WRF Physics Ensemble Performance Evaluation over Continental and Coastal Regions in Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Setup and Study Areas
2.2. Observational Data and Event Selection
2.3. Physics Parameterizations
2.4. Performance Metrics
3. Results and Discussion
WRF Temporal Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I. (Eds.) IPCC Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- Trnka, M.; Vizina, A.; Hanel, M.; Balek, J.; Fischer, M.; Hlavinka, P.; Semerádová, D.; Štěpánek, P.; Zahradníček, P.; Skalák, P.; et al. Increasing Available Water Capacity as a Factor for Increasing Drought Resilience or Potential Conflict over Water Resources under Present and Future Climate Conditions. Agric. Water Manag. 2022, 264, 107460. [Google Scholar] [CrossRef]
- Chiang, F.; Mazdiyasni, O.; AghaKouchak, A. Evidence of Anthropogenic Impacts on Global Drought Frequency, Duration, and Intensity. Nat. Commun. 2021, 12, 2754. [Google Scholar] [CrossRef] [PubMed]
- Afshar, M.H.; Şorman, A.Ü.; Tosunoğlu, F.; Bulut, B.; Yilmaz, M.T.; Danandeh Mehr, A. Climate Change Impact Assessment on Mild and Extreme Drought Events Using Copulas over Ankara, Turkey. Theor. Appl. Climatol. 2020, 141, 1045–1055. [Google Scholar] [CrossRef]
- Spinoni, J.; Barbosa, P.; Bucchignani, E.; Cassano, J.; Cavazos, T.; Christensen, J.H.; Christensen, O.B.; Coppola, E.; Evans, J.; Geyer, B.; et al. Future Global Meteorological Drought Hot Spots: A Study Based on CORDEX Data. J. Clim. 2020, 33, 3635–3661. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The Changing Character of Precipitation. Bull. Am. Meteorol. Soc. 2003, 84, 1205–1218. [Google Scholar] [CrossRef]
- Berg, P.; Christensen, O.B.; Klehmet, K.; Lenderink, G.; Olsson, J.; Teichmann, C.; Yang, W. Summertime Precipitation Extremes in a EURO-CORDEX 0.11° Ensemble at an Hourly Resolution. Nat. Hazards Earth Syst. Sci. 2019, 19, 957–971. [Google Scholar] [CrossRef] [Green Version]
- Prein, A.F.; Rasmussen, R.M.; Ikeda, K.; Liu, C.; Clark, M.P.; Holland, G.J. The Future Intensification of Hourly Precipitation Extremes. Nat. Clim. Chang. 2017, 7, 48–52. [Google Scholar] [CrossRef]
- Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Hegerl, G.C. Changes in Temperature and Precipitation Extremes in the IPCC Ensemble of Global Coupled Model Simulations. J. Clim. 2007, 20, 1419–1444. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.; Mishra, V. Increase in Subdaily Precipitation Extremes in India Under 1.5 and 2.0 °C Warming Worlds. Geophys. Res. Lett. 2018, 45, 6972–6982. [Google Scholar] [CrossRef] [Green Version]
- Papalexiou, S.M.; Montanari, A. Global and Regional Increase of Precipitation Extremes Under Global Warming. Water Resour. Res. 2019, 55, 4901–4914. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, T. Significant Increases in Extreme Precipitation and the Associations with Global Warming over the Global Land Monsoon Regions. J. Clim. 2019, 32, 8465–8488. [Google Scholar] [CrossRef]
- Ju, J.; Wu, C.; Yeh, P.J.-F.; Dai, H.; Hu, B.X. Global Precipitation-Related Extremes at 1.5 °C and 2 °C of Global Warming Targets: Projection and Uncertainty Assessment Based on the CESM-LWR Experiment. Atmos. Res. 2021, 264, 105868. [Google Scholar] [CrossRef]
