Overview of PM10, PM2.5 and BC and Their Dependent Relationships with Meteorological Variables in an Urban Area in Northwestern Morocco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation and Sampling
2.2. Meteorological Data
2.3. Geographical Origins
2.4. Multivariate Linear Regression Analysis
2.5. Data Processing
3. Results
3.1. Overview of PM10, PM2.5, and BC Levels
3.2. Meteorological Conditions
3.3. PM Mass Characteristics
3.4. BC Mass Characteristics
3.5. Relationship between PM10, PM2.5, BC, and Meteorological Factors
3.5.1. Univariate Correlation Analyses
3.5.2. Multivariate Linear Regression Analyses
3.5.3. Relationship between PM10, PM2.5 and BC Levels and Wind Direction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arif, M.; Kumar, R.; Kumar, R.; Eric, Z.; Gourav, P. Ambient Black Carbon, PM2.5 and PM10 at Patna: Influence of Anthropogenic Emissions and Brick Kilns. Sci. Total Environ. 2018, 624, 1387–1400. [Google Scholar] [CrossRef] [PubMed]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genga, A.; Ielpo, P.; Siciliano, T.; Siciliano, M. Carbonaceous Particles and Aerosol Mass Closure in PM2.5 Collected in a Port City. Atmos. Res. 2017, 183, 245–254. [Google Scholar] [CrossRef]
- WHO. WHO Global Air Quality Guidelines; WHO: Geneva, Switzerland, 2021; ISBN 9789812837134. [Google Scholar]
- Bounakhla, Y.; Benchrif, A.; Tahri, M.; Costabile, F.; Zahry, F.; Bounakhla, M.; El Hassan, E.K. Black Carbon Aerosols at an Urban Site in North Africa (Kenitra, Morocco). Atmos. Pollut. Res. 2022, 13, 101489. [Google Scholar] [CrossRef]
- Benchrif, A.; Guinot, B.; Bounakhla, M.; Cachier, H.; Damnati, B.; Baghdad, B. Aerosols in Northern Morocco: Input Pathways and Their Chemical Fingerprint. Atmos. Environ. 2018, 174, 140–147. [Google Scholar] [CrossRef]
- Otmani, A.; Benchrif, A.; Lachhab, A.; Tahri, M.; Baghdad, B.; El Bouch, M.; Chakir, E.M. Source Apportionment and Diurnal Variability of Autumn-Time Black Carbon in a Coastal City of Salé, Morocco. Environ. Sci. 2022, 19, 8. [Google Scholar] [CrossRef]
- Blanco-Becerra, L.C.; Gáfaro-Rojas, A.I.; Rojas-Roa, N.Y. Influence of Precipitation Scavenging on the PM2.5/PM10 Ratio at the Kennedy Locality of Bogotá, Colombia. Rev. Fac. Ing. 2015, 2015, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Danek, T.; Weglinska, E.; Zareba, M. The Influence of Meteorological Factors and Terrain on Air Pollution Concentration and Migration: A Geostatistical Case Study from Krakow, Poland. Sci. Rep. 2022, 12, 11050. [Google Scholar] [CrossRef]
- Sugimoto, N.; Shimizu, A.; Matsui, I.; Nishikawa, M. A Method for Estimating the Fraction of Mineral Dust in Particulate Matter Using PM2.5-to-PM10 Ratios. Particuology 2016, 28, 114–120. [Google Scholar] [CrossRef]
- Xu, G.; Jiao, L.; Zhang, B.; Zhao, S.; Yuan, M.; Gu, Y.; Liu, J.; Tang, X. Spatial and Temporal Variability of the PM2.5/PM10 Ratio in Wuhan, Central China. Aerosol Air Qual. Res. 2017, 17, 741–751. [Google Scholar] [CrossRef]
- Wang, S.; Gao, J.; Guo, L.; Nie, X.; Xiao, X. Meteorological Influences on Spatiotemporal Variation of PM2.5 Concentrations in Atmospheric Pollution Transmission Channel Cities of the Beijing–Tianjin–Hebei Region, China. Int. J. Environ. Res. Public Health 2022, 19, 1607. [Google Scholar] [CrossRef] [PubMed]
