Mitigating Ammonia Deposition Derived from Open-Lot Livestock Facilities into Colorado’s Rocky Mountain National Park: State of the Science
Abstract
:1. Introduction
- Understand the dynamics of NH3 emissions from pen surfaces in open-lot CAFOs characteristic of northeastern Colorado;
- Describe the meteorological influences on NH3 emissions mechanisms from open-lot cattle feedyards, including both seasonal and daily components;
- Describe the meteorological influences on the transport mechanisms from Colorado’s Front Range into RMNP, including both synoptic meteorological patterns and upslope conditions;
- Evaluate recommended management practices to decrease NH3 emission in open-lot livestock facilities during upslope conditions, based on the USDA-NRCS list of best management practices, such as diet manipulation (CP, CT), growth-promoting technologies (β-AA, implants), feed additives (monensin), phase feeding, manure harvesting, water sprinkling, and pen surface amendments.
2. Materials and Methods
2.1. Literature Review Approach
2.2. Relevance and Screening
3. Literature Review
3.1. NH3 Emission Dynamics in Open-Lot Surfaces
3.2. Meteorological Impacts on NH3 Emission and Transport Characteristics from Colorado’s Front Range into the Rocky Mountains
3.2.1. Synoptic Meteorological Pattern and Upslope Conditions
3.2.2. Major Meteorological Factors Influencing Local Surface NH3 Emission
3.3. Feeding and Management Practices to Mitigate NH3 Emissions from Open-Lot Livestock Facilities
3.3.1. Feeding Management—Diet Manipulation: CP and CT
Study Location | CP Range Value (%) | NH3 or N Excretion Mitigation | p Value | Reference | |
---|---|---|---|---|---|
Result | Rate (%) | ||||
Nebraska | 13.4 to phase-fed (10.5–12.0) | N volatilization from N excretion: 158 to 108 g/head/d | 32 | 0.01 | Erickson et al. (2000) [44] |
Texas | 13.0 to 10 | Urine N excretion: 5.2 to 1.7 g/head/d | 67 | <0.01 | Cole et al. (2006) [42] |
Texas | 16.3 to 12.2 | NH3 emission: 149 to 82 g/head/day | 45 | <0.05 | Todd et al. (2009) [83] |
Texas | 13.0 to phase-fed (10.9–12.1%) | N volatilization from N excretion: 101 to 86 g/head/day | 15 | 0.32 | Erickson and Klopfenstein (2010) [38] |
Texas | 16.0, 13.5, and 11 | Estimated NH3 emission: 169.9, 104.4 to 90.1 g/head/d | 47 | N/A | Todd et al. (2013) [81] |
Michigan | 13.0 to 10.0 | NH3 emission: 32.4 to 11.8 g/head/d | 64 | <0.01 | Chiavegato et al. (2015) [84] |
Texas | 13.0 to 11.0 | NH3 flux: 1.69 to 0.79 g/m2/d | 53 | <0.05 | Pandrangi et al. (2003) [85] |
Texas | 13.0 to 11.5 | NH3-N flux from excretion: 1.95 to 1.24 g/m2/d | 37 | <0.01 | Cole et al. (2005) [46] |
Texas | 13.0 to 11.5 | NH3 flux (Lab): 0.18 to 0.10 g/m2/d NH3 flux (Field): 0.49 to 0.33 g/m2/d | 32–44 | <0.01 (Lab) >0.05 (Field) | Todd et al. (2006) [80] |
Colorado | 13.5 to 11.6 | NH3 flux: 7.2 to 6.3 g/m2/d | 13 | <0.05 | Galles et al. (2011) [26] |
Study Location | CT Source | CT Dose | NH3 or N Excretion Mitigation | Rate (%) | Feeding Description | p Value | Reference |
---|---|---|---|---|---|---|---|
Result | |||||||
Colombia | Quebracho, acacia, and chestnut | 0, 2, 4, and 8% dry weight. | Quebracho (0 to 8%): 68 to 50 NH3 concentration mg/dL Acacia (0 to 8%): 68 to 48 mg/dL Chestnut (0 to 8%): 69 to 30 mg/dL | 26–57 | CT (Quebracho, acacia, and chestnut) was added to soybean meal at levels of 0, 2, 4, and 8% of dry weight. | <0.05 | Gonzalez et al. (2002) [91] |
Texas | Not identified | CT rates of 0, 0.5 and 1.0% on a dry matter basis. | 0 to 0.5% CT: 64 to 33 ppm 0 to 1% CT: 64 to 37 ppm | 42–47 | - | <0.01 | Campbell et al. (2016) [92] |
Texas | Not identified | CT extract at 0, 0.5, and 1.0% of diet, DM basis | Urinary N excretion was not different among treatment. 0 to 1% CT: 82 (139) to 74 (136) g/d | Not significant | Top-dressing a steam-flaked corn–based finishing diet (14.4% CP and NEg 1.47 Mcal/kg) | ≥0.39 | Ebert et al. (2017) [93] |
Canada | Acacia mearnsii | Feeding 2.5% CT extract with high protein diets containing corn dried distillers’ grains and solubles (DG) | Feeding 40% DG with CT decreased the excretion of total urinary N and urea N in urine by 17 and 21%, respectively. | 17–21 | - | <0.01 | Koenig & Beauchemin (2018) [94] |
Italy | Mimosa and Gambier Chestnut and Tara (hydrolysable CT) | Two CT (Mimosa and Gambier) and two hydrolysable CT (Chestnut and Tara) were added (4 g/100 g DM) to a basal feed. | NH3 emission was mitigated with hydrolysable CT (control 249 to CT 179 mg/L rumen fluid) | 28 | - | <0.01 | Cappucci et al. (2020) [95] |
3.3.2. Growth-Promoting Technologies: β-AA and Implants
3.3.3. Feed Additive: Monensin
3.3.4. Manure Harvesting
Study Location | Study Scale | Pen Cleaning Frequency | Result | Rate | p Value | Reference |
---|---|---|---|---|---|---|
Nebraska | Field | Monthly cleaning (28 days) vs. cleaning after marketing | N loss with monthly cleaning: 12–17 kg/head; N loss with cleaning after marketing: 15–21 kg/head | Monthly cleaning reduced the total N loss by an average of 14%. | <0.01 | Wilson et al. (2004) [129] |
Nebraska | Field | Monthly cleaning (28 days) vs. cleaning after marketing (135 days) | Monthly cleaning N loss: 12–17 kg/head N loss from cleaning end: 15–21 kg/head | 19–44% | <0.01 | Erickson and Klopfenstein (2010) [38] * |
Iowa | Field | Beef bedded pack barn vs. cleaned and re-bedded one to two times per week (transition) | Bedded pack: 68 mmol/L Transition: 64 mmol/L | Not significant | Not significant | Spiehs et al. (2011) [130] |
3.3.5. Manure Handling
3.3.6. Dust Control—Water Sprinklers/Irrigation System
- More studies on the use of water sprinklers in open corral surface;
- Elucidate short-term NH3 dynamics in open-lot feedyard;
- Understand those dynamics in different soil and weather conditions;
- Evaluate the major factors influencing short-term NH3 dynamics, such as sprinklers height, depth of water applied, and frequency of application, and
- A deeper understanding of those dynamics will help livestock producers respond effectively to the Rocky Mountain National Park Early Warning System.