- Li, X.; Zhang, K.; Gu, P.; Feng, H.; Yin, Y.; Chen, W.; Cheng, B. Changes in Precipitation Extremes in the Yangtze River Basin during 1960–2019 and the Association with Global Warming, ENSO, and Local Effects. Sci. Total Environ. 2021, 760, 144244. [Google Scholar] [CrossRef] [PubMed]
- Franzke, C.L.E. Changing Temporal Volatility of Precipitation Extremes Due to Global Warming. Int. J. Climatol. 2022, 1–13. [Google Scholar] [CrossRef]
- Chinita, M.J.; Richardson, M.; Teixeira, J.; Miranda, P.M.A. Global Mean Frequency Increases of Daily and Sub-Daily Heavy Precipitation in ERA5. Environ. Res. Lett. 2021, 16, 074035. [Google Scholar] [CrossRef]
- Argüeso, D.; Hidalgo-Muñoz, J.M.; Gámiz-Fortis, S.R.; Esteban-Parra, M.J.; Dudhia, J.; Castro-Díez, Y. Evaluation of WRF Parameterizations for Climate Studies over Southern Spain Using a Multistep Regionalization. J. Clim. 2011, 24, 5633–5651. [Google Scholar] [CrossRef]
- Kan, Y.; Liu, C.; Liu, Y.; Zhou, C. Evaluation of WRF Microphysics and Cumulus Parameterization Schemes in Simulating a Heavy Rainfall Event over Yangtze River Delta. In Proceedings of the Remote Sensing and Modeling of Ecosystems for Sustainability XII, 96100R, San Diego, CA, USA, 4 September 2015; Gao, W., Chang, N.-B., Wang, J., Eds.; SPIE: Bellingham, DC, USA, 2015. [Google Scholar]
- Rezazadeh, M.; Moradian, F.; Ghader, S. Evaluation of a WRF Model Multi-Physics Ensemble Forecasting System for Simulation of Precipitation over Central Region of Iran. Iran. J. Geophys. 2020, 14, 13–38. [Google Scholar] [CrossRef]
- Douluri, D.L.; Chakraborty, A. Assessment of WRF-ARW Model Parameterization Schemes for Extreme Heavy Precipitation Events Associated with Atmospheric Rivers over West Coast of India. Atmos. Res. 2021, 249, 105330. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, X.; Duan, K.; Shang, W.; Li, M.; Shi, P. Optimizing Simulation of Summer Precipitation by Weather Research and Forecasting Model over the Mountainous Southern Tibetan Plateau. Atmos. Res. 2023, 281, 106484. [Google Scholar] [CrossRef]
- Prein, A.F.; Langhans, W.; Fosser, G.; Ferrone, A.; Ban, N.; Goergen, K.; Keller, M.; Tölle, M.; Gutjahr, O.; Feser, F.; et al. A Review on Regional Convection-Permitting Climate Modeling: Demonstrations, Prospects, and Challenges. Rev. Geophys. 2015, 53, 323–361. [Google Scholar] [CrossRef]
- Conil, S.; Hall, A. Local Regimes of Atmospheric Variability: A Case Study of Southern California. J. Clim. 2006, 19, 4308–4325. [Google Scholar] [CrossRef]
- Pielke, R.A., Sr.; Beltrán-Przekurat, A.; Hiemstra, C.A.; Lin, J.; Nobis, T.E.; Adegoke, J.; Nair, U.S.; Niyogi, D. Impacts of Regional Land Use and Land Cover on Rainfall: An Overview. In Climate Variability and Change—Hydrological Impacts; Demuth, S., Gustard, A., Planos, E., Scatena, F., Servat, E., Eds.; IAHS Press: Oxford, UK, 2006; Volume 308, pp. 325–331. [Google Scholar]
- Cao, Q.; Yu, D.; Georgescu, M.; Han, Z.; Wu, J. Impacts of Land Use and Land Cover Change on Regional Climate: A Case Study in the Agro-Pastoral Transitional Zone of China. Environ. Res. Lett. 2015, 10, 124025. [Google Scholar] [CrossRef]
