Assessing the Influence Factors of Agricultural Soils’ CH4/N2O Emissions Based on the Revised EDGAR Datasets over Hainan Island in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Domain
2.2. Study Data
2.2.1. GHG Data
2.2.2. Climate Data
2.2.3. Land Use and Land Cover Change Data
2.3. Methodology
2.3.1. Coefficient Bias Correction Method
2.3.2. Geographical Detector
2.3.3. Multiple Linear Regression
2.3.4. Pearson Correlation Analysis
2.3.5. Bias Sensitivity Analysis
3. Results
3.1. Bias Correction and Uncertainty of Agricultural Soil from EDGAR Data
3.2. Quantification of the Influencing Factors of GHGintensity and Their Interactions
3.3. Quantifying the Sensitivity of GHGe in Different Types of Cultivated Land
3.4. The Main Climate-Driven Forces for GHGe from Paddy Fields
4. Discussion
4.1. The Sensitivity of Climate Change to GHG from Agricultural Soils
4.2. Comparison of CH4 and N2O Emission Intensity in Different Farming Practices
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2021: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Siegert, M.; Alley, R.B.; Rignot, E.; Englander, J.; Corell, R. Twenty-first century sea-level rise could exceed IPCC projections for strong-warming futures. One Earth 2020, 3, 691–703. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mishra, A.K. Increase in Compound Drought and Heatwaves in a Warming World. Geophys. Res. Lett. 2021, 48, e2020GL090617. [Google Scholar] [CrossRef]
- Taniguchi, K.; Minobe, Y. Impact of Global Warming on Extreme Heavy Rainfall in the Present Climate: Case Study of Heavy Rainfall in Kinugawa, Japan (2015). Atmosphere 2020, 11, 220. [Google Scholar] [CrossRef]
- Xu, H.; Huang, L.; Chen, J.; Zhou, H.; Wan, Y.; Qu, Q.; Wang, M.; Xue, S. Changes in soil microbial activity and their linkages with soil carbon under global warming. Catena 2023, 232, 107419. [Google Scholar] [CrossRef]
- Carlson, K.M.; Gerber, J.S.; Mueller, N.D.; Herrero, M.; MacDonald, G.K.; Brauman, K.A.; Havlik, P.; O’Connell, C.S.; Johnson, J.A.; Saatchi, S.; et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Chang. 2017, 7, 63–68. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, H.; Shi, H.; Zhang, J.; Wang, X.; Pan, S.; Yang, J. Increased greenhouse gas emissions intensity of major croplands in China: Implications for food security and climate change mitigation. Glob. Chang. Biol. 2020, 26, 6116–6133. [Google Scholar] [CrossRef]
- Montzka, S.A.; Dlugokencky, E.J.; Butler, J.H. Non-CO2 greenhouse gases and climate change. Nature 2011, 476, 43–50. [Google Scholar] [CrossRef]
- Liao, B.; Wu, X.; Yu, Y.; Luo, S.; Hu, R.; Lu, G. Effects of mild alternate wetting and drying irrigation and mid-season drainage on CH4 and N2O emissions in rice cultivation. Sci. Total Environ. 2020, 698, 134212. [Google Scholar] [CrossRef]
- Ge, P.; Chen, M.; Cui, Y.; Nie, D. The Research Progress of the Influence of Agricultural Activities on Atmospheric Environment in Recent Ten Years: A Review. Atmosphere 2021, 12, 635. [Google Scholar] [CrossRef]
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Cheng, K.; Pan, G.; Smith, P.; Luo, T.; Li, L.; Zheng, J.; Zhang, X.; Han, X.; Yan, M. Carbon footprint of China’s crop production-An estimation using agro-statistics data over 1993–2007. Appl. Soil. Ecol. 2011, 142, 231–237. [Google Scholar] [CrossRef]
