravity waves associated with Tonga volcano eruption revealed by SABER observations. Geophys. Res. Lett. 2022, 49, e2022GL098339. [Google Scholar] [CrossRef]
- Tournigand, P.-Y.; Cigala, V.; Lasota, E.; Hammouti, M.; Clarisse, L.; Brenot, H.; Prata, F.; Kirchengast, G.; Steiner, A.K. A multi-sensor satellite-based archive of the largest SO2 volcanic eruptions since 2006. Earth Syst. Sci. Data 2020, 12, 3139–3159. [Google Scholar] [CrossRef]
- NASA Earth Observatory. Tonga Volcano Plume Reached the Mesosphere. 2022. Available online: https://earthobservatory.nasa.gov/images/149474/tonga-volcano-plume-reached-the-mesosphere (accessed on 15 January 2022).
- Carr, J.L.; Horváth, Á.; Wu, D.L.; Friberg, M.D. Stereo Plume Height and Motion Retrievals for the Record-Setting Hunga Tonga-Hunga Ha’apai Eruption of 15 January 2022. Geophys. Res. Lett. 2022, 49, e2022GL098131. [Google Scholar] [CrossRef]
- NASA Earth Observatory. Hunga Tonga-Hunga Ha‘apai Erupts. 2022. Available online: https://earthobservatory.nasa.gov/images/149347/hunga-tonga-hunga-haapai-erupts (accessed on 19 January 2022).
- Wang, K.Y.; Lin, S.C.; Lee, L.C. Immediate impact of the Mt Chaiten eruption on atmosphere from FORMOSAT-3/COSMIC constellation. Geophys. Res. Lett. 2009, 36, L03808. [Google Scholar] [CrossRef]
- Okazaki, I.; Heki, K. Atmospheric temperature changes by vol-canic eruptions: GPS radio occultation observations in the 2010 Icelandic and 2011 Chilean cases. J. Volcanol. Geoth. Res. 2012, 245, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Biondi, R.; Steiner, A.K.; Kirchengast, G.; Brenot, H.; Rieckh, T. Supporting the detection and monitoring of volcanic clouds: A promising new application of Global Navigation Satellite System radio occultation. Adv. Sp. Res. 2017, 60, 2707–2722. [Google Scholar] [CrossRef]
- Ravindra Babu, S.; Liou, Y.A. Day-to-day variability of upper troposphere and lower stratosphere temperature in response to Taal volcanic eruption inferred from COSMIC-2 RO measurements. J. Volcanol. Geotherm. Res. 2022, 421, 107445. [Google Scholar] [CrossRef]
- Ho, S.-P.; Anthes, R.A.; Ao, C.O.; Healy, S.; Horanyi, A.; Hunt, D.; Mannucci, A.J.; Pedatella, N.; Randel, W.; Simmons, A. The COSMIC/FORMOSAT-3 radio occultation mission after 12 years: Accomplishments, remaining challenges, and potential impacts of COSMIC-2. Am. Meteorol. Soc. 2019, 101, E1107–E1136. [Google Scholar] [CrossRef] [Green Version]
- Schreiner, W.S.; Weiss, J.P.; Anthes, R.A.; Braun, J.; Chu, V.; Fong, J.; Zeng, Z. COSMIC-2 radio occultation constellation: First results. Geophys. Res. Lett. 2020, 47, 1–7. [Google Scholar] [CrossRef]
- Kursinski, E.R.; Hajj, G.A.; Schofield, J.T.; Linfield, R.P.; Hardy, K.R. Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res. 1997, 102, 23429–23465. [Google Scholar] [CrossRef]
- Kuo, Y.-H.; Wee, T.-K.; Sokolovskiy, S.; Rocken, W.; Schreiner, W.; Hunt, H.; Anthes, R.A. Inversion and Error Estimation of GPS Radio Occultation Data. J. Meteorol. Soc. Jpn. 2004, 82, 507–531. [Google Scholar] [CrossRef] [Green Version]
- Anthes, R.A.; Bernhardt, P.A.; Chen, Y.; Cucurull, L.; Dymond, K.F.; Ector, D.; Healy, S.B.; Ho, S.-H.; Hunt, D.C.; Kuo, Y.-H.; et al. The COSMIC/Formosat 3 mission: Early results. Am. Meteorol. Soc. 2008, 89, 313–333. [Google Scholar] [CrossRef]
- Schreiner, W.; Rocken, C.; Sokolovskiy, S.; Syndergaard, S.; Hunt, D. Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission. Geophys. Res. Lett. 2007, 34, L04808. [Google Scholar] [CrossRef] [Green Version]
- Livesey, N.J.; Read, W.G.; Froidevaux, L.; Lambert, A.; Santee, M.L.; Schwartz, M.J.; Millán, L.F.; Jarnot, R.F.; Wagner, P.A.; Hurst, D.F.; et al. Investigation and amelioration of long-term instrumental drifts in water vapor and nitrous oxide measurements from the Aura Microwave Limb Sounder (MLS) and their implications for studies of variability and trends. Atmos. Chem. Phys. 2021, 21, 15409–15430. [Google Scholar] [CrossRef]
- Li, C.; Krotkov, N.A.; Carn, S.; Zhang, Y.; Spurr, R.J.D.; Joiner, J. New-generation NASA Aura Ozone Monitoring In-strument (OMI) volcanic SO2dataset: Algorithm description, ini-tial results, and continuation with the Suomi-NPP Ozone Map-ping and Profiler Suite (OMPS). Atmos. Meas. Tech. 2017, 10, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Anselmo, T. Cloud-Aerosol LIDAR Infrared Pathfinder Satellite Observations: Data Management System, Data Products Catalog; Document No: PC-SCI-503; NASA: Hampton, VA, USA, 2006.