Study Location | Study Scale | Treatment | NH3 Mitigation | p Value | Reference | |
---|---|---|---|---|---|---|
Water Applied | Rate (%) | |||||
UK | In vitro | 2 mm and 12 mm as layers of water applied after the urine application | 2 mm 12 mm (1) | +15 +81 (3) | N/A | Whitehead et al. (1991) [150] |
Texas | In vitro | Day 7 (control) Day 9 (270 mL water added) | 270 mL (at 9 d) | −1 to −27% | N/A | Pandrangi et al. (2003) [85] |
Maaninka, Finland | In vitro | (1) no irrigation (control), (2) 5 + 5 mm irrigation (3) 20 mm irrigation | NH3 flux at control: 0.01~0.1 g/m2/h NH3 flux with 20 mm irrigation: 0 to 0.04 NH3-N g/m2/h). (2) | ~+56 | N/A | Saarijärvi et al. (2006) [149] |
Colorado | In vitro | Water layer application of 5 mm | 5 mm | +27 | <0.01 | Galles (2011) [26] |
3.3.7. Manure Amendments
Study Location | Study Scale | Type of Amendment | Amendment Dose | NH3 Mitigation Rate (%) | p Value | Reference |
---|---|---|---|---|---|---|
Nebraska | Field | Urease inhibitor: N-(n-butyl) thiophosphoric triamide (NBPT) | 22.8 kg/ha once per week for 42 d | 45 | N/A | Varel et al. (1999) [154] |
Texas | In vitro | NBPT | 1 kg/ha for 21 d | 65 | <0.05 | Shi et al. (2001) [155] |
NBPT | 2 kg/ha for 21 d | 66 | <0.05 | |||
Calcium chloride | 4500 kg/ha | 71 | <0.05 | |||
Humate | 9000 kg/ha | 68 | <0.05 | |||
Aluminum sulfate | 9000 kg/ha | 98 | <0.05 | |||
Commercial product (Ammonia Hold, Lonoke, AR) | 750 kg/ha | 32 | <0.05 | |||
Texas | In vitro | NBPT | 1 kg/ha once per 8 d for 38 d | 49 | <0.05 | Parker et al. (2004) [156] |
NBPT | 2 kg/ha once per 8 days for 38 d | 66 | <0.05 | |||
Texas | In vitro | NBPT | 5 kg/ha once per 4 d + 6 mm rainfall once per 4 d | 26 | <0.05 | Parker al. (2011) [157] |
NBPT | 5 kg/ha once per 4 d | 33 | <0.05 | |||
Texas | Field | NBPT | 1, 2, 4, 8, and 40 kg/ha for 42 d | Not significant | Parker al. (2016) [158] | |
Austria | In vitro | CT | 1 mL of manure was added with 1%, 5%, and 10% by weight of tannins adsorbent | 75–95 | Not significant | Sepperer et al. (2020) [159] |
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
Abbreviations
ADG | average daily gain |
AFO | animal feeding operations |
BAO | Boulder Atmospheric Observatory Tower |
BMP | best management practices |
BSC | bovine satellite cell |
CAFOs | concentrated animal feeding operations |
CAMP | cyclic adenosine monophosphate |
CLA | Colorado Livestock Association |
CP | crude protein |
CT | condensed tannins |
DMI | dry matter intake |
IGF-1 | insulin-like growth factor-1 |
NASEM | National Academies of Sciences, Engineering, and Medicine |
NBPT | urease |
NDRP | Nitrogen Deposition Reduction Plan |
NRCS | Natural Resources Conservation Service |
PKA | protein kinase A |
RAC | ractopamine hydrochloride |
RDP | rumen degradable protein |
RMNP | Rocky Mountains National Park |
RoMANS | Rocky Mountains Atmospheric Nitrogen and Sulfur Study |
RUP | rumen undegradable protein |
ß-AA | ß-adrenergic agonists |
ST | somatotropin |
TAN | total ammoniacal nitrogen |
References
- Piña, A.J.; Schumacher, R.S.; Denning, A.S.; Faulkner, W.B.; Baron, J.S.; Ham, J.; Ojima, D.S.; Collett, J.L. Reducing wet ammonium deposition in Rocky Mountain National Park: The development and evaluation of a pilot early warning system for agricultural operations in Eastern Colorado. Environ. Manag. 2019, 64, 626–639. [Google Scholar] [CrossRef] [PubMed]
- Tevlin, A.; Li, Y.; Collett, J.; McDuffie, E.; Fischer, E.; Murphy, J. Tall tower vertical profiles and diurnal trends of ammonia in the Colorado Front Range. J. Geophys. Res. Atmos. 2017, 122, 12468–412487. [Google Scholar] [CrossRef]
- Toth, J.J.; Johnson, R.H. Summer surface flow characteristics over northeast Colorado. Mon. Weather Rev. 1985, 113, 1458–1469. [Google Scholar] [CrossRef]
- Burns, D.A.; Fenn, M.E.; Baron, J.; Lynch, J.A.; Cosby, B.J. National Acid Precipitation Assessment Program Report to Congress: An Integrated Assessment; National Science Technology Council: Washington, DC, USA, 2011.
- Baron, J.S. Hindcasting nitrogen deposition to determine an ecological critical load. Ecol. Appl. 2006, 16, 433–439. [Google Scholar] [CrossRef]
- Baron, J.S.; Ojima, D.S.; Holland, E.A.; Parton, W.J. Analysis of nitrogen saturation potential in Rocky Mountain tundra and forest: Implications for aquatic systems. Biogeochemistry 1994, 27, 61–82. [Google Scholar] [CrossRef]
- Benedict, K.; Carrico, C.; Kreidenweis, S.; Schichtel, B.; Malm, W.; Collett, J., Jr. A seasonal nitrogen deposition budget for Rocky Mountain National Park. Ecol. Appl. 2013, 23, 1156–1169. [Google Scholar] [CrossRef]
- Benedict, K.B.; Day, D.; Schwandner, F.M.; Kreidenweis, S.M.; Schichtel, B.; Malm, W.C.; Collett, J.L., Jr. Observations of atmospheric reactive nitrogen species in Rocky Mountain National Park and across northern Colorado. Atmos. Environ. 2013, 64, 66–76. [Google Scholar] [CrossRef]
- Malm, W.C.; Schichtel, B.A.; Barna, M.G.; Gebhart, K.A.; Rodriguez, M.A.; Collett, J.L., Jr.; Carrico, C.M.; Benedict, K.B.; Prenni, A.J.; Kreidenweis, S.M. Aerosol species concentrations and source apportionment of ammonia at Rocky Mountain National Park. J. Air Waste Manag. Assoc. 2013, 63, 1245–1263. [Google Scholar] [CrossRef]
- Morris, K. Data Summary of Wet Nitrogen Deposition at Rocky Mountain National Park; Natural Resource Report NPS/NRSS/ARD/NRR—2018/1610; National Park Service: Fort Collins, CO, USA, 2018.
- Morris, K. 2018/2019 Data Summary of Wet Nitrogen Deposition at Rocky Mountain National Park; U.S. Department of the Interior, National Park Service: Washington, DC, USA, 2021.
