Hybrid Methods’ Integration for Remote Sensing Monitoring and Process Analysis of Dust Storm Based on Multi-Source Data
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. Multi-Source Data
2.2.1. Ground Station Data
2.2.2. Satellite Remote Sensing Data
2.2.3. Reanalysis Datasets
2.3. Methodology
3. Results and Discussion
3.1. Analysis of PM10 and PM2.5 Concentration Changes
3.2. Spatial Distribution of MODIS AOD
3.3. Observation of Dust Variation with High Temporal Frequency
3.4. Vertical Structure Characteristics of Aerosols
3.5. Wind and HYSPLIT Tracking Analysis
4. Conclusions
- (1)
- The dust storm originated in western Mongolia and northwestern China. The overall transportation path is from the source along the northwest–southeast movement direction, with a wide range and heavy pollution.
- (2)
- The dust storm formed on 15 March and peaked on 16 March, severely affecting air quality in a dozen provinces in northern and northwestern China. The maximum hourly PM10 concentration at ground stations in Beijing, Jinchang, Wuwei, Zhongwei, Yinchuan and other cities exceeded 6000 μg/m3, more than 40 times the China Ambient Air Quality Standards.
- (3)
- Satellite remote sensing observation shows that the AOD exceeded 2.0 in some areas of northern China, and DST monitored by FY-4A exceeded 20. The spatial distribution of the two is very consistent. Using the FY-4A geostationary satellite can realize continuous monitoring of dust transport processes over a large area and high frequency in China, providing crucial information for our understanding of dust emission sources, dust transportation paths and impact areas.
- (4)
- By employing the LIDAR active observation CALIPSO data, we could effectively yield information on the vertical distribution of sand and dust. During the dust transportation, the dust was deposited from high altitudes and mixed with local near-ground particles, and the dust aerosol extended from the ground to an altitude of 8 km. During the weakening period of dusty weather, the vertical distribution height of dust aerosol was 1–4 km.
- (5)
- The study of individual cases of dust events through joint observation of multi-source data contributes to the comprehensive monitoring of large-scale and long-distance dust transport processes, which showed good potential of the hybrid methods’ integration for remote sensing monitoring and process analysis of dust storms.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Wong, M.S.; Lee, K.H.; Nichol, J.; Chan, P. Review of dust storm detection algorithms for multispectral satellite sensors. Atmos. Res. 2020, 250, 105398. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Dubovik, O.; Karnieli, A.; Remer, L.A. Absorption of sunlight by dust as inferred from satellite and ground-based remote sensing. Geophys. Res. Lett. 2001, 28, 1479–1482. [Google Scholar] [CrossRef] [Green Version]
- Su, Q.; Sun, L.; Yang, Y.; Zhou, X.; Li, R.; Jia, S. Dynamic Monitoring of the Strong Sandstorm Migration in Northern and Northwestern China via Satellite Data. Aerosol Air Qual. Res. 2017, 17, 3244–3252. [Google Scholar] [CrossRef] [Green Version]
- Schepanski, K.; Tegen, I.; Macke, A. Comparison of satellite based observations of Saharan dust source areas. Remote Sens. Environ. 2012, 123, 90–97. [Google Scholar] [CrossRef]
- Chiapello, I.; Prospero, J.M.; Herman, J.R.; Hsu, N.C. Detection of mineral dust over the North Atlantic Ocean and Africa with the Nimbus 7 TOMS. J. Geophys. Res. Earth Surf. 1999, 104, 9277–9291. [Google Scholar] [CrossRef]