- Gidhagen, L.; Krecl, P.; Targino, A.C.; Polezer, G.; Godoi, R.H.M.; Felix, E.; Cipoli, Y.A.; Charres, I.; Malucelli, F.; Wolf, A.; et al. An Integrated Assessment of the Impacts of PM2.5 and Black Carbon Particles on the Air Quality of a Large Brazilian City. Air Qual. Atmos. Health 2021, 14, 1455–1473. [Google Scholar] [CrossRef]
- EEA. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016—Update July 2017 1. Dk 2015, 53, 1689–1699. [Google Scholar]
- Zhang, R.; Tao, J.; Ho, K.F.; Shen, Z.; Wang, G.; Cao, J.; Liu, S.; Zhang, L.; Lee, S.C. Characterization of Atmospheric Organic and Elemental Carbon of PM2.5 in a Typical Semi-Arid Area of Northeastern China. Aerosol Air Qual. Res. 2012, 12, 792–802. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; He, M.M.; Wu, C.; Li, J.; Li, Y.; Lau, N.T.; Yu, J.Z.; Lau, A.K.H.; Fung, J.C.H.; Hoi, K.I.; et al. Potential Exposure to Fine Particulate Matter (PM2.5) and Black Carbon on Jogging Trails in Macau. Atmos. Environ. 2019, 198, 23–33. [Google Scholar] [CrossRef]
- Yu, N.; Zhu, Y.; Xie, X.; Yan, C.; Zhu, T.; Zheng, M. Characterization of Ultrafine Particles and Other Traffic Related Pollutants near Roadways in Beijing. Aerosol Air Qual. Res. 2015, 15, 1261–1269. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Dong, F.; Yang, Y.; He, D.; Zhao, X.; Zhang, W.; Yao, Q.; Liu, H. Characteristics of Carbonaceous Aerosol in the Region of Beijing, Tianjin, and Hebei, China. Atmos. Environ. 2013, 71, 389–398. [Google Scholar] [CrossRef]
- Dotse, S.-Q.; Asane, J.K.; Ofosu, F.G.; Aboh, I.J.K. Particulate Matter and Black Carbon Concentration Levels in Ashaiman, a Semi-Urban Area of Ghana, 2008. Res. J. Environ. Earth Sci. 2012, 4, 20–25. [Google Scholar]
- Mkoma, S.L.; Chi, X.; Maenhaut, W. Characteristics of Carbonaceous Aerosols in Ambient PM10 and PM2.5 Particles in Dar Es Salaam, Tanzania. Sci. Total Environ. 2010, 408, 1308–1314. [Google Scholar] [CrossRef]
- Tahri, M.; Benchrif, A.; Bounakhla, M.; Benyaich, F.; Noack, Y. Seasonal Variation and Risk Assessment of PM2.5 and PM2.5–10 in the Ambient Air of Kenitra, Morocco. Environ. Sci. Process. Impacts 2017, 19, 1427–1436. [Google Scholar] [CrossRef]
- Ryś, A.; Samek, L. Measurement Report: Determination of Black Carbon Concentration in PM2.5 Fraction by Multi-Wavelength Absorption Black Carbon Instrument (MABI). Atmos. Chem. Phys. Discuss. 2021, 2021, 1–14. [Google Scholar]
- Manohar, M.; Atanacio, A.; Button, D.; Cohen, D. MABI-A Multi-Wavelength Absorption Black Carbon Instrument for the Measurement of Fine Light Absorbing Carbon Particles. Atmos. Pollut. Res. 2021, 12, 133–140. [Google Scholar] [CrossRef]
- NOAA Accessing Data Selection Screen for Surface Data Hourly Global (DS3505). Available online: https://www7.ncdc.noaa.gov/CDO/cdo (accessed on 1 March 2022).
- Carslaw, D. Worldmet: Import Surface Meteorological Data from NOAA Integrated Surface Database (ISD). R Package version 0.9.5. 2021. Available online: https://CRAN.R-project.org/package=worldmet (accessed on 1 March 2022).
- Hsu, Y.K.; Holsen, T.M.; Hopke, P.K. Comparison of Hybrid Receptor Models to Locate PCB Sources in Chicago. Atmos. Environ. 2003, 37, 545–562. [Google Scholar] [CrossRef]
- Draxler, R.R.; Rolph, G.D. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model Access via NOAA ARL READY Website. NOAA Air Resources Laboratory, College Park, MD. 2014; Volume 8. Available online: http://www.arl.noaa.gov/HYSPLIT.Php (accessed on 1 March 2022).