- Thompson, T.M.; Rodriguez, M.A.; Barna, M.G.; Gebhart, K.A.; Hand, J.L.; Day, D.E.; Malm, W.C.; Benedict, K.B.; Collett, J.L., Jr.; Schichtel, B.A. Rocky Mountain National Park reduced nitrogen source apportionment. J. Geophys. Res. Atmos. 2015, 120, 4370–4384. [Google Scholar] [CrossRef]
- Asman, W.A.; Sutton, M.A.; Schjørring, J.K. Ammonia: Emission, atmospheric transport and deposition. New Phytol. 1998, 139, 27–48. [Google Scholar] [CrossRef]
- Beckett, K.P.; Freer-Smith, P.; Taylor, G. Urban woodlands: Their role in reducing the effects of particulate pollution. Environ. Pollut. 1998, 99, 347–360. [Google Scholar] [CrossRef]
- Gebhart, K.A.; Malm, W.C.; Rodriguez, M.A.; Barna, M.G.; Schichtel, B.A.; Benedict, K.B.; Collett, J.L.; Carrico, C.M. Meteorological and back trajectory modeling for the rocky mountain atmospheric nitrogen and sulfur study II. Adv. Meteorol. 2014, 2014, 414015. [Google Scholar] [CrossRef]
- Dammers, E.; McLinden, C.A.; Griffin, D.; Shephard, M.W.; Van Der Graaf, S.; Lutsch, E.; Schaap, M.; Gainairu-Matz, Y.; Fioletov, V.; Van Damme, M. NH3 emissions from large point sources derived from CrIS and IASI satellite observations. Atmos. Chem. Phys. 2019, 19, 12261–12293. [Google Scholar] [CrossRef]
- Van Damme, M.; Clarisse, L.; Whitburn, S.; Hadji-Lazaro, J.; Hurtmans, D.; Clerbaux, C.; Coheur, P.-F. Industrial and agricultural ammonia point sources exposed. Nature 2018, 564, 99–103. [Google Scholar] [CrossRef]
- Malm, W.; Collett, J., Jr.; Barna, M.; Gebhart, K.; Schichtel, B.; Beem, K.; Carrico, C.; Day, D.; Hand, J.; Kreidenweis, S. RoMANS: Rocky Mountain Atmospheric Nitrogen and Sulfur Study Report; U.S. Department of the Interior, National Park Service: Washington, DC, USA, 2009.
- USDA-NASS. Surveys-Cattle Inventory. Available online: https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Cattle_Inventory/ (accessed on 26 July 2023).
- USDA/NASS. 2021 State Agriculture Overview for Colorado. Available online: https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=COLORADO (accessed on 26 July 2023).
- Sakirkin, S.; Cole, N.; Todd, R.; Auvermann, B. Ammonia Emissions from Cattle-Feeding Operations. Part 1 of 2: Issues and Emissions; Animal Agriculture and Air Quality Iowa State University: Ames, IA, USA, 2013. [Google Scholar]
- Hristov, A.N.; Hanigan, M.; Cole, A.; Todd, R.; McAllister, T.A.; Ndegwa, P.M.; Rotz, A. Ammonia emissions from dairy farms and beef feedlots. Can. J. Anim. Sci. 2011, 91, 1–35. [Google Scholar] [CrossRef]
- Waldrip, H.; Cole, N.; Todd, R. Nitrogen sustainability and beef cattle feedyards: II. Ammonia emissions. Prof. Anim. Sci. 2015, 31, 395–411. [Google Scholar] [CrossRef]
- Arogo, J.; Westerman, P.W.; Heber, A.J.; Robarge, W.P.; Classen, J.J. Ammonia Emissions from Animal Feeding Operations. In Animal Agriculture and the Environment: National Center for Manure and Animal Waste Management White Papers; ASABE: Berrien County, MI, USA, 2006. [Google Scholar]
- Cole, N.; Todd, R.; Auvermann, B.; Parker, D. Auditing and assessing air quality in concentrated feeding operations. Prof. Anim. Sci. 2008, 24, 1–22. [Google Scholar] [CrossRef]
- Galles, K.J. Practical Strategies for Reducing Ammonia Volatilization from Feedlots along Colorado’s Front Range; Colorado State University: Fort Collins, CO, USA, 2011. [Google Scholar]
- Hutchinson, G.; Mosier, A.; Andre, C. Ammonia and Amine Emissions from a Large Cattle Feedlot; 0047-2425; Wiley Online Library: Hoboken, NJ, USA, 1982. [Google Scholar]
- Shonkwiler, K.B. Micrometeorological Studies of a Beef Feedlot, Dairy, and Grassland: Measurements of Ammonia, Methane, and Energy Balance Closure; Colorado State University: Fort Collins, CO, USA, 2018. [Google Scholar]
- Preece, S.L.; Cole, N.A.; Todd, R.W.; Auvermann, B.W. Ammonia Emissions from Cattle Feeding Operations. In Texas A&M AgriLife Extension Service; E-632; Texas A&M University: Amarillo, TX, USA, 2011; pp. 1–15. [Google Scholar]
- Burchill, W.; Reville, F.; Misselbrook, T.H.; O’Connell, C.; Lanigan, G.J. Ammonia emissions and mitigation from a concrete yard used by cattle. Biosyst. Eng. 2019, 184, 181–189. [Google Scholar] [CrossRef]
- Nasiru, A.; Ibrahim, M.H.; Ismail, N. Nitrogen losses in ruminant manure management and use of cattle manure vermicast to improve forage quality. Int. J. Recycl. Org. Waste Agric. 2014, 3, 57. [Google Scholar] [CrossRef]
- Sommer, S.G.; Webb, J.; Hutchings, N.D. New emission factors for calculation of ammonia volatilization from European livestock manure management systems. Front. Sustain. Food Syst. 2019, 3, 101. [Google Scholar] [CrossRef]
- Oenema, O. Nitrogen budgets and losses in livestock systems. Int. Congr. Ser. 2006, 1293, 262–271. [Google Scholar] [CrossRef]
- Sommer, S.; Olesen, J. Effects of Dry Matter Content and Temperature on Ammonia Loss from Surface-Applied Cattle Slurry; 0047-2425; Wiley Online Library: Hoboken, NJ, USA, 1991. [Google Scholar]
- Olesen, J.; Sommer, S. Modelling effects of wind speed and surface cover on ammonia volatilization from stored pig slurry. Atmos. Environ. Part A. Gen. Top. 1993, 27, 2567–2574. [Google Scholar] [CrossRef]
- Todd, R.W.; Cole, N.A.; Rhoades, M.B.; Parker, D.B.; Casey, K.D. Daily, monthly, seasonal, and annual ammonia emissions from Southern High Plains cattle feedyards. J. Environ. Qual. 2011, 40, 1090–1095. [Google Scholar] [CrossRef]
- Rhoades, M.; Parker, D.; Cole, N.; Todd, R.; Caraway, E.; Auvermann, B.; Topliff, D.; Schuster, G. Continuous ammonia emission measurements from a commercial beef feedyard in Texas. Trans. ASABE 2010, 53, 1823–1831. [Google Scholar] [CrossRef]