- National Communication. The People’s Republic of China Second Biennial Update Report on Climate Change. Available online: https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201907/P020190701765971866571.pdf (accessed on 10 May 2023). (In Chinese)
- Feng, Z.Y.; Qin, T.; Du, X.Z.; Sheng, F.; Li, C.F. Effects of irrigation regime and rice variety on greenhouse gas emissions and grain yields from paddy fields in central China. Agric. Water Manag. 2021, 250, 106830. [Google Scholar] [CrossRef]
- Yao, F.; Xu, Y.; Lin, E.; Yokozawa, M.; Zhang, J. Assessing the impacts of climate change on rice yields in the main rice areas of China. Clim. Chang. 2007, 80, 395–409. [Google Scholar] [CrossRef]
- Xiong, X.; Houweling, S.; Wei, J.; Maddy, E.; Sun, F.; Barnet, C. Methane plume over south Asia during the monsoon season: Satellite observation and model simulation. Atmos. Chem. Phys. 2009, 9, 783–794. [Google Scholar] [CrossRef]
- Fatumah, N.; Munishi, L.K.; Ndakidemi, P.A. Variations in Greenhouse Gas Fluxes in Response to Short-Term Changes in Weather Variables at Three Elevation Ranges, Wakiso District, Uganda. Atmosphere 2019, 10, 708. [Google Scholar] [CrossRef]
- Li, L.; Zheng, Z.; Wang, W.; Biederman, J.A.; Xu, X.; Ran, Q.; Qian, R.; Xu, C.; Zhang, B.; Wang, F.; et al. Terrestrial N2O emissions and related functional genes under climate change: A global meta-analysis. Glob. Chang. Biol. 2020, 26, 931–943. [Google Scholar] [CrossRef] [PubMed]
- Knief, C. Diversity of Methane-cycling Microorganisms in Soils and Their Relation to Oxygen. Curr. Issues Mol. Biol. 2019, 33, 23–56. [Google Scholar] [CrossRef]
- Prosser, J.I.; Hink, L.; Gubry-Rangin, C.; Nicol, G.W. Nitrous oxide production by ammonia oxidizers: Physiological diversity, niche differentiation and potential mitigation strategies. Glob. Chang. Biol. 2020, 26, 103–118. [Google Scholar] [CrossRef]
- Shakoor, A.; Shakoor, S.; Rehman, A.; Ashraf, F.; Abdullah, M.; Shahzad, S.M.; Farooq, T.H.; Ashraf, M.; Manzoor, M.A.; Altaf, M.M.; et al. Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils—A global meta-analysis. J. Clean. Prod. 2021, 278, 124019. [Google Scholar] [CrossRef]
- Van Groenigen, K.J.; Van Kessel, C.; Hungate, B.A. Increased greenhouse-gas intensity of rice production under future atmospheric conditions. Nat. Clim. Chang. 2013, 3, 288–291. [Google Scholar] [CrossRef]
- Qian, H.; Zhang, N.; Chen, J.; Chen, C.; Hungate, B.A.; Ruan, J.; Huang, S.; Cheng, K.; Song, Z.; Hou, P.; et al. Unexpected Parabolic Temperature Dependency of CH4 Emissions from Rice Paddies. Environ. Sci. Technol. 2022, 56, 4871–4881. [Google Scholar] [CrossRef]
- Jain, N.; Arora, P.; Tomer, R.; Mishra, S.V.; Bhatia, A.; Pathak, H.; Chakraborty, D.; Kumar, V.; Dubey, D.S.; Harit, R.C.; et al. Greenhouse gases emission from soils under major crops in Northwest India. Sci. Total Environ. 2016, 542, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Rath, A.K.; Ramakrishnan, B.; Sethunathan, N. Temperature dependence of methane production in tropical rice soils. Geomicrobiol. J. 2002, 19, 581–592. [Google Scholar] [CrossRef]
