Significant Reduction in Precipitation Seasonality and the Association with Extreme Precipitation in the Hai River Basin of China from 1960 to 2018
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Characterization of Precipitation Seasonality
2.3.2. Seasonality Index
2.3.3. Extreme Precipitation Indices
- 1.
- (mm), annual maximum 1-day precipitation, calculated by
- 2.
- (mm), annual maximum 5-day precipitation, calculated by
- 3.
- (day), the number of heavy precipitation days, calculated by an annual count of days when daily precipitation is more than 10 mm.
- 4.
- (day), the number of very heavy precipitation days, calculated by the annual count of days when daily precipitation is more than 25 mm.
- 5.
- (mm), very wet daily precipitation, calculated by annual total precipitation when :
- 6.
- (mm), extreme wet daily precipitation, calculated by annual total precipitation when :
2.3.4. Trends Analysis
3. Results
3.1. The Spatial–Temporal Pattern of Precipitation Seasonality Components
3.2. The Interannual Variability and Long-Term Trends in Precipitation Seasonality Components
3.3. The Interannual Variability and Long-Term Trends of Precipitation Extremes
3.4. The Connection between Precipitation Extremes and Precipitation Seasonality
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elahi, E.; Khalid, Z.; Zhang, Z. Understanding Farmers’ Intention and Willingness to Install Renewable Energy Technology: A Solution to Reduce the Environmental Emissions of Agriculture. Appl. Energy 2022, 309, 118459. [Google Scholar] [CrossRef]
- Abbas, A.; Waseem, M.; Ahmad, R.; Khan, K.A.; Zhao, C.; Zhu, J. Sensitivity Analysis of Greenhouse Gas Emissions at Farm Level: Case Study of Grain and Cash Crops. Environ. Sci. Pollut. Res. 2022, 29, 82559–82573. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Tauni, M.Z.; Zhang, H.; Lirong, X. Extreme Weather Events Risk to Crop-Production and the Adaptation of Innovative Management Strategies to Mitigate the Risk: A Retrospective Survey of Rural Punjab, Pakistan. Technovation 2022, 117, 102255. [Google Scholar] [CrossRef]
- Abbas, A.; Zhao, C.; Waseem, M.; Ahmed khan, K.; Ahmad, R. Analysis of Energy Input–Output of Farms and Assessment of Greenhouse Gas Emissions: A Case Study of Cotton Growers. Front. Environ. Sci. 2022, 9, 826838. [Google Scholar]
- Allen, M.R.; Ingram, W.J. Constraints on Future Changes in Climate and the Hydrologic Cycle. Nature 2002, 419, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Asadieh, B.; Krakauer, N.Y. Global Trends in Extreme Precipitation: Climate Models versus Observations. Hydrol. Earth Syst. Sci. 2015, 19, 877–891. [Google Scholar] [CrossRef]
- Fischer, E.M.; Knutti, R. Observed Heavy Precipitation Increase Confirms Theory and Early Models. Nat. Clim. Change 2016, 6, 986–991. [Google Scholar] [CrossRef]
- Karl, T.R.; Knight, R.W. Secular Trends of Precipitation Amount, Frequency, and Intensity in the United States. Bull. Am. Meteorol. Soc. 1998, 79, 231–242. [Google Scholar] [CrossRef]
- Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Wehner, M. Changes in Temperature and Precipitation Extremes in the CMIP5 Ensemble. Clim. Change 2013, 119, 345–357. [Google Scholar] [CrossRef]
- Marelle, L.; Myhre, G.; Hodnebrog, Ø.; Sillmann, J.; Samset, B.H. The Changing Seasonality of Extreme Daily Precipitation. Geophys. Res. Lett. 2018, 45, 11-352–11-360. [Google Scholar] [CrossRef]