- Erickson, G.; Klopfenstein, T. Nutritional and management methods to decrease nitrogen losses from beef feedlots. J. Anim. Sci. 2010, 88, E172–E180. [Google Scholar] [CrossRef]
- Cole, N.; Todd, R. Nitrogen and phosphorus balance of beef cattle feedyards. In Proceedings of the Texas Animal Manure Management Issues Conference, Round Rock, TX, USA, 29–30 September 2009; pp. 17–24. [Google Scholar]
- Todd, R.W.; Cole, N.A.; Clark, R.N.; Flesch, T.K.; Harper, L.A.; Baek, B.H. Ammonia emissions from a beef cattle feedyard on the southern High Plains. Atmos. Environ. 2008, 42, 6797–6805. [Google Scholar] [CrossRef]
- Flesch, T.; Wilson, J.; Harper, L.; Todd, R.; Cole, N. Determining ammonia emissions from a cattle feedlot with an inverse dispersion technique. Agric. For. Meteorol. 2007, 144, 139–155. [Google Scholar] [CrossRef]
- Cole, N.; Defoor, P.; Galyean, M.; Duff, G.; Gleghorn, J. Effects of phase-feeding of crude protein on performance, carcass characteristics, serum urea nitrogen concentrations, and manure nitrogen of finishing beef steers. J. Anim. Sci. 2006, 84, 3421–3432. [Google Scholar] [CrossRef]
- Todd, R.; Cole, N.; Harper, L.; Flesch, T.; Baek, B. Ammonia and gaseous nitrogen emissions from a commercial beef cattle feedyard estimated using the flux-gradient method and N: P ratio analysis. In Proceedings of the Symposium State of the Science: Animal Manure and Waste Management, San Antonio, TX, USA, 5–7 January 2005. [Google Scholar]
- Erickson, G.; Milton, C.; Klopfenstein, T. Dietary protein effects on nitrogen excretion and volatilization in open-dirt feedlots. In Animal, Agricultural and Food Processsing Wastes, Proceedings of the Eighth International Symposium, Des Moines, IA, USA, 9–11 October 2000; American Society of Agricultural Engineers: St. Joseph, MI, USA, 2000; pp. 297–304. [Google Scholar]
- Bierman, S.; Erickson, G.; Klopfenstein, T.; Stock, R.A.; Shain, D. Evaluation of nitrogen and organic matter balance in the feedlot as affected by level and source of dietary fiber. J. Anim. Sci. 1999, 77, 1645–1653. [Google Scholar] [CrossRef]
- Cole, N.; Clark, R.; Todd, R.; Richardson, C.; Gueye, A.; Greene, L.; Mcbride, K. Influence of dietary crude protein concentration and source on potential ammonia emissions from beef cattle manure. J. Anim. Sci. 2005, 83, 722–731. [Google Scholar] [CrossRef]
- Baek, B.-H.; Todd, R.; Cole, N.A.; Koziel, J.A. Ammonia and hydrogen sulphide flux and dry deposition velocity estimates using vertical gradient method at a commercial beef cattle feedlot. Int. J. Glob. Environ. Issues 2006, 6, 189–203. [Google Scholar] [CrossRef]
- McGinn, S.; Flesch, T.; Crenna, B.; Beauchemin, K.; Coates, T. Quantifying ammonia emissions from a cattle feedlot using a dispersion model. J. Environ. Qual. 2007, 36, 1585–1590. [Google Scholar] [CrossRef]
- Denmead, O.; Chen, D.; Griffith, D.; Loh, Z.; Bai, M.; Naylor, T. Emissions of the indirect greenhouse gases NH3 and NOx from Australian beef cattle feedlots. Aust. J. Exp. Agric. 2008, 48, 213–218. [Google Scholar] [CrossRef]
- Van Haarlem, R.; Desjardins, R.; Gao, Z.; Flesch, T.; Li, X. Methane and ammonia emissions from a beef feedlot in western Canada for a twelve-day period in the fall. Can. J. Anim. Sci. 2008, 88, 641–649. [Google Scholar] [CrossRef]
- Rhoades, M.B.; Auvermann, B.W.; Cole, N.A.; Todd, R.W.; Parker, D.B.; Caraway, E.A.; Schuster, G.; Spears, J. Ammonia concentration and modeled emission rates from a beef cattle feedyard. In Proceedings of the 2008 American Society of Agricultural and Biological Engineers, Providence, RI, USA, 29 June 29–2 July 2008; p. 1. [Google Scholar]
- Staebler, R.M.; McGinn, S.M.; Crenna, B.P.; Flesch, T.K.; Hayden, K.L.; Li, S.-M. Three-dimensional characterization of the ammonia plume from a beef cattle feedlot. Atmos. Environ. 2009, 43, 6091–6099. [Google Scholar] [CrossRef]
- Waldrip, H.M.; Todd, R.W.; Li, C.; Cole, N.A.; Salas, W.H. Estimation of ammonia emissions from beef cattle feedyards using the process-based model Manure-DNDC. Trans. ASABE 2013, 56, 1103–1114. [Google Scholar]
- McGinn, S.; Janzen, H.; Coates, T.; Beauchemin, K.; Flesch, T. Ammonia emission from a beef cattle feedlot and its local dry deposition and re-emission. J. Environ. Qual. 2016, 45, 1178–1185. [Google Scholar] [CrossRef]
- McGinn, S.; Flesch, T. Ammonia and greenhouse gas emissions at beef cattle feedlots in Alberta Canada. Agric. For. Meteorol. 2018, 258, 43–49. [Google Scholar] [CrossRef]
- Samuelson, K.; Hubbert, M.; Galyean, M.; Löest, C. Nutritional recommendations of feedlot consulting nutritionists: The 2015 New Mexico State and Texas Tech University survey. J. Anim. Sci. 2016, 94, 2648–2663. [Google Scholar] [CrossRef]
- Powlson, D. Understanding the soil nitrogen cycle. Soil Use Manag. 1993, 9, 86–93. [Google Scholar] [CrossRef]
- Nenes, A.; Pandis, S.N.; Pilinis, C. Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models. Atmos. Environ. 1999, 33, 1553–1560. [Google Scholar] [CrossRef]
- Montes, F.; Rotz, C.; Chaoui, H. Process modeling of ammonia volatilization from ammonium solution and manure surfaces: A review with recommended models. Trans. ASABE 2009, 52, 1707–1720. [Google Scholar] [CrossRef]
- Sawyer, C.N.; McCarty, P.L. Chemistry for Environmental Engineering; McGraw-Hill: New York, NY, USA, 1978. [Google Scholar]
- Cofie, O.; Nikiema, J.; Impraim, R.; Adamtey, N.; Paul, J.; Koné, D. Co-Composting of Solid Waste and Fecal Sludge for Nutrient and Organic Matter Recovery; IWMI: Colombo, Sri Lanka, 2016; Volume 3. [Google Scholar]
- Schreiner, A. Chemische Untersuchungen natürlicher Fliessgewässer. Quantitative Chemische Gewässeranalyse der Mosel, Gymnasium Konz: Konz, Germany 1997. Available online: http://www.ruschmidt.de/NAUCI2.htm (accessed on 26 July 2023).