- Kirthiga, S.M.; Patel, N.R. Impact of Updating Land Surface Data on Micrometeorological Weather Simulations from the WRF Model. Atmósfera 2018, 31, 165–183. [Google Scholar] [CrossRef] [Green Version]
- Madala, S.; Salinas, S.V.; Wang, J.; Liew, S.C. Customization of the Advanced Research Weather Research and Forecasting Model over the Singapore Region: Impact of Planetary Boundary Layer Schemes, Land Use, Land Cover and Model Horizontal Grid Resolution. Meteorol. Appl. 2019, 26, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Wu, J. Evaluating Land Use Change Impacts on Rainfall in Various Categories Using the Weather Research and Forecasting-Mosaic Approach. Atmos. Sci. Lett. 2019, 20, e870. [Google Scholar] [CrossRef] [Green Version]
- Zan, B.; Yu, Y.; Dong, L.; Li, J.; Zhao, G.; Zhang, T. Numerical Study of the Impact of Complex Terrain and Soil Moisture on Convective Initiation. Atmosphere 2020, 11, 871. [Google Scholar] [CrossRef]
- Golzio, A.; Ferrarese, S.; Cassardo, C.; Diolaiuti, G.A.; Pelfini, M. Land-Use Improvements in the Weather Research and Forecasting Model over Complex Mountainous Terrain and Comparison of Different Grid Sizes. Bound.-Layer Meteorol. 2021, 180, 319–351. [Google Scholar] [CrossRef]
- Fosser, G.; Khodayar, S.; Berg, P. Benefit of Convection Permitting Climate Model Simulations in the Representation of Convective Precipitation. Clim. Dyn. 2014, 44, 45–60. [Google Scholar] [CrossRef] [Green Version]
- Cassola, F.; Ferrari, F.; Mazzino, A. Numerical Simulations of Mediterranean Heavy Precipitation Events with the WRF Model: A Verification Exercise Using Different Approaches. Atmos. Res. 2015, 164–165, 210–225. [Google Scholar] [CrossRef]
- Zittis, G.; Bruggeman, A.; Camera, C.; Hadjinicolaou, P.; Lelieveld, J. The Added Value of Convection Permitting Simulations of Extreme Precipitation Events over the Eastern Mediterranean. Atmos. Res. 2017, 191, 20–33. [Google Scholar] [CrossRef]
- Van de Walle, J.; Thiery, W.; Brousse, O.; Souverijns, N.; Demuzere, M.; van Lipzig, N.P.M. A Convection-Permitting Model for the Lake Victoria Basin: Evaluation and Insight into the Mesoscale versus Synoptic Atmospheric Dynamics. Clim. Dyn. 2020, 54, 1779–1799. [Google Scholar] [CrossRef]
- Hodnebrog, Ø.; Steensen, B.M.; Marelle, L.; Alterskjær, K.; Dalsøren, S.B.; Myhre, G. Understanding Model Diversity in Future Precipitation Projections for South America. Clim. Dyn. 2022, 58, 1329–1347. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4; UCAR/NCAR; National Center for Atmospheric Research: Boulder, CO, USA, 2019. [Google Scholar]
- Powers, J.G.; Klemp, J.B.; Skamarock, W.C.; Davis, C.A.; Dudhia, J.; Gill, D.O.; Coen, J.L.; Gochis, D.J.; Ahmadov, R.; Peckham, S.E.; et al. The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions. Bull. Amer. Meteor. Soc. 2017, 98, 1717–1737. [Google Scholar] [CrossRef]
- Skamarock, C.; Klemp, B.; Dudhia, J.; Gill, O.; Barker, D.; Duda, G.; Huang, X.; Wang, W.; Powers, G. A Description of the Advanced Research WRF Version 3; Citeseer: University Park, PA, USA, 2008. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Yoon, K. Methods for Multiple Attribute Decision Making. In Multiple Attribute Decision Making: Methods and Applications A State-of-the-Art Survey; Hwang, C.-L., Yoon, K., Eds.; Lecture Notes in Economics and Mathematical Systems; Springer: Berlin/Heidelberg, Germany, 1981; pp. 58–191. ISBN 978-3-642-48318-9. [Google Scholar]