- Rolph, G.; Stein, A.; Stunder, B. Real-Time Environmental Applications and Display SYstem: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Petit, J.E.; Favez, O.; Albinet, A.; Canonaco, F. A User-Friendly Tool for Comprehensive Evaluation of the Geographical Origins of Atmospheric Pollution: Wind and Trajectory Analyses. Environ. Model. Softw. 2017, 88, 183–187. [Google Scholar] [CrossRef] [Green Version]
- Ferenczi, Z.; Imre, K.; Lakatos, M.; Molnár, Á.; Bozó, L.; Homolya, E.; Gelencsér, A. Long-Term Characterization of Urban PM10 in Hungary. Aerosol Air Qual. Res. 2021, 21, 210048. [Google Scholar] [CrossRef]
- Luo, H.; Zhou, W.; Jiskani, I.M.; Wang, Z. Analyzing Characteristics of Particulate Matter Pollution in Open-Pit Coal Mines: Implications for Green Mining. Energies 2021, 14, 2680. [Google Scholar] [CrossRef]
- Hebbali, A. Tools for Building OLS Regression Models. R package olsrr version 0.5.3. 2020. Available online: https://CRAN.R-project.org/package=olsrr (accessed on 1 March 2022).
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Automat. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Schwarz, G. 1978 Shwarz. Ann. Stat. 1978, 6, 461–464. [Google Scholar]
- Akaike, H. On Newer Statistical Approaches to Parameter Estimation and Structure Determination. IFAC Proc. Vol. 1978, 11, 1877–1884. [Google Scholar] [CrossRef]
- Mallows, C.L. Some Comments on Cp. Technometrics 1973, 15, 661–675. [Google Scholar] [CrossRef]
- R Development Core Team R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. R Found. Stat. Comput. 2019, 2. Available online: https://www.R-Project.Org/ (accessed on 1 March 2021).
- Carslaw, D.C.; Ropkins, K. Openair-An R Package for Air Quality Data Analysis. Environ. Model. Softw. 2012, 27–28, 52–61. [Google Scholar] [CrossRef]
- Lin, X.; Chen, J.; Lu, T.; Huang, D.; Zhang, J. Air Pollution Characteristics and Meteorological Correlates in Lin’an, Hangzhou, China. Aerosol Air Qual. Res. 2019, 19, 2770–2780. [Google Scholar] [CrossRef]
- Ait Bouh, H.; Benyaich, F.; Bounakhla, M.; Noack, Y.; Tahri, M.; Zahry, F. Seasonal Variations of the Atmospheric Particles and Its Chemical Components in Meknes City Morocco. J. Mater. Environ. Sci. 2013, 4, 49–62. [Google Scholar]
- Pérez, N.; Pey, J.; Cusack, M.; Reche, C.; Querol, X.; Alastuey, A.; Viana, M. Variability of Particle Number, Black Carbon, and PM10, PM 2.5, and PM1 Levels and Speciation: Influence of Road Traffic Emissions on Urban Air Quality. Aerosol Sci. Technol. 2010, 44, 487–499. [Google Scholar] [CrossRef]
- Hueglin, C.; Buchmann, B.; Weber, R.O. Long-Term Observation of Real-World Road Traffic Emission Factors on a Motorway in Switzerland. Atmos. Environ. 2006, 40, 3696–3709. [Google Scholar] [CrossRef]
- Begum, B.A.; Saroar, G.; Nasiruddin, M.; Randal, S.; Sivertsen, B.; Hopke, P.K. Particulate Matter and Black Carbon Monitoring at Urban Environment in Bangladesh. Nucl. Sci. Appl. 2014, 23, 1–8. [Google Scholar]
- Şahin, Ü.A.; Onat, B.; Akın, Ö.; Ayvaz, C.; Uzun, B.; Mangır, N.; Doğan, M.; Harrison, R.M. Temporal Variations of Atmospheric Black Carbon and Its Relation to Other Pollutants and Meteorological Factors at an Urban Traffic Site in Istanbul. Atmos. Pollut. Res. 2020, 11, 1051–1062. [Google Scholar] [CrossRef]
