Evolution of the Soot-Particle Size Distribution Function in the Cylinder and Exhaust System of Piston Engines: Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Flow Simulation in the Engine Cylinder and Exhaust System
2.2. Simulation of Soot Formation Using MACRON Code
- −
- Mean particle diameter ;
- −
- Mean particle mass ;
- −
- Variance .
2.3. Database for Soot-Particle SDF
2.4. Model of Soot Particle Coagulation in the Engine Exhaust System
- −
- The gas flow in the exhaust system is one-dimensional, quasi-stationary, and is known a priori;
- −
- The soot-particle velocity does not differ from the average gas velocity;
- −
- The soot-particle size changes only due to coagulation;
- −
- The coagulation probability of soot particles of different sizes during collisions is 1;
- −
- The coagulation probability of identical soot particles in collisions is 0;
- −
- The initial soot-particle SDF is described using the log-normal SDF of Equation (15):
2.4.1. Brownian Coagulation
2.4.2. Turbulent–Kinetic Coagulation
2.4.3. Turbulent–Diffusion Coagulation
3. Results
3.1. Soot Number Density and Mean Diameter in the Engine Cylinder
3.2. Soot Particle Coagulation in the Engine Exhaust System
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AFM | Atomic force microscopy |
AMG | Algebraic multi-grid |
CA | Crank angle |
CG | Conjugate gradient |
DMS | Detailed model of soot formation |
EGR | Exhaust Gas Recirculation |
HACA | H-abstraction-Acetylene-addition |
ICE | Internal combustion engine |
PAH | Polycyclic aromatic hydrocarbons |
RANS | Reynolds-averaged Navier–Stokes |
SDF | Size distribution function |
SIMPLE | Semi-Implicit Method for Pressure Linked Equations |
SMF | Soot mass fraction |
TKE | Turbulent kinetic energy |
Appendix A. Kinetic Soot Model in AVL FIRE
References
- Commission Regulation (EC) No 692/2008 of 18 July 2008. p. 130. Available online: http://ec.europa.eu/enterprise/sectors/automotive/environment/eurovi/index_en.htm (accessed on 15 May 2022).
- Hiroyasu, H.; Kadota, T. Models for Combustion and Formation of Nitric Oxide and Soot in Direct Injection Diesel Engines. SAE Techn. Paper 1976, 760129. [Google Scholar] [CrossRef]
- Payri, R.; García-Oliver, J.M.; Bardi, M.; Manin, J. Fuel temperature influence on diesel sprays in inert and reacting conditions. Appl. Therm. Eng. 2012, 35, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Nishida, K.; Zhu, J.; Leng, X.; He, Z. Effects of micro-hole nozzle and ultra-high injection pressure on air entrainment, liquid penetration, flame lift-off and soot formation of diesel spray flame. Int. J. Engine Res. 2017, 18, 51–65. [Google Scholar] [CrossRef]
- Samir Chandra Ray, S.; Keiya Nishida, K.; McDonell, V.; Ogata, Y. Effects of full transient injection rate and initial spray trajectory angle profiles on the CFD simulation of evaporating diesel sprays—Comparison between single-hole and multihole injectors. Energy 2023, 263, 125796. [Google Scholar] [CrossRef]
- Agafonov, G.L.; Nullmeier, M.; Vlasov, P.A.; Warnatz, J.; Zaslonko, I.S. Kinetic Modeling of Solid Carbon Particle Formation and Thermal Decomposition during Carbon Suboxide Pyrolysis behind Shock Waves. Combust. Sci. Techn. 2002, 174, 185–213. [Google Scholar] [CrossRef]
- Agafonov, G.L.; Smirnov, V.N.; Vlasov, P.A. Shock tube and modeling study of soot formation during the pyrolysis and oxidation of a number of aliphatic and aromatic hydrocarbons. Proc. Combust. Inst. 2011, 33, 625–632. [Google Scholar] [CrossRef]
- Basevich, V.Y.; Vlasov, P.A.; Skripnik, A.A.; Frolov, S.M. Modeling of soot formation in internal combustion engines. Combust. Explos. 2008, 1, 40–43. [Google Scholar]
- Appel, J.; Bockhorn, H.; Frenklach, M. Kinetic Modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of C2 hydrocarbons. Combust. Flame 2000, 121, 122–136. [Google Scholar] [CrossRef]
- Evlampiev, A.V.; Frolov, S.M.; Basevich, V.Y.; Belyaev, A.A. Overall kinetic mechanisms for modeling turbulent reactive flows. Part IV: Diffusion combustion. Chem. Phys. Rep. 2001, 20, 21–27. [Google Scholar]