- Yoon, K. A Reconciliation among Discrete Compromise Solutions. J. Oper. Res. Soc. 1987, 38, 277–286. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Lai, Y.-J.; Liu, T.-Y. A New Approach for Multiple Objective Decision Making. Comput. Oper. Res. 1993, 20, 889–899. [Google Scholar] [CrossRef]
- Duzenli, E.; Yucel, I.; Pilatin, H.; Yilmaz, M.T. Evaluating the Performance of a WRF Initial and Physics Ensemble over Eastern Black Sea and Mediterranean Regions in Turkey. Atmos. Res. 2021, 248, 105184. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Chen, O.; Wang, J.; Zhuo, L.; Rico-Ramirez, M.A.; Han, D. To Develop a Progressive Multimetric Configuration Optimisation Method for WRF Simulations of Extreme Rainfall Events over Egypt. J. Hydrol. 2021, 598, 126237. [Google Scholar] [CrossRef]
- Hong, S.Y.; Lim, J.-O.J. The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). Asia-Pac. J. Atmos. Sci. 2006, 42, 129–151. [Google Scholar]
- Janjić, Z.I. The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon. Weather. Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Grell, G.A.; Freitas, S.R. A Scale and Aerosol Aware Stochastic Convective Parameterization for Weather and Air Quality Modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef]
- Freitas, S.R.; Grell, G.A.; Molod, A.; Thompson, M.A.; Putman, W.M.; Santos e Silva, C.M.; Souza, E.P. Assessing the Grell-Freitas Convection Parameterization in the NASA GEOS Modeling System. J. Adv. Modeling Earth Syst. 2018, 10, 1266–1289. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tolksdorf, V.; Otto, M.; Scherer, D. WRF-Based Dynamical Downscaling of ERA5 Reanalysis Data for High Mountain Asia: Towards a New Version of the High Asia Refined Analysis. Int. J. Climatol. 2021, 41, 743–762. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain–Fritsch Convective Parameterization: An Update. J. Appl. Meteorol. Climatol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes. Mon. Weather. Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather. Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Niu, G.-Y.; Yang, Z.-L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E.; et al. The Community Noah Land Surface Model with Multiparameterization Options (Noah-MP): 1. Model Description and Evaluation with Local-Scale Measurements. J. Geophys. Res. Atmos. 2011, 116, 15139. [Google Scholar] [CrossRef] [Green Version]
- Umer, Y.; Ettema, J.; Jetten, V.; Steeneveld, G.-J.; Ronda, R. Evaluation of the WRF Model to Simulate a High-Intensity Rainfall Event over Kampala, Uganda. Water 2021, 13, 873. [Google Scholar] [CrossRef]
- Pleim, J.E. A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing. J. Appl. Meteorol. Climatol. 2007, 46, 1383–1395. [Google Scholar] [CrossRef]