- Tian, H.; Xu, X.; Liu, M.; Ren, W.; Zhang, C.; Chen, G.; Lu, C. Spatial and temporal patterns of CH4 and N2O fluxes in terrestrial ecosystems of North America during 1979–2008: Application of a global biogeochemistry model. Biogeosciences 2010, 7, 2673–2694. [Google Scholar] [CrossRef]
- Wang, J.; Rothausen, S.G.S.A.; Conway, D.; Zhang, L.; Xiong, W.; Holman, I.P.; Li, Y. China’s water-energy nexus: Greenhouse-gas emissions from groundwater use for agriculture. Environ. Res. Lett. 2012, 7, 014035. [Google Scholar] [CrossRef]
- Lamb, A.; Green, R.; Bateman, I.; Broadmeadow, M.; Bruce, T.; Burney, J.; Carey, P.; Chadwick, D.; Crane, E.; Field, R.; et al. The potential for land sparing to offset greenhouse gas emissions from agriculture. Nat. Clim. Chang. 2016, 6, 488–492. [Google Scholar] [CrossRef]
- Kozicka, K.; Gozdowski, D.; Wójcik-Gront, E. Spatial-Temporal Changes of Methane Content in the Atmosphere for Selected Countries and Regions with High Methane Emission from Rice Cultivation. Atmosphere 2021, 12, 1382. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, X.; Chuai, X.; Huang, X.; Wang, Z. Long-Term Trends of Atmospheric CH4 Concentration across China from 2002 to 2016. Remote Sens. 2019, 11, 538. [Google Scholar] [CrossRef]
- Wang, J.; Luo, Y.; Quan, Q.; Ma, F.; Tian, D.; Chen, W.; Wang, S.; Yang, L.; Meng, C.; Niu, S. Effects of warming and clipping on CH4 and N2O fluxes in an alpine meadow. Agric. For. Meteorol. 2021, 297, 108278. [Google Scholar] [CrossRef]
- Yan, X.; Ohara, T.; Akimoto, H. Bottom-up estimate of biomass burning in mainland China. Atmos. Environ. 2006, 40, 5262–5273. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Huang, G.; Guizzardi, D.; Koffi, E.; Muntean, M.; Schieberle, C.; Friedrich, R.; Janssens-Maenhout, G. High resolution temporal profiles in the Emissions Database for Global Atmospheric Research. Sci. Data 2020, 7, 121. [Google Scholar] [CrossRef]
- Kedia, S.; Das, S.K.; Islam, S.; Hazra, A.; Kumar, N. Aerosols impact on the convective and non-convective rain distribution over the Indian region: Results from WRF-Chem simulation. Atmos. Environ. 2019, 202, 64–74. [Google Scholar] [CrossRef]
- Madrazo, J.; Clappier, A.; Carlos Belalcazar, L.; Cuesta, O.; Contreras, H.; Golay, F. Screening differences between a local inventory and the Emissions Database for Global Atmospheric Research (EDGAR). Sci. Total Environ. 2018, 631–632, 934–941. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Ma, L.; Cheng, H.; Liu, Y.; Xu, D.; Li, B.; Liu, F.; Ren, Y.; Liu, Z.; Zhao, C. Characterization of the particle size fraction associated heavy metals in tropical arable soils from Hainan Island, China. J. Geochem. Explor. 2014, 139, 109–114. [Google Scholar] [CrossRef]
- Sun, R.; Wu, Z.; Chen, B.; Yang, C.; Qi, D.; Lan, G.; Fraedrich, K. Effects of land-use change on eco-environmental quality in Hainan Island, China. Ecol. Indic. 2020, 109, 105777. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, J.; Sun, Z.; Yu, J.; Liu, W.; Yu, R.; Wang, P. Attribution analysis of land degradation in Hainan Island based on geographical detector. Ecol. Indic. 2022, 141, 109119. [Google Scholar] [CrossRef]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef]