- Young, S.A.; Vaughan, M.A. The retrieval of profiles of particulate extinction from Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: Algorithm description. J. Atmos. Ocean. Technol. 2009, 26, 1105–1119. [Google Scholar] [CrossRef]
- Sellitto, P.; Podglajen, A.; Belhadji, R.; Boichu, M.; Carboni, E.; Cuesta, J.; Duchamp, C.; Kloss, C.; Siddans, R.; Bègue, N.; et al. The unexpected radiative impact of the Hunga Tonga eruption of 15th January 2022. Commun. Earth Environ. 2022, 3, 288. [Google Scholar] [CrossRef]
- Millán, L.; Santee, M.L.; Lambert, A.; Livesey, N.J.; Werner, F.; Schwartz, M.J.; Pumphrey, H.C.; Manney, G.L.; Wang, Y.; Su, H.; et al. The Hunga Tonga-Hunga Ha’apai Hydration of the Stratosphere. Geophys. Res. Lett. 2022, 49, e2002GL099381. [Google Scholar] [CrossRef] [PubMed]
- Cigala, V.; Biondi, R.; Prata, A.J.; Steiner, A.K.; Kirchengast, G.; Brenot, H. GNSS radio occultation advances the monitoring of volcanic clouds: The case of the 2008 Kasatochi eruption. Remote Sens. 2019, 11, 2199. [Google Scholar] [CrossRef] [Green Version]
- Prata, A.T.; Folch, A.; Prata, A.J.; Biondi, R.; Brenot, H.; Cimarelli, C.; Corradini, S.; Lapierre, J.; Costa, A. Anak Krakatau triggers volcanic freezer in the upper troposphere. Sci. Rep. 2020, 10, 3584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NASA Earth Observatory. Dramatic Changes at Hunga Tonga-Hunga Ha‘apai. 2022. Available online: https://earthobservatory.nasa.gov/images/149367/dramatic-changes-at-hunga-tonga-hunga-haapai (accessed on 21 January 2022).
- Kar, J.; Lee, K.-P.; Vaughan, M.A.; Tackett, J.L.; Trepte, C.R.; Winker, D.M.; Lucker, P.L.; Getzewich, B.J. CALIPSO level 3 stratospheric aerosol profile product: Version 1.00 algorithm description and initial assessment. Atmos. Meas. Tech. 2019, 12, 6173–6191. [Google Scholar] [CrossRef] [Green Version]
- Taha, G.; Loughman, R.; Colarco, P.R.; Zhu, T.; Thomason, L.W.; Jaross, G. Tracking the 2022 Hunga Tonga-Hunga Ha’apai Aerosol Cloud in the Upper and Middle Stratosphere Using Space-Based Observations. Geophys. Res. Lett. 2022, 49, e2022GL100091. [Google Scholar] [CrossRef]
- Sioris, C.E.; Malo, A.; McLinden, C.A.; D’Amours, R. Direct injection of water vapor into the stratosphere by volcanic eruptions. Geophys. Res. Lett. 2016, 43, 7694–7700. [Google Scholar] [CrossRef]
- Sioris, C.E.; Zou, J.; McElroy, C.T.; Boone, C.D.; Sheese, P.E.; Bernath, P.F. Water vapour variability in the high-latitude upper troposphere—Part 2: Impact of volcanic eruptions. Atmos. Chem. Phys. 2016, 16, 2207–2219. [Google Scholar] [CrossRef]
- Joshi, M.M.; Jones, G.S. The climatic effects of the direct injection of water vapour into the stratosphere by large volcanic eruptions. Atmos. Chem. Phys. 2009, 9, 6109–6118. [Google Scholar] [CrossRef] [Green Version]
- Nedoluha, G.E.; Bevilacqua, R.M.; Gomez, R.M.; Siskind, D.E.; Hicks, B.C.; Russell, J.M.; Connor, B.J. Increases in middle atmospheric water vapor as observed by the Halogen Occultation Experiment and the ground-Based Water Vapor Millimeter-Wave Spectrometer from 1991 to 1997. J. Geophys. Res. Atmos. 1998, 103, 3531–3543. [Google Scholar] [CrossRef]
- Witze, A. Why the Tongan eruption will go down in the history of volcanology. Nature 2022, 602, 376–378. [Google Scholar] [CrossRef] [PubMed]