- Bougeault, P.; Lacarrere, P. Parameterization of Orography-Induced Turbulence in a Mesobeta—Scale Model. Mon. Weather. Rev. 1989, 117, 1872–1890. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Dudhia, J.; Chen, S.-H. A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation. Mon. Weather. Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Sikder, S.; Hossain, F. Assessment of the Weather Research and Forecasting Model Generalized Parameterization Schemes for Advancement of Precipitation Forecasting in Monsoon-Driven River Basins. J. Adv. Modeling Earth Syst. 2016, 8, 1210–1228. [Google Scholar] [CrossRef] [Green Version]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Weather. Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Goodarzi, L.; Banihabib, M.E.; Roozbahani, A. A Decision-Making Model for Flood Warning System Based on Ensemble Forecasts. J. Hydrol. 2019, 573, 207–219. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service (C3S) ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 8 November 2022).
- Lengfeld, K.; Walawender, E.; Winterrath, T.; Becker, A. CatRaRE: A Catalogue of Radar-Based Heavy Rainfall Events in Germany Derived from 20 Years of Data. Meteorol. Z. 2021, 30, 469–487. [Google Scholar] [CrossRef]
- Müller, M.; Kaspar, M. Event-Adjusted Evaluation of Weather and Climate Extremes. Nat. Hazards Earth Syst. Sci. 2014, 14, 473–483. [Google Scholar] [CrossRef] [Green Version]
- Kessler, E. On the Distribution and Continuity of Water Substance in Atmospheric Circulations. In On the Distribution and Continuity of Water Substance in Atmospheric Circulations; Kessler, E., Ed.; Meteorological Monographs; American Meteorological Society: Boston, MA, USA, 1969; pp. 1–84. ISBN 978-1-935704-36-2. [Google Scholar]
- Ferrier, B.S.; Jin, Y.; Lin, Y.; Black, T.; Rogers, E.; DiMego, G. Implementation of a New Grid-Scale Cloud and Precipitation Scheme in the NCEP Eta Model. In Proceedings of the 19th Conference on weather Analysis and Forecasting/15th Conference on Numerical Weather Prediction, San Antonio, TX, USA, 15 August 2002. [Google Scholar]
- Noh, Y.; Cheon, W.G.; Hong, S.Y.; Raasch, S. Improvement of the K-Profile Model for the Planetary Boundary Layer Based on Large Eddy Simulation Data. Bound.-Layer Meteorol. 2003, 107, 401–427. [Google Scholar] [CrossRef] [Green Version]
- Mesinger, F. Bias Adjusted Precipitation Threat Scores. Adv. Geosci. 2008, 16, 137–142. [Google Scholar] [CrossRef]
Region | Event ID | Starting Date | Ending Date | Duration (h) | Area (km2) | Maximum Hourly Precipitation (mm) | Mean Hourly Precipitation (mm) | Eta | Number of Stations |
---|---|---|---|---|---|---|---|---|---|
Baden–Wurttemberg | 20662 | 2019-05-19 17:50:00 | 2019-05-21 17:50:00 | 48 | 3742 | 180.5 | 79 | 32 | 108 |
12310 | 2013-05-30 18:49:59 | 2013-06-01 18:49:59 | 48 | 8743 | 139.8 | 73.8 | 50.4 | 108 | |
21845 | 2020-02-01 10:50:00 | 2020-02-04 10:50:00 | 72 | 3258.4 | 191.6 | 118.4 | 43.7 | 108 | |
18257 | 2017-11-11 14:50:00 | 2017-11-12 14:50:00 | 36 | 4987.9 | 141.9 | 69.8 | 40.5 | 112 | |
Schleswig–Holstein | 8224 | 2008-07-03 14:50:00 | 2008-07-04 14:50:00 | 24 | 11,803.1 | 137.7 | 65 | 74.4 | 20 |
3697 | 2004-09-20 09:49:59 | 2004-09-22 09:49:59 | 48 | 4771.6 | 120.7 | 68.5 | 33.1 | 13 | |
14936 | 2014-12-22 01:50:00 | 2014-12-24 01:50:00 | 48 | 2261.8 | 88.4 | 69.5 | 22.6 | 15 | |
10324 | 2010-11-04 02:50:00 | 2010-11-06 02:50:00 | 48 | 3757.2 | 91.3 | 67.4 | 26.7 | 25 |
Scenario | Scenario ID | MP | CU | PBL | Scenario | Scenario ID | MP | CU | PBL | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 111 | KS | KF | YSU | 16 | 622 | WSM6 | BMJ | MYJ | |