- Hainan Provincial Bureau of Statistics. Hainan Statistical Yearbook. Available online: https://www.hainan.gov.cn/hainan/tjnj/list3.shtml (accessed on 16 October 2022). (In Chinese)
- Turco, M.; Jose Rosa-Canovas, J.; Bedia, J.; Jerez, S.; Pedro Montavez, J.; Carmen Llasat, M.; Provenzale, A. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat. Commun. 2018, 9, 3821. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. (In Chinese) [Google Scholar]
- Zheng, H.; Zhang, L.; Zhu, R.; Liu, C.; Sato, Y.; Fukushima, Y. Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin. Water Resour. Res. 2009, 45, W00A19. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Zhang, T.; Li, B.; Yan, L. Assessment of methane emissions from China’s agricultural system and low carbon measures. Environ. Sci. Technol. 2021, 44, 200–208. (In Chinese) [Google Scholar]
- Huang, M.; Wang, T.; Zhao, X.; Xie, X.; Wang, D. Estimation of atmospheric methane emissions and its spatial distribution in China during 2015. Acta Sci. Circumst. 2019, 39, 1371–1380. (In Chinese) [Google Scholar]
- Gong, S.; Shi, Y. Evaluation of comprehensive monthly-gridded methane emissions from natural and anthropogenic sources in China. Sci. Total Environ. 2021, 784, 147116. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Zhu, Q.; Wang, X.; Li, P.; Yang, B.; Chen, H.; Wang, M.; Zhou, X.; Peng, C. Estimates and Predictions of Methane Emissions from Wastewater in China from 2000 to 2020. Earths Future 2018, 6, 252–263. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Liu, L.; Wang, S.; Zhao, L.; Wu, X.; Zhang, W.; Huang, X. Estimates of methane emissions from Chinese rice fields using the DNDC model. Agric. For. Meteorol. 2021, 303, 15. [Google Scholar] [CrossRef]
- Shang, J.; Yang, G.; Yu, F. Agricultural greenhouse gases emissions and influencing factors in China. Chin. J. Eco-Agric. 2015, 23, 354–364. (In Chinese) [Google Scholar]
- Peng, S.; Piao, S.; Bousquet, P.; Ciais, P.; Li, B.; Lin, X.; Tao, S.; Wang, Z.; Zhang, Y.; Zhou, F. Inventory of anthropogenic methane emissions in mainland China from 1980 to 2010. Atmos. Chem. Phys. 2016, 16, 14545–14562. [Google Scholar] [CrossRef]
- National Communication. The People’s Republic of China Third National Communication on Climate Change. Available online: https://www.ccchina.org.cn/archiver/NCCCen/UpFile/Files/Default/20200723171538290568.pdf (accessed on 10 May 2023). (In Chinese).
- Chen, T.; Pan, J. Estimation and temporal and spatial pattern of anthropogenic CH4 emissions in China. China Environ. Sci. 2022, 42, 5549–5560. (In Chinese) [Google Scholar]
- Chen, H.; Zhu, Q.a.; Peng, C.; Wu, N.; Wang, Y.; Fang, X.; Jiang, H.; Xiang, W.; Chang, J.; Deng, X.; et al. Methane emissions from rice paddies natural wetlands, lakes in China: Synthesis new estimate. Glob. Chang. Biol. 2013, 19, 19–32. [Google Scholar] [CrossRef]
- Kai, F.M.; Tyler, S.C.; Randerson, J.T. Modeling methane emissions from rice agriculture in China during 1961–2007. J. Integr. Environ. Sci. 2010, 7, 49–60. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, G. Methane emissions in China 2007. Renew. Sust. Energ. Rev. 2014, 30, 886–902. [Google Scholar] [CrossRef]
- Yue, Q.; Zhang, G.; Wang, Z. Preliminary estimation of methane emission and its distribution in China. Geogr. Res. 2012, 31, 1559–1570. (In Chinese) [Google Scholar]