- Khaykin, S.; Podglajen, A.; Ploeger, F.; Grooß, J.U.; Tencé, F.; Bekki, S.; Khlopenkov, K.; Bedka, K.; Rieger, L.; Baron, A.; et al. Global perturbation of stratospheric water and aerosol burden by Hunga eruption. Commun Earth Environ. 2022, 3, 316. [Google Scholar] [CrossRef]
- Gupta, A.K.; Bennartz, R.; Fauria, K.E.; Mittal, T. Eruption chronology of the December 2021 to January 2022 Hunga Tonga-Hunga Ha’apai eruption sequence. Commun. Earth Environ. 2022, 3, 314. [Google Scholar] [CrossRef]
- Thomason, L.W. Observations of a new SAGE II aerosol extinction mode following the eruption of Mt. Pinatubo. Geophys. Res. Lett. 1992, 19, 2179–2182. [Google Scholar] [CrossRef]
- Herzog, M.; Graf, H.-F.; Oberhuber, J.M.; Textor, C. The effect of phase changes of water on the development of volcanic plumes. J. Volcanol. Geotherm. Res. 1998, 87, 55–74. [Google Scholar] [CrossRef]
File Name | Longitude | Latitude | Starting Time for RO | |
---|---|---|---|---|
Hour | Minutes | |||
atmPrf_C2E3.2022.015.05.20.G05_0001.0001_nc | 183.9595 | −19.299 | 5 | 17 |
atmPrf_C2E3.2022.015.07.11.G08_0001.0001_nc | 181.5302 | −23.3197 | 7 | 11 |
atmPrf_C2E6.2022.015.17.47.G22_0001.0001_nc | 171.1261 | −21.0282 | 17 | 45 |
atmPrf_C2E6.2022.015.17.58.G15_0001.0001_nc | 172.4965 | −20.0758 | 17 | 58 |
atmPrf_C2E1.2022.015.18.15.R05_0001.0001_nc | 172.8534 | −23.7979 | 18 | 15 |
atmPrf_C2E4.2022.015.18.31.R05_0001.0001_nc | 169.7485 | −18.4442 | 18 | 31 |
atmPrf_C2E4.2022.015.20.13.G15_0001.0001_nc | 168.2508 | −18.0995 | 20 | 13 |
atmPrf_C2E4.2022.015.23.27.G17_0001.0001_nc | 171.9524 | −17.0892 | 23 | 24 |
atmPrf_C2E3.2022.016.01.45.R04_0001.0001_nc | 165.9369 | −22.7931 | 1 | 41 |
atmPrf_C2E4.2022.016.02.47.G02_0001.0001_nc | 162.7582 | −17.231 | 2 | 45 |
atmPrf_C2E4.2022.016.02.58.G16_0001.0001_nc | 165.553 | −19.6844 | 2 | 58 |
atmPrf_C2E2.2022.016.03.10.G02_0001.0001_nc | 167.2092 | −17.463 | 3 | 7 |
atmPrf_C2E2.2022.016.03.23.G26_0001.0001_nc | 176.6833 | −18.2854 | 3 | 23 |
atmPrf_C2E5.2022.016.03.54.G16_0001.0001_nc | 168.662 | −17.5328 | 3 | 54 |
atmPrf_C2E5.2022.016.05.27.G15_0001.0001_nc | 165.2896 | −17.7996 | 5 | 24 |
atmPrf_C2E2.2022.016.06.34.G12_0001.0001_nc | 171.0468 | −19.1492 | 6 | 31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravindra Babu, S.; Lin, N.-H. Extreme Heights of 15 January 2022 Tonga Volcanic Plume and Its Initial Evolution Inferred from COSMIC-2 RO Measurements. Atmosphere 2023, 14, 121. https://doi.org/10.3390/atmos14010121
Ravindra Babu S, Lin N-H. Extreme Heights of 15 January 2022 Tonga Volcanic Plume and Its Initial Evolution Inferred from COSMIC-2 RO Measurements. Atmosphere. 2023; 14(1):121. https://doi.org/10.3390/atmos14010121
Chicago/Turabian StyleRavindra Babu, Saginela, and Neng-Huei Lin. 2023. "Extreme Heights of 15 January 2022 Tonga Volcanic Plume and Its Initial Evolution Inferred from COSMIC-2 RO Measurements" Atmosphere 14, no. 1: 121. https://doi.org/10.3390/atmos14010121
APA StyleRavindra Babu, S., & Lin, N. -H. (2023). Extreme Heights of 15 January 2022 Tonga Volcanic Plume and Its Initial Evolution Inferred from COSMIC-2 RO Measurements. Atmosphere, 14(1), 121. https://doi.org/10.3390/atmos14010121