- Min, S.-K.; Zhang, X.; Zwiers, F.W.; Hegerl, G.C. Human Contribution to More-Intense Precipitation Extremes. Nature 2011, 470, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, S.B.; Fowler, H.J.; Barbero, R.; Westra, S.; Lenderink, G.; Blenkinsop, S.; Lewis, E.; Li, X.-F. Detection of Continental-Scale Intensification of Hourly Rainfall Extremes. Nat. Clim. Change 2018, 8, 803–807. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.D.; Dasqupta, P.; et al. Climate Change 2014 Synthesis Report. Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; ISBN 978-92-9169-143-2. [Google Scholar]
- Prein, A.F.; Liu, C.; Ikeda, K.; Trier, S.B.; Rasmussen, R.M.; Holland, G.J.; Clark, M.P. Increased Rainfall Volume from Future Convective Storms in the US. Nat. Clim. Change 2017, 7, 880–884. [Google Scholar] [CrossRef]
- Tan, X.; Wu, Y.; Liu, B.; Chen, S. Inconsistent Changes in Global Precipitation Seasonality in Seven Precipitation Datasets. Clim. Dyn. 2020, 54, 3091–3108. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; et al. Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 1513–1766. [Google Scholar]
- Zhang, Y.; Wang, K. Global Precipitation System Scale Increased from 2001 to 2020. J. Hydrol. 2023, 616, 128768. [Google Scholar] [CrossRef]
- Dankers, R.; Arnell, N.W.; Clark, D.B.; Falloon, P.D.; Fekete, B.M.; Gosling, S.N.; Heinke, J.; Kim, H.; Masaki, Y.; Satoh, Y.; et al. First Look at Changes in Flood Hazard in the Inter-Sectoral Impact Model Intercomparison Project Ensemble. Proc. Natl. Acad. Sci. USA 2014, 111, 3257–3261. [Google Scholar] [CrossRef] [PubMed]
- Hammond, M.J.; Chen, A.S.; Djordjević, S.; Butler, D.; Mark, O. Urban Flood Impact Assessment: A State-of-the-Art Review. Urban Water J. 2015, 12, 14–29. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Wetherald, R.T.; Dunne, K.A.; Delworth, T.L. Increasing Risk of Great Floods in a Changing Climate. Nature 2002, 415, 514–517. [Google Scholar] [CrossRef]
- Wu, Y.; Ji, H.; Wen, J.; Wu, S.-Y.; Xu, M.; Tagle, F.; He, B.; Duan, W.; Li, J. The Characteristics of Regional Heavy Precipitation Events over Eastern Monsoon China during 1960–2013. Glob. Planet. Change 2019, 172, 414–427. [Google Scholar] [CrossRef]
- Westra, S.; Alexander, L.V.; Zwiers, F.W. Global Increasing Trends in Annual Maximum Daily Precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar] [CrossRef]
- Hu, W.; Yao, J.; He, Q.; Chen, J. Changes in Precipitation Amounts and Extremes across Xinjiang (Northwest China) and Their Connection to Climate Indices. PeerJ 2021, 9, e10792. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Wu, G.; Xu, G.; Wang, K. Reduction in Precipitation Seasonality in China from 1960 to 2018. J. Clim. 2022, 35, 227–248. [Google Scholar] [CrossRef]
- Fu, G.; Yu, J.; Yu, X.; Ouyang, R.; Zhang, Y.; Wang, P.; Liu, W.; Min, L. Temporal Variation of Extreme Rainfall Events in China, 1961–2009. J. Hydrol. 2013, 487, 48–59. [Google Scholar] [CrossRef]
- Wu, G.; Li, Z.; Fu, C.; Zhang, X.; Zhang, R.; Zhang, R.; Zhou, T.; Li, J.; Li, J.; Zhou, D.; et al. Advances in Studying Interactions between Aerosols and Monsoon in China. Sci. China Earth Sci. 2016, 59, 1–16. [Google Scholar] [CrossRef]
- Zhai, P.; Zhang, X.; Wan, H.; Pan, X. Trends in Total Precipitation and Frequency of Daily Precipitation Extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- Wood, R. Role of Mean and Variability Change in Changes in European Annual and Seasonal Extreme Precipitation Events. Earth Syst. Dyn. 2023, 14, 797–816. [Google Scholar] [CrossRef]
- Gu, X.; Ye, L.; Xin, Q.; Zhang, C.; Zeng, F.; Nerantzaki, S.D.; Papalexiou, S.M. Extreme Precipitation in China: A Review on Statistical Methods and Applications. Adv. Water Resour. 2022, 163, 104144. [Google Scholar] [CrossRef]