- Herman, J.R.; Bhartia, P.K.; Torres, O.; Hsu, C.; Seftor, C.; Celarier, E. Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data. J. Geophys. Res. Atmos. 1997, 102, 16911–16922. [Google Scholar] [CrossRef]
- Wald, A.E.; Kaufman, Y.J.; Tanré, D.; Gao, B.-C. Daytime and nighttime detection of mineral dust over desert using infrared spectral contrast. J. Geophys. Res. Earth Surf. 1998, 103, 32307–32313. [Google Scholar] [CrossRef]
- Sowden, M.; Mueller, U.; Blake, D. Review of surface particulate monitoring of dust events using geostationary satellite remote sensing. Atmos. Environ. 2018, 183, 154–164. [Google Scholar] [CrossRef]
- Prata, A.J. Observations of volcanic ash clouds in the 10–12 μm window using AVHRR/2 data. Int. J. Remote Sens. 1989, 10, 751–761. [Google Scholar] [CrossRef]
- Sowden, M.; Mueller, U.; Blake, D. What temporal resolution is required for remote sensing of regional aerosol concentrations using the Himawari-8 geostationary satellite. Atmos. Environ. 2019, 216, 116914. [Google Scholar] [CrossRef]
- Liu, G.-R.; Lin, T.-H. Application of Geostationary Satellite Observations for Monitoring Dust Storms of Asia. Terr. Atmos. Ocean. Sci. 2004, 15, 825–837. [Google Scholar] [CrossRef] [Green Version]
- El-Askary, H. On the Detection and Monitoring of the Transport of an Asian Dust Storm Using Multi-Sensor Satellite Remote Sensing. J. Environ. Inform. 2015, 25, 99–116. [Google Scholar] [CrossRef]
- Shin, Y.-R.; Sohn, E.-H.; Park, K.-H.; Ryu, G.-H.; Lee, S.; Lee, S.-Y.; Park, N.-Y. Correction to: Improved Dust Detection over East Asia Using Geostationary Satellite Data. Asia-Pacific J. Atmos. Sci. 2021, 57, 863. [Google Scholar] [CrossRef]
- Hu, X.Q.; Lu, N.M.; Niu, T.; Zhang, P. Operational retrieval of Asian sand and dust storm from FY-2C geostationary meteorological satellite and its application to real time forecast in Asia. Atmos. Chem. Phys. 2008, 8, 1649–1659. [Google Scholar] [CrossRef] [Green Version]
- Di, A.; Xue, Y.; Yang, X.; Leys, J.; Guang, J.; Mei, L.; Wang, J.; She, L.; Hu, Y.; He, X.; et al. Dust Aerosol Optical Depth Retrieval and Dust Storm Detection for Xinjiang Region Using Indian National Satellite Observations. Remote Sens. 2016, 8, 702. [Google Scholar] [CrossRef] [Green Version]
- Akhlaq, M.; Sheltami, T.R.; Mouftah, H.T. A review of techniques and technologies for sand and dust storm detection. Rev. Environ. Sci. Bio/Technol. 2012, 11, 305–322. [Google Scholar] [CrossRef]
- Washington, R.; Todd, M.; Middleton, N.J.; Goudie, A.S. Dust-Storm Source Areas Determined by the Total Ozone Monitoring Spectrometer and Surface Observations. Ann. Assoc. Am. Geogr. 2003, 93, 297–313. [Google Scholar] [CrossRef]
- Attiya, A.A.; Jones, B.G. An extensive dust storm impact on air quality on 22 November 2018 in Sydney, Australia, using satellite remote sensing and ground data. Environ. Monit. Assess. 2022, 194, 1–18. [Google Scholar] [CrossRef]
- Ashrafi, K.; Shafiepour-Motlagh, M.; Aslemand, A.; Ghader, S. Dust storm simulation over Iran using HYSPLIT. J. Environ. Health Sci. Eng. 2014, 12, 9. [Google Scholar] [CrossRef] [Green Version]
- Middleton, N.; Kashani, S.S.; Attarchi, S.; Rahnama, M.; Mosalman, S.T. Synoptic Causes and Socio-Economic Consequences of a Severe Dust Storm in the Middle East. Atmosphere 2021, 12, 1435. [Google Scholar] [CrossRef]