- Flocke, F.; Pfister, G.; Crawford, J.H.; Pickering, K.E.; Pierce, G.; Bon, D.; Reddy, P. Air quality in the Northern Colorado front range metro area: The front range air pollution and photochemistry éxperiment (FRAPPÉ). J. Geophys. Res. Atmos. 2020, 125, e2019JD031197. [Google Scholar] [CrossRef]
- Church, D.C. The Ruminant Animal: Digestive Physiology and Nutrition; Waveland Press: Long Grove, IL, USA, 1993. [Google Scholar]
- Johnson, R.H.; Toth, J.J. A Climatology of the July 1981 Surface Flow over Northeast Colorado; Colorado State University Libraries: Fort Collins, CO, USA, 1982. [Google Scholar]
- Wetherbee, G.A.; Benedict, K.B.; Murphy, S.F.; Elliott, E.M. Inorganic nitrogen wet deposition gradients in the Denver-Boulder metropolitan area and Colorado Front Range–Preliminary implications for Rocky Mountain National Park and interpolated deposition maps. Sci. Total Environ. 2019, 691, 1027–1042. [Google Scholar] [CrossRef]
- Clow, D.W.; Roop, H.A.; Nanus, L.; Fenn, M.E.; Sexstone, G.A. Spatial patterns of atmospheric deposition of nitrogen and sulfur using ion-exchange resin collectors in Rocky Mountain National Park, USA. Atmos. Environ. 2015, 101, 149–157. [Google Scholar] [CrossRef]
- Golston, L.M.; Pan, D.; Sun, K.; Tao, L.; Zondlo, M.A.; Eilerman, S.J.; Peischl, J.; Neuman, J.A.; Floerchinger, C. Variability of ammonia and methane emissions from animal feeding operations in northeastern Colorado. Environ. Sci. Technol. 2020, 54, 11015–11024. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Thompson, T.M.; Van Damme, M.; Chen, X.; Benedict, K.B.; Shao, Y.; Day, D.; Boris, A.; Sullivan, A.P.; Ham, J. Temporal and spatial variability of ammonia in urban and agricultural regions of northern Colorado, United States. Atmos. Chem. Phys. 2017, 17, 6197–6213. [Google Scholar] [CrossRef]
- Day, D.; Chen, X.; Gebhart, K.; Carrico, C.; Schwandner, F.; Benedict, K.; Schichtel, B.; Collett, J., Jr. Spatial and temporal variability of ammonia and other inorganic aerosol species. Atmos. Environ. 2012, 61, 490–498. [Google Scholar] [CrossRef]
- Ni, J. Mechanistic models of ammonia release from liquid manure: A review. J. Agric. Eng. Res. 1999, 72, 1–17. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle; National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 2016. [Google Scholar]
- Owens, F.; Zinn, R. Protein metabolism of ruminant animals. In The Ruminant Animal: Digestive Physiology and Nutrition; Simon & Schuster: Englewood Cliffs, NJ, USA, 1988; pp. 227–249. [Google Scholar]
- Reynolds, C.; Kristensen, N. Nitrogen recycling through the gut and the nitrogen economy of ruminants: An asynchronous symbiosis. J. Anim. Sci. 2008, 86, E293–E305. [Google Scholar] [CrossRef]
- Firkins, J.; Reynolds, C. Whole-animal nitrogen balance in cattle. In Nitrogen and Phosphorus Nutrition of Cattle: Reducing the Environmental Impact of Cattle Operations; CABI Publishing: Wallingford, UK, 2005; pp. 167–186. [Google Scholar]
- Lapierre, H.; Lobley, G. Nitrogen recycling in the ruminant: A review. J. Dairy Sci. 2001, 84, E223–E236. [Google Scholar] [CrossRef]
- Dijkstra, J.; Oenema, O.; Van Groenigen, J.; Spek, J.; Van Vuuren, A.; Bannink, A. Diet effects on urine composition of cattle and N2O emissions. Animal 2013, 7, 292–302. [Google Scholar] [CrossRef] [PubMed]
- USDA-NRCS. Conservation Management Practices. Available online: https://www.nrcs.usda.gov/resources/guides-and-instructions/conservation-practice-standards (accessed on 26 July 2023).
- National Research Council. Nutrient Requirements of Beef Cattle; Update; National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 2000; p. 248.
- Todd, R.W.; Cole, N.A.; Clark, R.N. Reducing crude protein in beef cattle diet reduces ammonia emissions from artificial feedyard surfaces. J. Environ. Qual. 2006, 35, 404–411. [Google Scholar] [CrossRef]
- Todd, R.W.; Cole, N.A.; Waldrip, H.M.; Aiken, R.M. Arrhenius equation for modeling feedyard ammonia emissions using temperature and diet crude protein. J. Environ. Qual. 2013, 42, 666–671. [Google Scholar] [CrossRef]
- Kissinger, W.F.; Koelsch, R.K.; Erickson, G.E.; Klopfenstein, T.J. Characteristics of manure harvested from beef cattle feedlots. Appl. Eng. Agric. 2007, 23, 357–365. [Google Scholar] [CrossRef]
- Todd, R.; Cole, N.; Parker, D.; Rhoades, M.; Casey, K. Effect of feeding distiller’s grain on dietary crude protein and ammonia emissions from beef cattle feedyards. In Proceedings of the Texas Animal Manure Management Issues (TAMMI) Conference, Round Rock, TX, USA, 29 September 2009; pp. 37–44. [Google Scholar]
- Chiavegato, M.; Powers, W.; Palumbo, N. Ammonia and greenhouse gas emissions from housed Holstein steers fed different levels of diet crude protein. J. Anim. Sci. 2015, 93, 395–404. [Google Scholar] [CrossRef]
- Pandrangi, S.; Parker, D.B.; Greene, L.W.; Almas, L.K.; Rhoades, M.B.; Cole, N.A. Effect of dietary crude protein on ammonia emissions from open-lot beef cattle feedyards. In Proceedings of the 2003 ASAE Annual Meeting, Las Vegas, NV, USA, 27–30 July 2003; p. 1. [Google Scholar]
- Naumann, H.; Muir, J.; Lambert, B.; Tedeschi, L.; Kothmann, M. Condensed tannins in the ruminant environment: A perspective on biological activity. J. Agric. Sci. 2013, 1, 8–20. [Google Scholar]
- Waghorn, G.; Reed, J.; Ndlovu, L. Condensed tannins and herbivore nutrition. In Proceedings of the XVIII International Grassland Congress, Calgary, AB, Canada; 1999; p. 153. [Google Scholar]
- Reed, J.D. Nutritional toxicology of tannins and related polyphenols in forage legumes. J. Anim. Sci. 1995, 73, 1516–1528. [Google Scholar] [CrossRef]
- Kronberg, S.L.; Liebig, M.A. Condensed tannin in drinking water reduces greenhouse gas precursor urea in sheep and cattle urine. Rangel. Ecol. Manag. 2011, 64, 543–547. [Google Scholar] [CrossRef]