- National Communication. The People’s Republic of China Second National Communication on Climate Change. Available online: https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201904/P020190419524738708928.pdf (accessed on 10 May 2023). (In Chinese)
- Fu, C.; Yu, G. Estimation and Spatiotemporal Analysis of Methane Emissions from Agriculture in China. Environ. Manag. 2010, 46, 618–632. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Wang, T. Modeling of CH4 emission from rice paddies and CO emission from biomass burning and their effects on tropospheric oxidizing capacity in China. Acta. Ecol. Sin. 2007, 27, 4803–4814. (In Chinese) [Google Scholar]
- Streets, D.G.; Bond, T.; Carmichael, G.; Fernandes, S.; Fu, Q.; He, D.; Klimont, Z.; Nelson, S.; Tsai, N.; Wang, M.Q. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res. 2003, 108, 8809. [Google Scholar] [CrossRef]
- Zhang, Q.; Ju, X.; Zhang, F. Re-estimation of direct nitrous oxide emission from agricultural soils of China via revised IPCC2006 guideline method. Chin. J. Eco-Agric. 2010, 18, 7–13. (In Chinese) [Google Scholar] [CrossRef]
- Lu, Y.; Huang, Y.; Zou, J.; Zheng, X. An inventory of N2O emissions from agriculture in China using precipitation-rectified emission factor and background emission. Chemosphere 2006, 65, 1915–1924. [Google Scholar] [CrossRef]
- Yan, X.; Akimoto, H.; Ohara, T. Estimation of nitrous oxide, nitric oxide and ammonia emissions from croplands in East, Southeast and South Asia. Glob. Chang. Biol. 2003, 9, 1080–1096. [Google Scholar] [CrossRef]
- Xing, G. N2O emission from cropland in China. Nutr. Cycl. Agroecosyst. 1998, 52, 249–254. [Google Scholar] [CrossRef]
- Wang, X.; Li, C. N2O emission from agriculture soil in China. Acta Sci. Circumst. 2000, 20, 483–488. (In Chinese) [Google Scholar]
- Li, C.; Zhuang, Y.; Cao, M.; Crill, P.; Dai, Z.; Frolking, S.; Moore, B.; Salas, W.; Song, W.; Wang, X. Comparing a process-based agro-ecosystem model to the IPCC methodology for developing a national inventory of N2O emissions from arable lands in China. Nutr. Cycl. Agroecosyst. 2001, 60, 159–175. [Google Scholar] [CrossRef]
- Voigt, C.; Lamprecht, R.E.; Marushchak, M.E.; Lind, S.E.; Novakovskiy, A.; Aurela, M.; Martikainen, P.J.; Biasi, C. Warming of subarctic tundra increases emissions of all three important greenhouse gases–carbon dioxide, methane, and nitrous oxide. Glob. Chang. Biol. 2017, 23, 3121–3138. [Google Scholar] [CrossRef] [PubMed]
- Schütz, H.; Seiler, W.; Conrad, R. Processes involved in formation and emission of methane in rice paddies. Biogeochemistry 1989, 7, 33–53. [Google Scholar] [CrossRef]
- Schrope, M.; Chanton, J.; Allen, L.; Baker, J. Effect of CO2 enrichment and elevated temperature on methane emissions from rice, Oryza sativa. Glob. Chang. Biol. 1999, 5, 587–599. [Google Scholar] [CrossRef]
- Wei, L.; Zhu, Z.; Liu, S.; Xiao, M.; Wang, J.; Deng, Y.; Kuzyakov, Y.; Wu, J.; Ge, T. Temperature sensitivity (Q10) of stable, primed and easily available organic matter pools during decomposition in paddy soil. Appl. Soil. Ecol. 2021, 157, 103752. [Google Scholar] [CrossRef]