- Kiefer, J.H.; Sidhu, S.S.; Kern, R.D.; Xie, K.; Chen, H.; Harding, L.B. The homogeneous pyrolysis of acetylene II: The high temperature radical chain mechanism. Combust. Sci. Techn. 1992, 82, 101–130. [Google Scholar] [CrossRef]
- Krestinin, A.V. Detailed modeling of soot formation in hydrocarbon pyrolysis. Combust. Flame 2000, 121, 513–524. [Google Scholar] [CrossRef]
- Wagner, H.G.; Vlasov, P.A.; Dörge, K.J.; Eremin, A.V.; Zaslonko, I.S.; Tanke, D. The kinetics of carbon cluster formation during C3O2 pyrolysis. Kinet. Catal. 2001, 42, 645–656. [Google Scholar] [CrossRef]
- Wang, H.; Frenklach, M. A Detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combust. Flame 1997, 110, 173–221. [Google Scholar] [CrossRef]
- Frenklach, M.; Mebel, A. On the mechanism of soot nucleation. Phys. Chem. Chem. Phys. 2020, 22, 5314–5331. [Google Scholar] [CrossRef] [PubMed]
- Frenklach, M.; Clary, D.W.; Gardiner, W.C., Jr.; Stein, S.E. Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene. Proc. Combust. Inst. 1985, 20, 887–901. [Google Scholar] [CrossRef]
- Commodo, M.; Kaiser, K.; De Falco, G.; Minutolo, P.; Schulz, F.; D’Anna, A.; Gross, L. On the early stages of soot formation: Molecular structure elucidation by high-resolution atomic force microscopy. Combust. Flame 2019, 205, 154–164. [Google Scholar] [CrossRef]
- Schulz, F.; Commodo, M.; Kaiser, K.; De Falco, G.; Minutolo, P.; Meyer, G.; D’Anna, A.; Gross, L. Insights into incipient soot formation by atomic force microscopy. Proc. Combust. Inst. 2019, 37, 885–892. [Google Scholar] [CrossRef]
- Botero, M.L.; Sheng, Y.; Akroyd, J.; Martin, J.; Dreyer, J.A.H.; Yang, W.; Kraft, M. Internal structure of soot particles in a diffusion flame. Carbon 2019, 141, 635–642. [Google Scholar] [CrossRef] [Green Version]
- Irimiea, C.; Faccinetto, A.; Mercier, X.; Ortega, I.-K.; Nuns, N.; Therssen, E.; Desgroux, P.; Focsa, C. Unveiling trends in soot nucleation and growth: When secondary ion mass spectrometry meets statistical analysis. Carbon 2019, 144, 815–830. [Google Scholar] [CrossRef]
- Mitra, T.; Zhang, T.; Sediako, A.D.; Thomson, M.J. Understanding the formation and growth of polycyclic aromatic hydrocarbons (PAHs) and young soot from n-dodecane in a sooting laminar coflow diffusion flame. Combust. Flame 2019 202, 33–42. [CrossRef]
- Hou, D.; Lindberg, C.S.; Manuputty, M.Y.; You, X.; Kraft, M. Modelling soot formation in a benchmark ethylene stagnation flame with a new detailed population balance model. Combust. Flame 2019, 203, 56–71. [Google Scholar] [CrossRef]
- Payne, J.F.B.; Skyrme, G. An analytical means of comparing the rates of different agglomeration mechanisms, and its application to a PWR containment. Int. J. Multiphase Flow 1993, 19, 451–470. [Google Scholar] [CrossRef]
- Friedlander, S.K. Smoke, Dust and Haze: Fundamentals of Aerosols Dynamics, 2nd ed.; Oxford University Press Inc.: New York, NY, USA; Oxford, UK, 2000. [Google Scholar]
- Levich, V.G. Physico-Chemical Hydrodynamics; State Publ. Phys. Math. Litr: Moscow, Russia, 1959. [Google Scholar]
- Piskunov, V.N. Theoretical Models of Aerosol Formation Kinetics; Russian Federal Nuclear Center: Sarov, Russia, 2000. [Google Scholar]
- Piskunov, V.N.; Golubev, A.I.; Goncharov, E.A.; Ismailov, N.N. Novel model of coagulation kinetics for composite particles. Progr. Nucl. Sci. Techn. Ser. Theor. Appl. Phys. 1996, 3, 12–30. [Google Scholar]
- Frolov, S.M.; Sergeev, S.S.; Basevich, V.Y.; Frolov, F.S.; Basara, B.; Priesching, P. Simulation of multistage autoignition in diesel engine based on the detailed reaction mechanism of fuel oxidation. In Advances in Engine and Powertrain Research and Technology. Mechanisms and Machine Science; Parikyan, T., Ed.; Springer: Cham, Switzerland, 2022; Volume 114, pp. 149–165. [Google Scholar] [CrossRef]
- AVL FIRE®. Computational Fluid Dynamics for Conventional and Alternative Powertrain Development. Available online: https://www.avl.com/fire (accessed on 26 September 2022).