- Abuelgasim, A.; Farahat, A. Investigations on PM10, PM2.5, and Their Ratio over the Emirate of Abu Dhabi, United Arab Emirates. Earth Syst. Environ. 2020, 4, 763–775. [Google Scholar] [CrossRef]
- Zghaid, M.; Noack, Y.; Bounakla, M.; Benyaich, F. Pollution Atmosphérique Particulaire Dans La Ville de Kenitra (Maroc). Pollut. Atmos. 2009, 51, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Rajeevan, K.; Sumesh, R.K.; Resmi, E.A.; Unnikrishnan, C.K. An Observational Study on the Variation of Black Carbon Aerosol and Source Identification over a Tropical Station in South India. Atmos. Pollut. Res. 2019, 10, 30–44. [Google Scholar] [CrossRef]
- Hang, N.T.; Kim Oanh, N.T. Chemical Characterization and Sources Apportionment of Fine Particulate Pollution in a Mining Town of Vietnam. Atmos. Res. 2014, 145–146, 214–225. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Wang, F.; Song, M.; Zhou, X.; Ming, J. Carbonaceous Aerosols in PM1, PM2.5, and PM10 Size Fractions over the Lanzhou City, Northwest China. Atmosphere 2020, 11, 1368. [Google Scholar] [CrossRef]
- Quiros, D.C.; Zhang, Q.; Choi, W.; He, M.; Paulson, S.E.; Winer, A.M.; Wang, R.; Zhu, Y. Air Quality Impacts of a Scheduled 36-h Closure of a Major Highway. Atmos. Environ. 2013, 67, 404–414. [Google Scholar] [CrossRef]
- Viidanoja, J.; Sillanpää, M.; Laakia, J.; Kerminen, V.M.; Hillamo, R.; Aarnio, P.; Koskentalo, T. Organic and Black Carbon in PM2.5 and PM10: 1 Year of Data from an Urban Site in Helsinki, Finland. Atmos. Environ. 2002, 36, 3183–3193. [Google Scholar] [CrossRef]
- Czernecki, B.; Półrolniczak, M.; Kolendowicz, L.; Marosz, M.; Kendzierski, S.; Pilguj, N. Influence of the Atmospheric Conditions on PM10 Concentrations in Poznań, Poland. J. Atmos. Chem. 2017, 74, 115–139. [Google Scholar] [CrossRef]
- Kliengchuay, W.; Worakhunpiset, S.; Limpanont, Y.; Meeyai, A.C.; Tantrakarnapa, K. Influence of the Meteorological Conditions and Some Pollutants on PM10 Concentrations in Lamphun, Thailand. J. Environ. Health Sci. Eng. 2021, 19, 237–249. [Google Scholar] [CrossRef]
- Krampah, F.; Amegbey, N.; Ndur, S. Spatio-Temporal Distribution and Health Risk Levels of TSP and PM10 in the Mining Town of Tarkwa, Ghana. Ghana Min. J. 2021, 21, 53–67. [Google Scholar] [CrossRef]
- Chen, T.; He, J.; Lu, X.; She, J.; Guan, Z. Spatial and Temporal Variations of PM2.5 and Its Relation to Meteorological Factors in the Urban Area of Nanjing, China. Int. J. Environ. Res. Public Health 2016, 13, 921. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Yuan, Q.; Li, T.; Shen, H.; Zhang, L. The Relationships between PM2.5 and Meteorological Factors in China: Seasonal and Regional Variations. Int. J. Environ. Res. Public Health 2017, 14, 1510. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.C.; Zhang, Y.; Lin, H.; Zeng, W.; Liu, T.; Xiao, J.; Rutherford, S.; You, J.; Ma, W. The Washout Effects of Rainfall on Atmospheric Particulate Pollution in Two Chinese Cities. Environ. Pollut. 2016, 215, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Yang, J.; Li, M.; Chen, J.; Ou, C.Q. Nonlinear and Lagged Meteorological Effects on Daily Levels of Ambient PM2.5 and O3: Evidence from 284 Chinese Cities. J. Clean. Prod. 2021, 278, 123931. [Google Scholar] [CrossRef]