- Gao, J.; Yan, Y.; Hou, X.; Liu, X.; Zhang, Y.; Huang, S.; Wang, P. Vertical distribution and seasonal variation of soil moisture after drip-irrigation affects greenhouse gas emissions and maize production during the growth season. Sci. Total Environ. 2021, 763, 142965. [Google Scholar] [CrossRef] [PubMed]
- Borken, W.; Matzner, E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob. Chang. Biol. 2009, 15, 808–824. [Google Scholar] [CrossRef]
- Li, C.; Xiong, Y.; Huang, Q.; Xu, X.; Huang, G. Impact of irrigation and fertilization regimes on greenhouse gas emissions from soil of mulching cultivated maize (Zea mays L.) field in the upper reaches of Yellow River, China. J. Clean. Prod. 2020, 259, 120873. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, S.; Bi, J.; Sun, H.; Wang, C.; Zhang, J. Drought-resistance rice variety with water-saving management reduces greenhouse gas emissions from paddies while maintaining rice yields. Agric. Ecosyst. Environ. 2021, 320, 107592. [Google Scholar] [CrossRef]
- Jia, Z.; Cai, Z. Effects of rice plants on methane emission from paddy fields. J. Appl. Ecol. 2003, 14, 2049–2053. (In Chinese) [Google Scholar]
- Akter, M.; Deroo, H.; Kamal, A.M.; Kader, M.A.; Verhoeven, E.; Decock, C.; Boeckx, P.; Sleutel, S. Impact of irrigation management on paddy soil N supply and depth distribution of abiotic drivers. Agric. Ecosyst. Environ. 2018, 261, 12–24. [Google Scholar] [CrossRef]
- Shcherbak, I.; Millar, N.; Robertson, G.P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. USA 2014, 111, 9199–9204. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Nie, M.; Pendall, E. An incubation study of temperature sensitivity of greenhouse gas fluxes in three land-cover types near Sydney, Australia. Sci. Total Environ. 2019, 688, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Potter, C.S.; Davidson, E.A.; Verchot, L.V. Estimation of global biogeochemical controls and seasonality in soil methane consumption. Chemosphere 1996, 32, 2219–2246. [Google Scholar] [CrossRef]
- Yan, X.; Shi, S.; Du, L.; Xing, G. Pathways of N2O emission from rice paddy soil. Soil Boil. Biochem. 2000, 32, 437–440. [Google Scholar] [CrossRef]
- Wang, C.; Li, X.; Min, Q.; Wang, W.; Sardans, J.; Zeng, C.; Tong, C.; Peñuelas, J. Responses of greenhouse-gas emissions to land-use change from rice to jasmine production in subtropical China. Atmos. Environ. 2019, 201, 391–401. [Google Scholar] [CrossRef]
- Feng, L.; Palmer, P.I.; Zhu, S.; Parker, R.J.; Liu, Y. Tropical methane emissions explain large fraction of recent changes in global atmospheric methane growth rate. Nat. Commun. 2022, 13, 1378. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Y.; Tai, A.P.; Feng, J.; Li, Z.; Zhu, X.; Chen, J.; Zhang, J.; Song, Z.; Deng, A. Contribution of rice variety renewal and agronomic innovations to yield improvement and greenhouse gas mitigation in China. Environ. Res. Lett. 2019, 14, 114020. [Google Scholar] [CrossRef]
- Linquist, B.A.; Adviento-Borbe, M.A.; Pittelkow, C.M.; van Kessel, C.; van Groenigen, K.J. Fertilizer management practices and greenhouse gas emissions from rice systems: A quantitative review and analysis. Field Crops Res. 2012, 135, 10–21. [Google Scholar] [CrossRef]
Interaction | Criteria |
---|---|
Nonlinear–weaken | q (X1 ∩ X2) < Min [q (X1), q (X2)] |