- Marshall, C.; Beck, M.; Garrett, K.; Castillo, A.; Barrell, G.; Al-Marashdeh, O.; Gregorini, P. The effect of feeding a mix of condensed and hydrolyzable tannins to heifers on rumen fermentation patterns, blood urea nitrogen, and amino acid profile. Livest. Sci. 2022, 263, 105034. [Google Scholar] [CrossRef]
- González, S.; Pabon, M.L.; Carulla, J. Effects of tannins on in vitro ammonia release and dry matter degradation of soybean meal. Lat. Am. Arch. Anim. Prod. 2002, 10, 97–101. [Google Scholar]
- Campbell, T.N.; Rhoades, M.B.; Bailey, E.A.; Parker, D.B.; Shreck, A.L. Manure ammonia and green house gas emissions from beef cattle fed condensed tannins. In Proceedings of the 2016 ASABE Annual International Meeting, Orlando, FL, USA, 17–20 July 2016; p. 1. [Google Scholar]
- Ebert, P.; Bailey, E.; Shreck, A.; Jennings, J.; Cole, N. Effect of condensed tannin extract supplementation on growth performance, nitrogen balance, gas emissions, and energetic losses of beef steers. J. Anim. Sci. 2017, 95, 1345–1355. [Google Scholar] [CrossRef] [PubMed]
- Koenig, K.M.; Beauchemin, K.A. Effect of feeding condensed tannins in high protein finishing diets containing corn distillers grains on ruminal fermentation, nutrient digestibility, and route of nitrogen excretion in beef cattle. J. Anim. Sci. 2018, 96, 4398–4413. [Google Scholar] [CrossRef] [PubMed]
- Cappucci, A.; Mantino, A.; Buccioni, A.; Casarosa, L.; Conte, G.; Serra, A.; Mannelli, F.; Luciano, G.; Foggi, G.; Mele, M. Diets supplemented with condensed and hydrolysable tannins affected rumen fatty acid profile and plasmalogen lipids, ammonia and methane production in an in vitro study. Ital. J. Anim. Sci. 2021, 20, 935–946. [Google Scholar] [CrossRef]
- Lean, I.J.; Thompson, J.M.; Dunshea, F.R. A meta-analysis of zilpaterol and ractopamine effects on feedlot performance, carcass traits and shear strength of meat in cattle. PLoS ONE 2014, 9, e115904. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.; Garcia, D.; Anderson, D. Elevation of a specific mRNA in longissimus muscle of steers fed ractopamine. J. Anim. Sci. 1989, 67, 3495–3502. [Google Scholar] [CrossRef]
- Smith, S.B.; Davis, S.K.; Wilson, J.J.; Stone, R.T.; Wu, F.; Garcia, D.K.; Lunt, D.K.; Schiavetta, A.M. Bovine fast-twitch myosin light chain 1: Cloning and mRNA amount in muscle of cattle treated with clenbuterol. Am. J. Physiol.-Endocrinol. Metab. 1995, 268, E858–E865. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Beermann, D. Reduced calcium-dependent proteinase activity in cimaterol-induced muscle hypertrophy in lambs. J. Anim. Sci. 1988, 66, 2545–2550. [Google Scholar] [CrossRef]
- Ross, E.G. Mitigation of Gaseous Emissions from Beef and Dairy Cattle Through Feed Additives and Manure Supplements. Ph.D. Thesis, UC Davis, Davis, CA, USA, 2021. [Google Scholar]
- Brown, M.S.; Cole, N.A.; Gruber, S.; Kube, J.; Teeter, J.S. Modeling and prediction accuracy of ammonia gas emissions from feedlot cattle. Appl. Anim. Sci. 2019, 35, 347–356. [Google Scholar] [CrossRef]
- Kube, J.C.; Holland, B.P.; Word, A.B.; Allen, J.B.; Calvo-Lorenzo, M.; McKenna, D.; Vogel, G. Effects of various doses of lubabegron on calculated ammonia gas emissions, growth performance, and carcass characteristics of beef cattle during the last 56 days of the feeding period. Transl. Anim. Sci. 2021, 5, txab137. [Google Scholar] [CrossRef]
- Walker, C.E.; Drouillard, J. Effects of ractopamine hydrochloride are not confined to mammalian tissue: Evidence for direct effects of ractopamine hydrochloride supplementation on fermentation by ruminal microorganisms. J. Anim. Sci. 2010, 88, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Preston, R. Hormone containing growth promoting implants in farmed livestock. Adv. Drug Deliv. Rev. 1999, 38, 123–138. [Google Scholar] [CrossRef] [PubMed]
- Zobell, D.R.; Chapman, C.K.; Heaton, K.; Birkelo, C. Beef Cattle Implants; Utah State University Extension: Logan, UT, USA, 2000. [Google Scholar]
- Smith, Z.K.; Johnson, B.J. Mechanisms of steroidal implants to improve beef cattle growth: A review. J. Appl. Anim. Res. 2020, 48, 133–141. [Google Scholar] [CrossRef]
- Hutcheson, J.; Johnson, D.; Gerken, C.; Morgan, J.; Tatum, J. Anabolic implant effects on visceral organ mass, chemical body composition, and estimated energetic efficiency in cloned (genetically identical) beef steers. J. Anim. Sci. 1997, 75, 2620–2626. [Google Scholar] [CrossRef] [PubMed]
- Nichols, W.; Galyean, M.; Thomson, D.; Hutcheson, J. Effects of steroid implants on the tenderness of beef. Prof. Anim. Sci. 2002, 18, 202–210. [Google Scholar] [CrossRef]
- Ohnoutka, C.; Bondurant, R.; Boyd, B.; Hilscher, F.; Nuttelman, B.; Crawford, G.; Streeter, M.; Luebbe, M.; MacDonald, J.; Smith, Z. Evaluation of coated steroidal combination implants on feedlot performance and carcass characteristics of beef heifers fed for constant or varying days on feed. Appl. Anim. Sci. 2021, 37, 41–51. [Google Scholar] [CrossRef]
- Preston, R.; Herschler, R. Controlled release estradiol/progesterone anabolic implant in cattle. In Texas Tech University Agricultural Science & Technology Report No. T-5-317: 140; Texas Tech University: Lubbock, TX, USA, 1992. [Google Scholar]
- Selk, G. Implants For Suckling Steer And Heifer Calves And Potential Replacement Heifers; Research Report P; Oklahoma State University Extension: Stillwater, OK, USA, 1997. [Google Scholar]
- Aboagye, I.A.; Cordeiro, M.R.; McAllister, T.A.; May, M.L.; Hannon, S.J.; Booker, C.W.; Parr, S.L.; Schunicht, O.C.; Burciaga-Robles, L.O.; Grimson, T.M. Environmental performance of commercial beef production systems utilizing conventional productivity-enhancing technologies. Transl. Anim. Sci. 2022, 6, txac074. [Google Scholar] [CrossRef]
- Stackhouse, K.; Rotz, C.; Oltjen, J.; Mitloehner, F. Growth-promoting technologies decrease the carbon footprint, ammonia emissions, and costs of California beef production systems. J. Anim. Sci. 2012, 90, 4656–4665. [Google Scholar] [CrossRef]