2 | 112 | KS | KF | MYJ | 17 | 631 | WSM6 | GF | YSU | |
3 | 121 | KS | BMJ | YSU | 18 | 632 | WSM6 | GF | MYJ | |
4 | 122 | KS | BMJ | MYJ | 19 | 411 | WSM5 | KF | YSU | |
5 | 131 | KS | GF | YSU | 20 | 412 | WSM5 | KF | MYJ | |
6 | 132 | KS | GF | MYJ | 21 | 421 | WSM5 | BMJ | YSU | |
7 | 511 | ES | KF | YSU | 22 | 422 | WSM5 | BMJ | MYJ | |
8 | 512 | ES | KF | MYJ | 23 | 431 | WSM5 | GF | YSU | |
9 | 521 | ES | BMJ | YSU | 24 | 432 | WSM5 | GF | MYJ | |
10 | 522 | ES | BMJ | MYJ | 25 | 1011 | MDM | KF | YSU | |
11 | 531 | ES | GF | YSU | 26 | 1012 | MDM | KF | MYJ | |
12 | 532 | ES | GF | MYJ | 27 | 1021 | MDM | BMJ | YSU | |
13 | 611 | WSM6 | KF | YSU | 28 | 1022 | MDM | BMJ | MYJ | |
14 | 612 | WSM6 | KF | MYJ | 29 | 1031 | MDM | GF | YSU | |
15 | 621 | WSM6 | BMJ | YSU | 30 | 1032 | MDM | GF | MYJ |
Name | Formula | |
---|---|---|
Pairwise Statistics | MAE | |
RMSE | ||
IoA | ||
COV | ||
PCC | ||
Categorical metrics | Name | Formula |
POD | ||
FAR | ||
CSI | ||
FBI | ||
PC | ||
BAETS | where: |
ID:3697 2004-09-20 | ID:8224 2008-07-03 | ID:14936 2014-12-22 | ID:10324 2010-11-04 | ID:12310 2013-05-30 | ID:20662 2019-05-19 | ID:18257 2017-11-11 | ID:21845 2020-02-01 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 km | 9 km | 3 km | 9 km | 3 km | 9 km | 3 km | 9 km | 3 km | 9 km | 3 km | 9 km | 3 km | 9 km | 3 km | 9 km |
632 | 632 | 431 | 431 | 612 | 612 | 1031 | 1031 | 1031 | 1031 | 1011 | 1011 | 532 | 431 | 512 | 631 |
432 | 531 | 1011 | 531 | 611 | 611 | 1032 | 1032 | 411 | 412 | 1012 | 1012 | 512 | 532 | 1031 | 512 |
532 | 432 | 432 | 412 | 412 | 411 | 1021 | 511 | 631 | 411 | 1022 | 512 | 431 | 411 | 522 | 431 |
531 | 532 | 412 | 411 | 411 | 412 | 511 | 632 | 1011 | 612 | 1021 | 1022 | 411 | 112 | 631 | 1031 |
1032 | 631 | 531 | 1011 | 521 | 521 | 631 | 432 | 611 | 611 | 512 | 1021 | 1031 | 1031 | 431 | 1032 |
631 | 431 | 411 | 532 | 531 | 631 | 432 | 431 | 511 | 1021 | 412 | 612 | 631 | 512 | 532 | 531 |
132 | 1031 | 532 | 1012 | 511 | 531 | 1022 | 1021 | 431 | 511 | 612 | 412 | 611 | 531 | 1032 | 532 |
431 | 132 | 1012 | 432 | 421 | 511 | 431 | 631 | 131 | 1011 | 522 | 522 | 111 | 111 | 612 | 511 |
131 | 1032 | 511 | 511 | 512 | 1011 | 632 | 1022 | 531 | 512 | 521 | 611 | 1011 | 631 | 611 | 522 |
1031 | 131 | 1022 | 421 | 1011 | 512 | 411 | 531 | 412 | 1012 | 1032 | 112 | 112 | 611 | 412 | 432 |
1011 | 1011 | 1021 | 1022 | 532 | 532 | 611 | 421 | 111 | 631 | 611 | 1032 | 531 | 132 | 511 | 611 |
411 | 611 | 421 | 611 | 522 | 522 | 421 | 532 | 132 | 431 | 112 | 521 | 632 | 1011 | 411 | 632 |
611 | 411 | 611 | 1021 | 1012 | 621 | 531 | 621 | 632 | 531 | 411 | 111 | 412 | 522 | 531 | 412 |
511 | 111 | 621 | 621 | 1021 | 431 | 621 | 422 | 1032 | 1032 | 1031 | 511 | 132 | 632 | 1021 | 612 |
111 | 511 | 1031 | 1031 | 1031 | 421 | 422 | 622 | 612 | 432 | 122 | 411 | 522 | 432 | 432 | 411 |
1022 | 1012 | 1032 | 631 | 1032 | 1012 | 532 | 521 | 432 | 632 | 511 | 422 | 612 | 1021 | 632 | 621 |
1012 | 1022 | 512 | 632 | 1022 | 1021 | 622 | 411 | 512 | 1022 | 621 | 622 | 432 | 511 | 622 | 421 |
1021 | 412 | 631 | 422 | 631 | 1031 | 512 | 611 | 112 | 111 | 622 | 621 | 511 | 412 | 422 | 1021 |