- Lin, Z.; Levy, J.K.; Lei, H.; Bell, M.L. Advances in Disaster Modeling, Simulation and Visualization for Sandstorm Risk Management in North China. Remote Sens. 2012, 4, 1337–1354. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liu, X.; Yin, Z.-Y. The Impacts of Taklimakan Dust Events on Chinese Urban Air Quality. Atmosphere 2018, 9, 281. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Gong, J.; Zhou, J.; Sun, W.; Ibrahim, A.N. Multi-Satellite Observation of an Intense Dust Event over Southwestern China. Aerosol Air Qual. Res. 2015, 15, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Niu, T.; Wang, F.; Deng, M.; Wang, Y. Integration of multi-source measurements to monitor sand-dust storms over North China: A case study. Acta Meteorol. Sin. 2013, 27, 566–576. [Google Scholar] [CrossRef]
- Cao, G.Z.; Zhang, P.; Hou, P.; Hu, X.Q.; Chen, L. Investigation and validation of a dust data fusion method based on monitoring data from geostationary and polar-orbiting satellites. In Proceedings of the Conference on Remote Sensing of the Atmosphere, Clouds, and Precipitation V, Beijing, China, 13–15 October 2014. [Google Scholar] [CrossRef]
- Wang, F.; Yang, T.; Wang, Z.; Cao, J.; Liu, B.; Liu, J.; Chen, S.; Liu, S.; Jia, B. A Comparison of the Different Stages of Dust Events over Beijing in March 2021: The Effects of the Vertical Structure on Near-Surface Particle Concentration. Remote. Sens. 2021, 13, 3580. [Google Scholar] [CrossRef]
- Wu, Z.; Jiang, Q.; Yu, Y.; Xiao, H.; Freese, D. Spatio-Temporal Evolution of a Typical Sandstorm Event in an Arid Area of Northwest China in April 2018 Based on Remote Sensing Data. Remote Sens. 2022, 14, 3065. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, T.; Cheng, X.; Ren, Z.; Meng, L.; He, Q.; Tan, C.; Zhu, Y.; Zhu, C.; Wu, Z. Temporal and spatial variations of sandstorm and the related meteorological influences over northern China from 2000 to Acta. Sci. Circumst. 2021, 41, 2966–2975. [Google Scholar]
- Filonchyk, M. Characteristics of the severe March 2021 Gobi Desert dust storm and its impact on air pollution in China. Chemosphere 2021, 287, 132219. [Google Scholar] [CrossRef]
- Luo, J.; Huang, F.; Gao, S.; Liu, S.; Liu, R.; Devasthale, A. Satellite Monitoring of the Dust Storm over Northern China on 15 March 2021. Atmosphere 2022, 13, 157. [Google Scholar] [CrossRef]
- Liang, P.; Chen, B.; Yang, X.; Liu, Q.; Li, A.; Mackenzie, L.; Zhang, D. Revealing the dust transport processes of the 2021 mega dust storm event in northern China. Sci. Bull. 2021, 67, 21–24. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Q.; Ye, P.; Qin, H.; Xu, L.; Ma, L.; Gong, C. Characteristics and causes of persistent sand-dust weather in mid-March 2021 over Northern China. J. Desert Res. 2021, 41, 245–255. [Google Scholar]
- Wang, N.; Zhang, Q.; Sun, S.; Wang, H.; He, M.; Zheng, P.; Wang, R. A sandstorm extreme event from the Yellow River Basin in March 2021: Accurate identification and driving cause. Sci. Total Environ. 2022, 846, 157424. [Google Scholar] [CrossRef]
- Wang, N.; Chen, J.; Zhang, Y.; Xu, Y.; Cui, J. Multi-source remote sensing analysis of the first sand and dust weather in Northern China in China. Environ. Sci. 2022, 42, 2002–2014. [Google Scholar]
- Sun, X.; Fan, X.; Zhang, T.; Wang, Y.; Wang, Y.; Lyu, D.; Zheng, M. Tempo-Spatial Distributions and Transport Characteristics of Two Dust Events over Northern China in March. Remote. Sens. 2022, 14, 5967. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M. Development, progression, and impact on urban air quality of the dust storm in Asia in March 15–18. Urban Clim. 2022, 41, 101080. [Google Scholar] [CrossRef]