- Chen, M.; Wolin, M. Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria. Appl. Environ. Microbiol. 1979, 38, 72–77. [Google Scholar] [CrossRef]
- Muir, L.A.; Barretto, A., Jr. Sensitivity of Streptococcus bovis to various antibiotics. J. Anim. Sci. 1979, 48, 468–473. [Google Scholar] [CrossRef]
- Russell, J. The importance of pH in the regulation of ruminal acetate to propionate ratio and methane production in vitro. J. Dairy Sci. 1998, 81, 3222–3230. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.; Strobel, H. Effects of additives on in vitro ruminal fermentation: A comparison of monensin and bacitracin, another gram-positive antibiotic. J. Anim. Sci. 1988, 66, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.B.; Strobel, H. Effect of ionophores on ruminal fermentation. Appl. Environ. Microbiol. 1989, 55, 1–6. [Google Scholar] [CrossRef]
- Perry, T.; Beeson, W.; Mohler, M. Effect of monensin on beef cattle performance. J. Anim. Sci. 1976, 42, 761–765. [Google Scholar] [CrossRef]
- Yang, C.; Russell, J.B. The effect of monensin supplementation on ruminal ammonia accumulation in vivo and the numbers of amino acid-fermenting bacteria. J. Anim. Sci. 1993, 71, 3470–3476. [Google Scholar] [CrossRef] [PubMed]
- Bergen, W.G.; Bates, D.B. Ionophores: Their effect on production efficiency and mode of action. J. Anim. Sci. 1984, 58, 1465–1483. [Google Scholar] [CrossRef] [PubMed]
- McGuffey, R.; Richardson, L.; Wilkinson, J. Ionophores for dairy cattle: Current status and future outlook. J. Dairy Sci. 2001, 84, E194–E203. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Fox, D.G.; Tylutki, T.P. Potential environmental benefits of ionophores in ruminant diets. J. Environ. Qual. 2003, 32, 1591–1602. [Google Scholar] [CrossRef]
- Weiss, C.P.; Beck, P.A.; Richeson, J.T.; Tomczak, D.J.; Hess, T.; Hubbell, D.; Zhao, J. Effect of monensin intake during a stocker phase and subsequent finishing phase on rumen bacterial diversity of beef steers. J. Anim. Sci. 2019, 97, 163–164. [Google Scholar] [CrossRef]
- Castillo, C.; Benedito, J.; Méndez, J.; Pereira, V.; Lopez-Alonso, M.; Miranda, M.; Hernández, J. Organic acids as a substitute for monensin in diets for beef cattle. Anim. Feed. Sci. Technol. 2004, 115, 101–116. [Google Scholar] [CrossRef]
- Muntifering, R.B.; Theurer, B.; Swingle, R.; Hale, W. Effect of monensin on nitrogen utilization and digestibility of concentrate diet by steers. J. Anim. Sci. 1980, 50, 930–936. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, S.; Drouillard, J.; Sindt, J.; Farran, T.; Labrune, H.; Hunter, R. Effects of monensin and tylosin concentrations in limit-fed, high-energy growing diets for beef cattle. Prof. Anim. Sci. 2003, 19, 244–250. [Google Scholar] [CrossRef]
- Benchaar, C.; Duynisveld, J.; Charmley, E. Effects of monensin and increasing dose levels of a mixture of essential oil compounds on intake, digestion and growth performance of beef cattle. Can. J. Anim. Sci. 2006, 86, 91–96. [Google Scholar]
- Wilson, C.B.; Erickson, G.E.; Macken, C.N.; Klopfenstein, T.J. Impact of Cleaning Frequency on Nitrogen Balance in Open Feedlot Pens; Nebraska Beef Cattle Report; University of Nebraska: Lincoln, NE, USA, 2004. [Google Scholar]
- Spiehs, M.; Woodbury, B.; Doran, B.; Eigenberg, R.; Kohl, K.; Varel, V.; Berry, E.; Wells, J. Environmental conditions in beef deep-bedded mono-slope facilities: A descriptive study. Trans. ASABE 2011, 54, 663–673. [Google Scholar] [CrossRef]
- McGinn, S.; Sommer, S.G. Ammonia emissions from land-applied beef cattle manure. Can. J. Soil Sci. 2007, 87, 345–352. [Google Scholar] [CrossRef]
- Owens, J.L.; Thomas, B.W.; Stoeckli, J.L.; Beauchemin, K.A.; McAllister, T.A.; Larney, F.J.; Hao, X. Greenhouse gas and ammonia emissions from stored manure from beef cattle supplemented 3-nitrooxypropanol and monensin to reduce enteric methane emissions. Sci. Rep. 2020, 10, 19310. [Google Scholar] [CrossRef]
- DeLuca, T.; DeLuca, D. Composting for feedlot manure management and soil quality. J. Prod. Agric. 1997, 10, 235–241. [Google Scholar] [CrossRef]
- Eghball, B.; Power, J. Beef cattle feedlot manure management. J. Soil Water Conserv. 1994, 49, 113–122. [Google Scholar]
- Eghball, B.; Power, J.F.; Gilley, J.E.; Doran, J.W. Nutrient, Carbon, and Mass Loss During Composting of Beef Cattle Feedlot Manure; 0047-2425; Wiley Online Library: Hoboken, NJ, USA, 1997. [Google Scholar]
- Larney, F.J.; Buckley, K.E.; Hao, X.; McCaughey, W.P. Fresh, stockpiled, and composted beef cattle feedlot manure: Nutrient levels and mass balance estimates in Alberta and Manitoba. J. Environ. Qual. 2006, 35, 1844–1854. [Google Scholar] [CrossRef]
- Bai, M.; Flesch, T.; Trouvé, R.; Coates, T.; Butterly, C.; Bhatta, B.; Hill, J.; Chen, D. Gas emissions during cattle manure composting and stockpiling. J. Environ. Qual. 2020, 49, 228–235. [Google Scholar] [CrossRef]
- Bush, K.J.; Heflin, K.R.; Marek, G.W.; Bryant, T.C.; Auvermann, B.W. Increasing stocking density reduces emissions of fugitive dust from cattle feedyards. Appl. Eng. Agric. 2014, 30, 815–824. [Google Scholar]
- Purdy, C.W.; Straus, D.C.; Parker, D.B.; Wilson, S.C.; Clark, R.N. Comparison of the type and number of microorganisms and concentration of endotoxin in the air of feedyards in the Southern High Plains. Am. J. Vet. Res. 2004, 65, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Seedorf, J. An emission inventory of livestock-related bioaerosols for Lower Saxony, Germany. Atmos. Environ. 2004, 38, 6565–6581. [Google Scholar] [CrossRef]
- Wyatt, T.A.; Slager, R.E.; Devasure, J.; Auvermann, B.W.; Mulhern, M.L.; Von Essen, S.; Mathisen, T.; Floreani, A.A.; Romberger, D.J. Feedlot dust stimulation of interleukin-6 and-8 requires protein kinase Cε in human bronchial epithelial cells. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2007, 293, L1163–L1170. [Google Scholar] [CrossRef] [PubMed]
- Sweeten, J.B. Feedlot Dust Control; Texas Agricultural Extension Service: College Station, TX, USA, 1982.