112 | 612 | 422 | 512 | 621 | 1032 | 521 | 612 | 122 | 131 | 421 | 1031 | 1021 | 612 | 421 | 521 |
612 | 112 | 632 | 612 | 431 | 1022 | 412 | 1011 | 532 | 112 | 422 | 421 | 122 | 122 | 1022 | 1022 |
412 | 1021 | 612 | 622 | 111 | 111 | 612 | 512 | 1012 | 521 | 111 | 122 | 131 | 421 | 1012 | 422 |
422 | 512 | 622 | 1032 | 112 | 121 | 1011 | 412 | 121 | 132 | 532 | 432 | 622 | 521 | 521 | 1012 |
522 | 422 | 521 | 521 | 432 | 112 | 522 | 1012 | 1021 | 421 | 121 | 532 | 621 | 1012 | 621 | 622 |
512 | 522 | 112 | 112 | 422 | 122 | 1012 | 522 | 621 | 621 | 432 | 632 | 1012 | 621 | 1011 | 1011 |
622 | 622 | 522 | 522 | 622 | 132 | 112 | 112 | 521 | 121 | 632 | 121 | 421 | 1032 | 132 | 132 |
421 | 421 | 131 | 131 | 632 | 131 | 111 | 111 | 421 | 532 | 431 | 631 | 422 | 422 | 111 | 112 |
521 | 521 | 121 | 132 | 132 | 432 | 121 | 122 | 622 | 122 | 631 | 431 | 1032 | 131 | 112 | 111 |
621 | 621 | 122 | 111 | 122 | 422 | 122 | 121 | 1022 | 422 | 531 | 531 | 521 | 622 | 122 | 131 |
122 | 121 | 132 | 121 | 121 | 632 | 132 | 132 | 522 | 622 | 132 | 132 | 1022 | 1022 | 131 | 122 |
121 | 122 | 111 | 122 | 131 | 622 | 131 | 131 | 422 | 522 | 131 | 131 | 121 | 121 | 121 | 121 |
Single Best Performing Scenario at 3 and 9 km | Top 5 Best Performing Scenarios at 3 km | Top 5 Best Performing Scenarios at 9 km | Top 5 Best Performing Scenarios at 3 and 9 km | ||
---|---|---|---|---|---|
Microphysics scheme | KS | 0.00% | 0.00% | 2.50% | 1.25% |
WSM5 | 18.75% | 25.00% | 30.00% | 27.50% | |
EF | 12.50% | 25.00% | 20.00% | 22.50% | |
WSM6 | 31.25% | 17.50% | 20.00% | 18.75% | |
MDM | 37.50% | 32.50% | 27.50% | 30.00% | |
Cumulus scheme | KF | 31.25% | 40.00% | 45.00% | 42.50% |
BMJ | 0.00% | 12.50% | 7.50% | 10.00% | |
GF | 68.75% | 47.50% | 47.50% | 47.50% | |
PBL scheme | YSU | 62.50% | 60.00% | 55.00% | 57.50% |
MYJ | 37.50% | 40.00% | 45.00% | 42.50% |
All Events | Summer Events | Winter Events | Baden Wurttemberg | Schleswig Holstein | Schleswig Holstein Summer | Schleswig Holstein Winter | Baden Wurttemberg Summer | Baden Wurttemberg Winter | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 km | 9 km | 3 km | 9 km | 3 km | 9 km | 3 km | 9 km | 3 km | 9 km | 3 km | 9 km | 3 km | 9 km | 3 km | 9 km | 3 km | 9 km |
1032 | 1031 | 1032 | 1011 | 411 | 631 | 1032 | 512 | 531 | 531 | 432 | 531 | 511 | 511 | 1032 | 1011 | 512 | 431 |
1011 | 431 | 1011 | 1031 | 611 | 431 | 1011 | 1011 | 532 | 431 | 531 | 432 | 611 | 631 | 1011 | 412 | 532 | 512 |
1031 | 411 | 1031 | 412 | 512 | 531 | 1031 | 412 | 432 | 532 | 532 | 431 | 411 | 531 | 1021 | 512 | 431 | 532 |
411 | 1011 | 432 | 432 | 532 | 1031 | 1012 | 612 | 1032 | 631 | 431 | 532 | 531 | 521 | 1012 | 612 | 1031 | 1031 |
412 | 531 | 1021 | 411 | 1031 | 532 | 512 | 611 | 1031 | 1031 | 632 | 632 | 421 | 611 | 1022 | 1021 | 631 | 631 |
1012 | 631 | 1022 | 431 | 511 | 411 | 1021 | 1031 | 511 | 1032 | 1032 | 631 | 521 | 411 | 1031 | 1012 | 411 | 531 |
431 | 611 | 431 | 611 | 531 | 511 | 412 | 1021 | 431 | 511 | 631 | 1031 | 412 | 612 | 512 | 611 | 611 | 411 |
1021 | 412 | 1012 | 1032 | 412 | 512 | 612 | 411 | 411 | 411 | 1031 | 1032 | 612 | 1031 | 412 | 411 | 522 | 611 |
611 | 511 | 411 | 1012 | 612 | 611 | 1022 | 1012 | 611 | 611 | 1011 | 411 | 1031 | 412 | 612 | 1031 | 412 | 522 |