- Ito, K.; Thurston, G.D.; Silverman, R.A. Characterization of PM2.5, Gaseous Pollutants, and Meteorological Interactions in the Context of Time-Series Health Effects Models. J. Expo. Sci. Environ. Epidemiol. 2007, 17, S45–S60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, F.; Li, X.; Wang, C.; Xu, Q.; Wang, W.; Luo, Y.; Tao, L.; Gao, Q.; Guo, J.; Chen, S.; et al. PM2.5 Spatiotemporal Variations and the Relationship with Meteorological Factors during 2013–2014 in Beijing, China. PLoS ONE 2015, 10, e0141642. [Google Scholar] [CrossRef] [PubMed]
- Munir, S.; Habeebullah, T.M.; Mohammed, A.M.F.; Morsy, E.A.; Rehan, M.; Ali, K. Analysing PM2.5 and Its Association with PM10 and Meteorology in the Arid Climate of Makkah, Saudi Arabia. Aerosol Air Qual. Res. 2017, 17, 453–464. [Google Scholar] [CrossRef]
- Barmpadimos, I.; Hueglin, C.; Keller, J.; Henne, S.; Prévôt, A.S.H. Influence of Meteorology on PM10 Trends and Variability in Switzerland from 1991 to 2008. Atmos. Chem. Phys. 2011, 11, 1813–1835. [Google Scholar] [CrossRef]
- Charron, A.; Harrison, R.M. Primary Particle Formation from Vehicle Emissions during Exhaust Dilution in the Roadside Atmosphere. Atmos. Environ. 2003, 37, 4109–4119. [Google Scholar] [CrossRef]
- Wang, F.; Li, Z.; Wang, F.; You, X.; Xia, D.; Zhang, X.; Zhou, X. Air Pollution in a Low-Industry City in China’s Silk Road Economic Belt: Characteristics and Potential Sources. Front. Earth Sci. 2021, 9, 527475. [Google Scholar] [CrossRef]
- Wang, J.; Ogawa, S. Effects of Meteorological Conditions on PM2.5 Concentrations in Nagasaki, Japan. Int. J. Environ. Res. Public Health 2015, 12, 9089–9101. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Shen, L.; Yan, C.; Du, J.; Li, Y.; Zhao, H. Analysis of the Influence of Precipitation and Wind on PM2.5 and PM10 in the Atmosphere. Adv. Meteorol. 2020, 2020, 5039613. [Google Scholar] [CrossRef]
- Dung, N.A.; Son, D.H.; Hanh, N.T.D.; Tri, D.Q. Effect of Meteorological Factors on PM10 Concentration in Hanoi, Vietnam. J. Geosci. Environ. Prot. 2019, 7, 138–150. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, Y.; Hu, J.; Ying, Q.; Hu, X.M. Relationships between Meteorological Parameters and Criteria Air Pollutants in Three Megacities in China. Environ. Res. 2015, 140, 242–254. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Wang, H.; Shi, S.; Shen, L.; Zhang, C.; Zhu, B.; Guo, S.; Wu, Z.; Song, Z.; Yin, Y.; et al. Annual Variations of Black Carbon over the Yangtze River Delta from 2015 to 2018. J. Environ. Sci. 2020, 96, 72–84. [Google Scholar] [CrossRef]
- Popovicheva, O.B.; Volpert, E.; Sitnikov, N.M.; Chichaeva, M.A.; Padoan, S. Black Carbon in Spring Aerosols of Moscow Urban Background. Geogr. Environ. Sustain. 2020, 13, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Zhang, L.; Qiu, Y.; Chen, Y.; Shi, G.; Li, T.; Zhang, L.; Yang, F. Five-Year Record of Black Carbon Concentrations in Urban Wanzhou, Sichuan Basin, China. Aerosol Air Qual. Res. 2020, 20, 1282–1293. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Engling, G.; Zhang, R.; Tao, J.; Lin, M.; Sang, X.; Chan, C.; Li, S.; Li, Y. Characterization of Fine Particulate Black Carbon in Guangzhou, a Megacity of South China. Atmos. Pollut. Res. 2014, 5, 361–370. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Kondo, Y.; Kajino, M.; Munger, J.W.; Hao, J. Black Carbon and Its Correlation with Trace Gases at a Rural Site in Beijing: Top-down Constraints from Ambient Measurements on Bottom-up Emissions. J. Geophys. Res. Atmos. 2011, 116, D24304. [Google Scholar] [CrossRef]