- Sweeten, J.B.; Parnell, C.B.; Etheredge, R.S.; Osborne, D. Dust emissions in cattle feedlots. Vet. Clin. N. Am. Food Anim. Pract. 1988, 4, 557–578. [Google Scholar] [CrossRef]
- Von Essen, S.G.; Auvermann, B.W. Health effects from breathing air near CAFOs for feeder cattle or hogs. J. Agromed. 2005, 10, 55–64. [Google Scholar] [CrossRef]
- Rahman, S.; Mukhtar, S.; Weiderholt, R. Managing Odor Nuisance and Dust From Cattle Feedlots; North Dakota State University: Fargo, ND, USA, 2008. [Google Scholar]
- Wu, J.; Nofziger, D.; Warren, J.; Hattey, J. Modeling ammonia volatilization from surface-applied swine effluent. Soil Sci. Soc. Am. J. 2003, 67, 1–11. [Google Scholar]
- Jackson, T.L.; Alban, L.A.; Wolfe, J.W. Ammonia Nitrogen Loss from Sprinkler Applications; Oregon State College: Corvallis, OR, USA, 1959. [Google Scholar]
- Chadwick, D. Emissions of ammonia, nitrous oxide and methane from cattle manure heaps: Effect of compaction and covering. Atmos. Environ. 2005, 39, 787–799. [Google Scholar] [CrossRef]
- Saarijärvi, K.; Mattila, P.; Virkajärvi, P. Ammonia volatilization from artificial dung and urine patches measured by the equilibrium concentration technique (JTI method). Atmos. Environ. 2006, 40, 5137–5145. [Google Scholar] [CrossRef]
- Whitehead, D.; Raistrick, N. Effects of some environmental factors on ammonia volatilization from simulated livestock urine applied to soil. Biol. Fertil. Soils 1991, 11, 279–284. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. In Biochar for Environmental Management; Routledge: Abingdon-on-Thames, UK, 2015; pp. 1–13. [Google Scholar]
- Mackiewicz, E.; Szynkowska, M.I.; Maniukiewicz, W.; Paryjczak, T. Removal of ammonia by the catalytic oxidation on MexOy/zeolite type catalysts. Przem. Chem. 2011, 90, 896–899. [Google Scholar]
- Szymula, A.; Wlazło, Ł.; Sasáková, N.; Wnuk, W.; Nowakowicz-Dębek, B. The use of natural sorbents to reduce ammonia emissions from cattle faeces. Agronomy 2021, 11, 2543. [Google Scholar] [CrossRef]
- Varel, V.H.; Nienaber, J.A.; Freetly, H.C. Conservation of nitrogen in cattle feedlot waste with urease inhibitors. J. Anim. Sci. 1999, 77, 1162–1168. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Parker, D.; Cole, N.; Auvermann, B.; Mehlhorn, J. Surface amendments to minimize ammonia emissions from beef cattle feedlots. Trans. ASAE 2001, 44, 677. [Google Scholar]
- Parker, D.B.; Pandrangi, S.; Greene, L.W.; Almas, L.K.; Cole, N.A.; Rhoades, M.B.; Koziel, J. Application rate and timing effects on urease inhibitor performance for minimizing ammonia emissions from beef cattle feedyards. In Proceedings of the 2004 ASAE Annual Meeting, Ottawa, ON, Canada, 1–4 August 2004; p. 1. [Google Scholar]
- Parker, D.; Rhoades, M.; Cole, N.; Sambana, V. Effect of urease inhibitor application rate and rainfall on ammonia emissions from beef manure. Trans. ASABE 2011, 55, 211–218. [Google Scholar] [CrossRef]
- Parker, D.B.; Rhoades, M.B.; Koziel, J.A.; Baek, B.-H.; Waldrip, H.M.; Todd, R.W. Urease inhibitor for reducing ammonia emissions from an open-lot beef cattle feedyard in the Texas High Plains. Appl. Eng. Agric. 2016, 32, 823–832. [Google Scholar]
- Sepperer, T.; Tondi, G.; Petutschnigg, A.; Young, T.M.; Steiner, K. Mitigation of ammonia emissions from cattle manure slurry by tannins and tannin-based polymers. Biomolecules 2020, 10, 581. [Google Scholar] [CrossRef]
Location of Study | Summer | Winter | Annual | Reference |
---|---|---|---|---|
% of N fed | ||||
Texas Panhandle | 68–71 | 42–44 | 52–59 | Todd et al. (2011) [36] |
Texas Panhandle | 46–55 | 31–51 | 49 | Rhoades et al. (2010) [37] |
Nebraska | 56–64 | 36–64 | Erickson and Klopfenstein (2010) [38] | |
Texas Panhandle | 50 | 28 | Cole and Todd (2009) [39] | |
Texas Panhandle | 68 | 36 | 53 | Todd et al. (2008) [40] |
Texas Panhandle | 63 | Flesch et al. (2007) [41] | ||
Texas Panhandle | 51–65 | Cole et al. (2006) [42] | ||
Texas Panhandle | 55 | 27 | 41 | Todd et al. (2005) [43] |
Nebraska | 54 | 31 | Erickson et al. (2000) [44] | |
Nebraska | 57–67 | Bierman et al. (1999) [45] | ||
Average | 58 | 39 | 52 | |
Range | 46–71 | 27–51 | 41–59 |
Location of Study | Reference | NH3-N Emission (g head−1day−1) | ||||
---|---|---|---|---|---|---|
Spring | Summer | Fall | Winter | Annual | ||
Colorado | Hutchinson et al. (1982) [27] | 50 | ||||
Texas Panhandle | Todd et al. (2005) [43] | 74 * | 44 * | |||
Texas Panhandle | Cole et al. (2005) [46] | 108 | 66 | |||
Texas Panhandle | Baek et al. (2006) [47] | 167 * | 13 * | |||
Alberta, Canada | McGinn et al. (2007) [48] | 140 | ||||
Texas Panhandle | Flesch et al. (2007) [41] | 150 | ||||
Narrabri, Australia | Denmead et al. (2008) [49] | 46 | ||||
Alberta, Canada | van Haarlem et al. (2008) [50] | 164–318 | ||||
Texas Panhandle | Rhoades et al. (2008) [51] | 89 (58–123) | 78 (72–86) | |||
Texas Panhandle | Todd et al. (2008) [40] | 118 | 131 | 68 | 97 | |
Alberta, Canada | Staebler et al. (2009) [52] | 245 | ||||
Texas Panhandle | Rhoades et al. (2010) [37] | 97.5 (69–128) * | 88 (82–96) * | 70 (47–103) * | 61 (47–76) * | 79 * |
Texas Panhandle | Todd et al. (2011) [36] | 135–207 | 78–93 | 105–150 | ||
Texas Panhandle | Waldrip et al. (2013) [53] | 90–167 | ||||
Alberta, Canada | McGinn et al. (2016) [54] | 85 | ||||
Alberta, Canada | McGinn et al. (2018) [55] | 100–117 | ||||
Average | 113 | 130 | 187 | 59 | 104 | |
Range | 108–150 | 74–207 | 140–318 | 13–93 | 50–167 |
Category | NRCS Code | Management Practices |
---|---|---|
Feed management | 592 | Diet manipulation CP CT Growth-promoting technologies β-AA Implants Feed additives (monensin), Phase feeding |
Pen maintenance | N/A | Manure harvesting and pen drainage |
Dust control | 375 | Water sprinkler |
Manure amendment | 632 | Surface amendment and manure separation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brandani, C.B.; Lee, M.; Auvermann, B.W.; Parker, D.B.; Casey, K.D.; Crosman, E.T.; Gouvêa, V.N.; Beck, M.R.; Bush, K.J.; Koziel, J.A.; et al. Mitigating Ammonia Deposition Derived from Open-Lot Livestock Facilities into Colorado’s Rocky Mountain National Park: State of the Science. Atmosphere 2023, 14, 1469. https://doi.org/10.3390/atmos14101469
Brandani CB, Lee M, Auvermann BW, Parker DB, Casey KD, Crosman ET, Gouvêa VN, Beck MR, Bush KJ, Koziel JA, et al. Mitigating Ammonia Deposition Derived from Open-Lot Livestock Facilities into Colorado’s Rocky Mountain National Park: State of the Science. Atmosphere. 2023; 14(10):1469. https://doi.org/10.3390/atmos14101469
Chicago/Turabian StyleBrandani, Carolina B., Myeongseong Lee, Brent W. Auvermann, David B. Parker, Kenneth D. Casey, Erik T. Crosman, Vinícius N. Gouvêa, Matthew R. Beck, K. Jack Bush, Jacek A. Koziel, and et al. 2023. "Mitigating Ammonia Deposition Derived from Open-Lot Livestock Facilities into Colorado’s Rocky Mountain National Park: State of the Science" Atmosphere 14, no. 10: 1469. https://doi.org/10.3390/atmos14101469
APA StyleBrandani, C. B., Lee, M., Auvermann, B. W., Parker, D. B., Casey, K. D., Crosman, E. T., Gouvêa, V. N., Beck, M. R., Bush, K. J., Koziel, J. A., Shaw, B., & Brauer, D. (2023). Mitigating Ammonia Deposition Derived from Open-Lot Livestock Facilities into Colorado’s Rocky Mountain National Park: State of the Science. Atmosphere, 14(10), 1469. https://doi.org/10.3390/atmos14101469