531 | 532 | 531 | 531 | 522 | 612 | 611 | 511 | 1011 | 1011 | 411 | 1011 | 532 | 431 | 611 | 511 | 612 | 432 |
532 | 512 | 532 | 1021 | 421 | 412 | 411 | 1032 | 631 | 432 | 511 | 511 | 1021 | 1021 | 411 | 1022 | 531 | 511 |
1022 | 1032 | 412 | 511 | 1021 | 521 | 431 | 431 | 632 | 412 | 611 | 611 | 512 | 532 | 511 | 1032 | 511 | 632 |
432 | 612 | 611 | 631 | 431 | 522 | 631 | 631 | 412 | 632 | 1022 | 412 | 1032 | 1032 | 522 | 112 | 632 | 412 |
612 | 1021 | 632 | 612 | 631 | 1021 | 522 | 1022 | 1022 | 1012 | 412 | 1012 | 1011 | 421 | 521 | 521 | 432 | 612 |
631 | 1012 | 631 | 632 | 1011 | 421 | 511 | 432 | 1021 | 612 | 1012 | 1022 | 1022 | 512 | 112 | 111 | 1011 | 1032 |
512 | 432 | 511 | 532 | 521 | 1032 | 532 | 531 | 1012 | 1021 | 1021 | 131 | 522 | 621 | 432 | 432 | 1021 | 1011 |
511 | 632 | 512 | 512 | 1032 | 1011 | 432 | 522 | 421 | 1022 | 131 | 1021 | 1012 | 1011 | 431 | 522 | 1032 | 1021 |
632 | 1022 | 612 | 1022 | 1022 | 621 | 521 | 521 | 612 | 421 | 421 | 612 | 631 | 1022 | 631 | 631 | 421 | 421 |
421 | 421 | 131 | 421 | 1012 | 1012 | 632 | 532 | 512 | 621 | 132 | 132 | 431 | 522 | 621 | 621 | 622 | 521 |
521 | 621 | 421 | 621 | 432 | 1022 | 531 | 632 | 521 | 512 | 612 | 421 | 432 | 1012 | 421 | 431 | 422 | 621 |
621 | 521 | 621 | 112 | 632 | 432 | 622 | 421 | 621 | 521 | 621 | 621 | 621 | 632 | 111 | 421 | 1012 | 1012 |
522 | 522 | 622 | 422 | 621 | 632 | 421 | 621 | 422 | 522 | 512 | 422 | 632 | 432 | 622 | 422 | 621 | 422 |
622 | 422 | 422 | 131 | 422 | 422 | 621 | 112 | 622 | 422 | 422 | 622 | 422 | 422 | 632 | 632 | 521 | 622 |
422 | 622 | 521 | 622 | 622 | 622 | 422 | 111 | 522 | 622 | 622 | 512 | 622 | 622 | 422 | 622 | 1022 | 1022 |
112 | 112 | 112 | 521 | 111 | 112 | 112 | 422 | 132 | 132 | 112 | 112 | 112 | 112 | 531 | 531 | 132 | 132 |
132 | 111 | 522 | 111 | 112 | 111 | 111 | 622 | 131 | 131 | 521 | 111 | 111 | 111 | 532 | 122 | 111 | 112 |
131 | 132 | 132 | 132 | 132 | 132 | 122 | 132 | 112 | 112 | 522 | 521 | 122 | 121 | 122 | 532 | 112 | 111 |
111 | 131 | 111 | 522 | 122 | 122 | 132 | 122 | 111 | 111 | 111 | 522 | 132 | 122 | 121 | 121 | 122 | 122 |
122 | 122 | 122 | 122 | 131 | 121 | 131 | 131 | 122 | 121 | 121 | 121 | 121 | 132 | 131 | 132 | 131 | 131 |
121 | 121 | 121 | 121 | 121 | 131 | 121 | 121 | 121 | 122 | 122 | 122 | 131 | 131 | 132 | 131 | 121 | 121 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stergiou, I.; Tagaris, E.; Sotiropoulou, R.-E.P. WRF Physics Ensemble Performance Evaluation over Continental and Coastal Regions in Germany. Atmosphere 2023, 14, 17. https://doi.org/10.3390/atmos14010017
Stergiou I, Tagaris E, Sotiropoulou R-EP. WRF Physics Ensemble Performance Evaluation over Continental and Coastal Regions in Germany. Atmosphere. 2023; 14(1):17. https://doi.org/10.3390/atmos14010017
Chicago/Turabian StyleStergiou, Ioannis, Efthimios Tagaris, and Rafaella-Eleni P. Sotiropoulou. 2023. "WRF Physics Ensemble Performance Evaluation over Continental and Coastal Regions in Germany" Atmosphere 14, no. 1: 17. https://doi.org/10.3390/atmos14010017
APA StyleStergiou, I., Tagaris, E., & Sotiropoulou, R. -E. P. (2023). WRF Physics Ensemble Performance Evaluation over Continental and Coastal Regions in Germany. Atmosphere, 14(1), 17. https://doi.org/10.3390/atmos14010017