- Fossum, K.N.; Ovadnevaite, J.; Liu, D.; Flynn, M.; O’Dowd, C.; Ceburnis, D. Background Levels of Black Carbon over Remote Marine Locations. Atmos. Res. 2022, 271, 106119. [Google Scholar] [CrossRef]
- Cesari, D.; Merico, E.; Dinoi, A.; Marinoni, A.; Bonasoni, P.; Contini, D. Seasonal Variability of Carbonaceous Aerosols in an Urban Background Area in Southern Italy; Elsevier: Amsterdam, The Netherlands, 2018; Volume 200, ISBN 3908322987. [Google Scholar]
- Barman, N.; Gokhale, S. Urban Black Carbon-Source Apportionment, Emissions and Long-Range Transport over the Brahmaputra River Valley. Sci. Total Environ. 2019, 693, 133577. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, X.; Yue, X.; Song, M.; Zhang, G.; Ming, J. Black Carbon: The Concentration and Sources Study at the Nam Co Lake, the Tibetan Plateau from 2015 to 2016. Atmosphere 2020, 11, 624. [Google Scholar] [CrossRef]
- Oguntoke, O.; Ojelede, M.E.; Annegarn, H.J. Frequency of Mine Dust Episodes and the Influence of Meteorological Parameters on the Witwatersrand Area, South Africa. Int. J. Atmos. Sci. 2013, 2013, 128463. [Google Scholar] [CrossRef] [Green Version]
- Bibi, S.; Alam, K.; Chishtie, F.; Bibi, H.; Rahman, S. Temporal Variation of Black Carbon Concentration Using Aethalometer Observations and Its Relationships with Meteorological Variables in Karachi, Pakistan. J. Atmos. Sol. -Terr. Phys. 2017, 157–158, 67–77. [Google Scholar] [CrossRef]
- Grange, S.K.; Lewis, A.C.; Carslaw, D.C. Source Apportionment Advances Using Polar Plots of Bivariate Correlation and Regression Statistics. Atmos. Environ. 2016, 145, 128–134. [Google Scholar] [CrossRef]
Season | N | Mean | SD | Median | Min | Max | |
---|---|---|---|---|---|---|---|
PM10 (µg/m3) | Autumn | 13 | 61.4 | 24.5 | 67.9 | 26.4 | 95.4 |
Spring | 15 | 44.1 | 18.3 | 46.2 | 21.4 | 88 | |
Summer | 22 | 54.6 | 11 | 52.7 | 30.8 | 81.7 | |
Winter | 16 | 40.2 | 17.1 | 38.3 | 16.2 | 71 | |
Annual | 66 | 50.1 | 17.7 | 51.3 | 23.7 | 84 | |
PM2.5 (µg/m3) | Autumn | 13 | 21.2 | 8.2 | 18.7 | 10.8 | 34.8 |
Spring | 15 | 16.1 | 9.2 | 15.4 | 5.8 | 33.4 | |
Summer | 22 | 14.3 | 3.3 | 12.9 | 10.6 | 23.4 | |
Winter | 13 | 17.1 | 8.9 | 14.6 | 8 | 37.2 | |
Annual | 63 | 17.2 | 7.4 | 15.4 | 8.8 | 32.2 | |
PM2.5/PM10 | Autumn | 13 | 0.37 | 0.11 | 0.35 | 0.18 | 0.57 |
Spring | 15 | 0.35 | 0.11 | 0.34 | 0.20 | 0.57 | |
Summer | 22 | 0.27 | 0.06 | 0.26 | 0.16 | 0.40 | |
Winter | 13 | 0.37 | 0.13 | 0.37 | 0.24 | 0.76 | |
Annual | 63 | 0.34 | 0.10 | 0.33 | 0.20 | 0.57 | |
BC (µg/m3) | Autumn | 14 | 3.3 | 2.8 | 2.7 | 1.1 | 11.9 |
Spring | 15 | 2.9 | 0.9 | 2.9 | 1.5 | 4.7 | |
Summer | 22 | 6.3 | 4.2 | 5.3 | 2 | 19.5 | |
Winter | 16 | 2.5 | 0.7 | 2.5 | 1.2 | 3.7 | |
Annual | 67 | 3.7 | 2.1 | 3.3 | 1.4 | 10 | |