Unilinear–weaken | Min [q (X1), q (X2)] < q (X1 ∩ X2) < Max [q (X1), q (X2)] |
Bivariate–enhance | Max [q (X1), q (X2)] < q (X1 ∩ X2) |
Independent | q (X1 ∩ X2) = q (X1) + q (X2) |
Nonlinear–enhance | q (X1 ∩ X2) > q (X1) + q (X2) |
Year | EDGAR | References | Emissions | Bias Correction Coefficient (β) |
---|---|---|---|---|
2018 | 13.89 | Zhang et al. [44] | 6.40 | 0.46 |
2015 | 14.16 | Huang et al. [45] | 9.77 | 0.69 |
Gong and Shi [46] | 11.45 | 0.81 | ||
2014 | 13.95 | CSBUR 1 [13] | 7.35 | 0.53 |
Du et al. [47] | 5.78 | 0.41 | ||
2012 | 13.82 | Wang et al. [48] | 8.20 | 0.59 |
2011 | 13.83 | Shang et al. [49] | 9.69 | 0.70 |
2010 | 13.74 | Shang et al. [49] | 9.58 | 0.70 |
Peng et al. [50] | 7.40 | 0.54 | ||
TNCCC 2 [51] | 8.73 | 0.64 | ||
2009 | 13.63 | Shang et al. [49] | 9.61 | 0.71 |
Chen and Pan [52] | 11.16 | 0.82 | ||
2008 | 13.42 | Chen et al. [53] | 8.10 | 0.60 |
Shang et al. [49] | 9.53 | 0.71 | ||
2007 | 13.17 | Kai et al. [54] | 7.67 | 0.58 |
Zhang et al. [55] | 5.54 | 0.42 | ||
2005 | 12.87 | Yue et al. [56] | 6.99 | 0.54 |
SNCCC 3 [57] | 7.93 | 0.62 | ||
2003 | 11.59 | Fu and Yu. [58] | 5.25 | 0.45 |
2000 | 12.65 | Xie and Wang [59] | 9.26 | 0.73 |
Streets et al. [60] | 9.78 | 0.77 | ||
1990 | 16.23 | Peng et al. [50] | 10.00 | 0.62 |
1980 | 18.88 | Peng et al. [50] | 11.20 | 0.59 |
Mean | 13.99 | 0.62 |
Year | EDGAR | References | Emissions | Bias Correction Coefficient (β) |
---|---|---|---|---|
2007 | 0.35 | Zhang and Jv [61] | 0.29 | 0.81 |
2005 | 0.37 | SNCCC 1 [57] | 0.67 | 1.82 |
1997 | 0.34 | Lu et al. [62] | 0.29 | 0.85 |
1995 | 0.36 | Yan et al. [63] | 0.48 | 1.34 |
Xing [64] | 0.40 | 1.12 | ||
1990 | 0.32 | Wang and Li [65] | 0.31 | 0.98 |
Li et al. [66] | 0.31 | 0.98 | ||
Mean | 0.35 | 0.98 |
Climate Factor | CH4 | N2O | ||||
---|---|---|---|---|---|---|
R2 | p | Sx | R2 | p | Sx | |
Tmax | 0.851 | 0.002 * | 14.20% | 0.799 | 0.006 * | 11.14% |
Tmin | −0.025 | 0.946 | −0.163 | 0.652 | ||
Tmean | 0.419 | 0.228 | 0.203 | 0.575 | ||
Prec | −0.504 | 0.137 | −0.342 | 0.333 | ||
Srad | 0.360 | 0.307 | 0.150 | 0.680 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Wei, J.; Zhou, W.; Zhang, J.; Liu, W.; Zhang, F.; Zhou, H. Assessing the Influence Factors of Agricultural Soils’ CH4/N2O Emissions Based on the Revised EDGAR Datasets over Hainan Island in China. Atmosphere 2023, 14, 1547. https://doi.org/10.3390/atmos14101547
Song J, Wei J, Zhou W, Zhang J, Liu W, Zhang F, Zhou H. Assessing the Influence Factors of Agricultural Soils’ CH4/N2O Emissions Based on the Revised EDGAR Datasets over Hainan Island in China. Atmosphere. 2023; 14(10):1547. https://doi.org/10.3390/atmos14101547
Chicago/Turabian StyleSong, Jiayu, Jun Wei, Wenming Zhou, Jie Zhang, Wenjie Liu, Feixiang Zhang, and Haiyan Zhou. 2023. "Assessing the Influence Factors of Agricultural Soils’ CH4/N2O Emissions Based on the Revised EDGAR Datasets over Hainan Island in China" Atmosphere 14, no. 10: 1547. https://doi.org/10.3390/atmos14101547
APA StyleSong, J., Wei, J., Zhou, W., Zhang, J., Liu, W., Zhang, F., & Zhou, H. (2023). Assessing the Influence Factors of Agricultural Soils’ CH4/N2O Emissions Based on the Revised EDGAR Datasets over Hainan Island in China. Atmosphere, 14(10), 1547. https://doi.org/10.3390/atmos14101547