- Xu, D.; Qu, J.J.; Niu, S.; Hao, X. Sand and dust storm detection over desert regions in China with MODIS measurements. Int. J. Remote Sens. 2011, 32, 9365–9373. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Gong, S.L.; Zhou, C.H.; Hu, X.Q.; Liu, H.L.; Niu, T.; Yang, Y.Q. Surface observation of sand and dust storm in East Asia and its application in CUACE/Dust. Atmos. Chem. Phys. Discuss. 2008, 8, 545–553. [Google Scholar] [CrossRef] [Green Version]
- Nair, M.; Dey, S.; Bherwani, H.; Ghosh, A.K. Long-term changes in aerosol loading over the ‘BIHAR’ State of India using nineteen years (2001–2019) of high-resolution satellite data (1 × 1 km2). Atmos. Pollut. Res. 2022, 13, 101259. [Google Scholar] [CrossRef]
- Xia, X.; Min, J.; Shen, F.; Wang, Y.; Xu, D.; Yang, C.; Zhang, P. Aerosol data assimilation using data from Fengyun-4A, a next-generation geostationary meteorological satellite. Atmos. Environ. 2020, 237, 117695. [Google Scholar] [CrossRef]
- Tan, S.-C.; Li, J.; Che, H.; Chen, B.; Wang, H. Transport of East Asian dust storms to the marginal seas of China and the southern North Pacific in spring. Atmos. Environ. 2017, 148, 316–328. [Google Scholar] [CrossRef]
- Valipour, M.; Dietrich, J. Developing ensemble mean models of satellite remote sensing, climate reanalysis, and land surface models. Theor. Appl. Climatol. 2022, 150, 909–926. [Google Scholar] [CrossRef]
- Tsai, Y.I.; Chen, C.-L. Characterization of Asian dust storm and non-Asian dust storm PM2.5 aerosol in southern Taiwan. Atmos. Environ. 2006, 40, 4734–4750. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Peng, S.; Ju, T.; Liang, Z.; Li, M.; Liu, S.; Pan, B. Analysis of atmospheric ozone in Fenwei Plain based on remote sensing monitoring. Environ. Monit. Assess. 2022, 194, 412. [Google Scholar] [CrossRef] [PubMed]
Data Category | Data Source | Products |
---|---|---|
Ground station data | Air quality monitoring station data | Hourly PM10 and PM2.5 concentration data |
World Meteorological Organization (WMO) | Daily precipitation data | |
Remote sensing images | MODIS | MCD19A2 aerosol optical depth products |
FY-4A satellite | Dust detection (DSD) level-2 product | |
CALIPSO satellite data | Level 2 Version 4.21 vertical feature mask (VFM) | |
SMAP global soil moisture data | Surface soil moisture | |
Reanalysis datasets | ERA5 datasets | Wind vectors at 10 m above ground |
NCEP | GDAS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Tang, J.; Zhang, Z.; Wang, W.; Wang, J.; Wang, Z. Hybrid Methods’ Integration for Remote Sensing Monitoring and Process Analysis of Dust Storm Based on Multi-Source Data. Atmosphere 2023, 14, 3. https://doi.org/10.3390/atmos14010003
Wang Y, Tang J, Zhang Z, Wang W, Wang J, Wang Z. Hybrid Methods’ Integration for Remote Sensing Monitoring and Process Analysis of Dust Storm Based on Multi-Source Data. Atmosphere. 2023; 14(1):3. https://doi.org/10.3390/atmos14010003
Chicago/Turabian StyleWang, Yanjiao, Jiakui Tang, Zili Zhang, Wuhua Wang, Jiru Wang, and Zhao Wang. 2023. "Hybrid Methods’ Integration for Remote Sensing Monitoring and Process Analysis of Dust Storm Based on Multi-Source Data" Atmosphere 14, no. 1: 3. https://doi.org/10.3390/atmos14010003
APA StyleWang, Y., Tang, J., Zhang, Z., Wang, W., Wang, J., & Wang, Z. (2023). Hybrid Methods’ Integration for Remote Sensing Monitoring and Process Analysis of Dust Storm Based on Multi-Source Data. Atmosphere, 14(1), 3. https://doi.org/10.3390/atmos14010003