- Hanjalic, K.; Popovac, M.; Hadziabdic, M. A robust near wall elliptic relaxation eddy-viscosity turbulence model for CFD. Int. J. Heat Fluid Flow 2004, 25, 897–901. [Google Scholar] [CrossRef]
- Rhie, C.M.; Chow, W.L. Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 1983, 21, 1525. [Google Scholar] [CrossRef]
- Przulj, V.; Basara, B. Bounded convection schemes for unstructured grids. In Proceedings of the 15th AIAA Computational Fluid Dynamics Conference, Anaheim, CA, USA, 11–14 June 2001. AIAA paper 2001-2593. [Google Scholar]
- Marthur, S.R.; Murthy, J.Y. A pressure-based method for unstructured meshes. Numer. Heat Transfer B 1997, 31, 195–215. [Google Scholar] [CrossRef]
- Muzaferija, S. Adaptive Finite Volume Method for Flow Predictions using Unstructured Meshes and Multigrid Approach. Ph.D. Thesis, University of London, London, UK, 1994. [Google Scholar]
- Emans, M. Performance of parallel AMG-precoditiones on CFD-codes for weakly compressible flows. Parallel Comput. 2010, 36, 326–338. [Google Scholar] [CrossRef]
- Patankar, S.V.; Spalding, D.B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transfer 1972, 15, 1510–1520. [Google Scholar] [CrossRef]
- Petrovich, V. Methods for measurement and verification of ultra fine particles concentration from diesel engine emission. In Proceedings of the International Automotive Conference “Science and Motor Vehicles 2011”, Belgrad, Serbia, 19–21 April 2011. paper #NMV11-5E03. [Google Scholar]
Fuel | , K | , atm | , ms | ||
---|---|---|---|---|---|
CH4 | 1300–2700 | 1–240 | 2–4 | 0.0–0.6 | 0–3 |
C2H5OH | 1400–2600 | 1–240 | 2–4 | 0.0–0.6 | 0–3 |
C3H8 | 1300–2800 | 1–240 | 2–4 | 0.0–0.6 | 0–3 |
n-C7H16 | 1300–2800 | 1–240 | 2–4 | 0.0–0.6 | 0–3 |
i-C8H18 | 1300–2400 | 1–240 | 2–4 | 0.0–0.6 | 0–3 |
n-C10H22 | 1300–2700 | 1–240 | 2–4 | 0.0–0.6 | 0–3 |
n-C14H30 | 1300–2800 | 1–240 | 2–4 | 0.0–0.6 | 0–3 |
Time, ms | , m−3 | , nm | |
---|---|---|---|
0.0 | 0.0 | 3.72 | 0.000 |
0.5 | 9.87 | 0.417 | |
1.0 | 14.0 | 0.609 | |
1.5 | 16.5 | 0.693 | |
2.0 | 18.5 | 0.740 | |
2.5 | 19.9 | 0.765 | |
3.0 | 21.4 | 0.785 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frolov, S.M.; Avdeev, K.A.; Ivanov, V.S.; Vlasov, P.A.; Frolov, F.S.; Semenov, I.V.; Belotserkovskaya, M.S. Evolution of the Soot-Particle Size Distribution Function in the Cylinder and Exhaust System of Piston Engines: Simulation. Atmosphere 2023, 14, 13. https://doi.org/10.3390/atmos14010013
Frolov SM, Avdeev KA, Ivanov VS, Vlasov PA, Frolov FS, Semenov IV, Belotserkovskaya MS. Evolution of the Soot-Particle Size Distribution Function in the Cylinder and Exhaust System of Piston Engines: Simulation. Atmosphere. 2023; 14(1):13. https://doi.org/10.3390/atmos14010013
Chicago/Turabian StyleFrolov, Sergey M., Konstantin A. Avdeev, Vladislav S. Ivanov, Pavel A. Vlasov, Fedor S. Frolov, Ilya V. Semenov, and Marina S. Belotserkovskaya. 2023. "Evolution of the Soot-Particle Size Distribution Function in the Cylinder and Exhaust System of Piston Engines: Simulation" Atmosphere 14, no. 1: 13. https://doi.org/10.3390/atmos14010013
APA StyleFrolov, S. M., Avdeev, K. A., Ivanov, V. S., Vlasov, P. A., Frolov, F. S., Semenov, I. V., & Belotserkovskaya, M. S. (2023). Evolution of the Soot-Particle Size Distribution Function in the Cylinder and Exhaust System of Piston Engines: Simulation. Atmosphere, 14(1), 13. https://doi.org/10.3390/atmos14010013