BC/PM2.5 | Autumn | 14 | 0.18 | 0.14 | 0.13 | 0.03 | 0.53 |
Spring | 15 | 0.25 | 0.15 | 0.20 | 0.10 | 0.55 | |
Summer | 22 | 0.43 | 0.21 | 0.44 | 0.15 | 0.84 | |
Winter | 16 | 0.18 | 0.10 | 0.17 | 0.05 | 0.36 | |
Annual | 67 | 0.26 | 0.15 | 0.23 | 0.08 | 0.57 |
Seasons | T (°C) | WS (m/s) | RH (%) | Rainfall (mm) | P (hPa) | |
---|---|---|---|---|---|---|
BC (µg/m3) | ||||||
Spring | −0.12 (2) | 0.39 (3) | 0.42 (0) | −0.42 (0) | −0.38 (3) | |
Summer | −0.61 * (0) | −0.08 (3) | −0.70 * (2) | −0.24 (2) | ||
Autumn | −0.28 (2) | 0.44 (1) | 0.16 (2) | −0.45 (3) | 0.77 * (3) | |
Winter | −0.24 (0) | −0.46 (2) | −0.30 (3) | −0.31 (2) | −0.38 (1) | |
Whole | 0.56 * (3) | 0.39 * (1) | −0.40 * (2) | 0.33 ** (3) | −0.33 * (1) | |
PM2.5 (µg/m3) | ||||||
Spring | 0.19 (2) | 0.54 ** (1) | −0.24 (0) | −0.49 ** (0) | −0.29 (3) | |
Summer | −0.59 * (3) | −0.48 ** (2) | −0.66 * (3) | −0.16 (2) | ||
Autumn | 0.39 (0) | −0.23 (0) | 0.47 (2) | 0.55 (3) | −0.37 (2) | |
Winter | −0.54 ** (1) | −0.38 (1) | −0.45 (3) | −0.52 (3) | 0.59 ** (3) | |
Whole | −0.20 (1) | −0.19 (0) | −0.12 (1) | −0.10 (0) | 0.11 (0) | |
PM10 (µg/m3) | ||||||
Spring | −0.13 (0) | 0.36 (3) | −0.25 (3) | −0.61 ** (1) | −0.31 (3) | |
Summer | −0.23 (3) | −0.59 * (3) | −0.32 (1) | −0.27 (0) | ||
Autumn | 0.60 ** (1) | −0.49 (0) | −0.63 ** (1) | −0.74 * (0) | 0.69 * (0) | |
Winter | 0.26 (0) | −0.59 * (0) | 0.51 ** (1) | −0.43 (1) | 0.50 ** (2) | |
Whole | 0.33 * (3) | 0.30 ** (3) | −0.49 * (3) | −0.38 * (0) | −0.20 (3) |
Best-Fitting Model | RMSE Training | RMSE Test | RMSE CV | R2 Training | R2 Test | R2 CV | |
---|---|---|---|---|---|---|---|
BC | Logarithmic | 3.03 | 1.47 | 0.52 | 18.56% | 46.65% | 33.46% |
PM10 | Logarithmic | 16.77 | 11.72 | 0.34 | 18.29% | 33.67% | 42.33% |
PM2.5 | Logarithmic | 7.93 | 5.79 | 0.45 | 10.13% | 4.13% | 37.90% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bounakhla, Y.; Benchrif, A.; Costabile, F.; Tahri, M.; El Gourch, B.; El Hassan, E.K.; Zahry, F.; Bounakhla, M. Overview of PM10, PM2.5 and BC and Their Dependent Relationships with Meteorological Variables in an Urban Area in Northwestern Morocco. Atmosphere 2023, 14, 162. https://doi.org/10.3390/atmos14010162
Bounakhla Y, Benchrif A, Costabile F, Tahri M, El Gourch B, El Hassan EK, Zahry F, Bounakhla M. Overview of PM10, PM2.5 and BC and Their Dependent Relationships with Meteorological Variables in an Urban Area in Northwestern Morocco. Atmosphere. 2023; 14(1):162. https://doi.org/10.3390/atmos14010162
Chicago/Turabian StyleBounakhla, Youssef, Abdelfettah Benchrif, Francesca Costabile, Mounia Tahri, Bassma El Gourch, El Kafssaoui El Hassan, Fatiha Zahry, and Moussa Bounakhla. 2023. "Overview of PM10, PM2.5 and BC and Their Dependent Relationships with Meteorological Variables in an Urban Area in Northwestern Morocco" Atmosphere 14, no. 1: 162. https://doi.org/10.3390/atmos14010162
APA StyleBounakhla, Y., Benchrif, A., Costabile, F., Tahri, M., El Gourch, B., El Hassan, E. K., Zahry, F., & Bounakhla, M. (2023). Overview of PM10, PM2.5 and BC and Their Dependent Relationships with Meteorological Variables in an Urban Area in Northwestern Morocco. Atmosphere, 14(1), 162. https://doi.org/10.3390/atmos14010162