- Pendergrass, A.G.; Knutti, R.; Lehner, F.; Deser, C.; Sanderson, B.M. Precipitation Variability Increases in a Warmer Climate. Sci. Rep. 2017, 7, 17966. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.; Lehner, F.; Pendergrass, A.; Schlunegger, S. Changes in Precipitation Variability across Time Scales in Multiple Global Climate Model Large Ensembles. Environ. Res. Lett. 2021, 16, 084022. [Google Scholar] [CrossRef]
- van der Wiel, K.; Bintanja, R. Contribution of Climatic Changes in Mean and Variability to Monthly Temperature and Precipitation Extremes. Commun. Earth Environ. 2021, 2, 1. [Google Scholar] [CrossRef]
- Biasutti, M.; Sobel, A.H. Delayed Sahel Rainfall and Global Seasonal Cycle in a Warmer Climate. Geophys. Res. Lett. 2009, 36, L23707. [Google Scholar] [CrossRef]
- Dwyer, J.G.; Biasutti, M.; Sobel, A.H. The Effect of Greenhouse Gas–Induced Changes in SST on the Annual Cycle of Zonal Mean Tropical Precipitation. J. Clim. 2014, 27, 4544–4565. [Google Scholar] [CrossRef]
- Marvel, K.; Biasutti, M.; Bonfils, C.; Taylor, K.E.; Kushnir, Y.; Cook, B.I. Observed and Projected Changes to the Precipitation Annual Cycle. J. Clim. 2017, 30, 4983–4995. [Google Scholar] [CrossRef]
- Song, F.; Leung, L.R.; Lu, J.; Dong, L. Seasonally Dependent Responses of Subtropical Highs and Tropical Rainfall to Anthropogenic Warming. Nat. Clim. Change 2018, 8, 787–792. [Google Scholar] [CrossRef]
- Seth, A.; Rauscher, S.A.; Biasutti, M.; Giannini, A.; Camargo, S.J.; Rojas, M. CMIP5 Projected Changes in the Annual Cycle of Precipitation in Monsoon Regions. J. Clim. 2013, 26, 7328–7351. [Google Scholar] [CrossRef]
- Darwish, M.M.; Fowler, H.J.; Blenkinsop, S.; Tye, M.R. A Regional Frequency Analysis of UK Sub-Daily Extreme Precipitation and Assessment of Their Seasonality. Int. J. Climatol. 2018, 38, 4758–4776. [Google Scholar] [CrossRef]
- Deng, S.; Sheng, C.; Yang, N.; Song, L.; Huang, Q. Anthropogenic Forcing Enhances Rainfall Seasonality in Global Land Monsoon Regions. Environ. Res. Lett. 2020, 15, 104057. [Google Scholar] [CrossRef]
- Livada, I.; Asimakopoulos, D.N. Individual Seasonality Index of Rainfall Regimes in Greece. Clim. Res. 2005, 28, 155–161. [Google Scholar] [CrossRef]
- Feng, X.; Porporato, A.; Rodriguez-Iturbe, I. Changes in Rainfall Seasonality in the Tropics. Nat. Clim. Change 2013, 3, 811–815. [Google Scholar] [CrossRef]
- Pascale, S.; Lucarini, V.; Feng, X.; Porporato, A.; ul Hasson, S. Analysis of Rainfall Seasonality from Observations and Climate Models. Clim. Dyn. 2015, 44, 3281–3301. [Google Scholar] [CrossRef]
- Xia, J.; Liu, C.; Ren, G. Opportunity and Challenge of the Climate Change Impact on the Water Resource of China. Adv. Earth Sci. 2011, 26, 1–12. [Google Scholar]
- Ren, Z.; Xiong, A. Operational system development on three-step quality control of observations from AWS (in Chinese). Meteorol. Mon. 2007, 33, 19–24. [Google Scholar]
- Cao, L.; Zhu, Y.; Tang, G.; Yuan, F.; Yan, Z. Climatic Warming in China According to a Homogenized Data Set from 2419 Stations. Int. J. Climatol. 2016, 36, 4384–4392. [Google Scholar] [CrossRef]
- Wu, G.; Li, Y.; Qin, S.; Mao, Y.; Wang, K. Precipitation Unevenness in Gauge Observations and Eight Reanalyses from 1979 to 2018 over China. J. Clim. 2021, 34, 9797–9810. [Google Scholar] [CrossRef]
- Wu, G.; Qin, S.; Huang, C.; Ma, Z.; Shi, C. Seasonal Precipitation Variability in Mainland China Based on Entropy Theory. Int. J. Climatol. 2021, 41, 5264–5276. [Google Scholar] [CrossRef]
- Basso, B.; Martinez-Feria, R.A.; Rill, L.; Ritchie, J.T. Contrasting Long-Term Temperature Trends Reveal Minor Changes in Projected Potential Evapotranspiration in the US Midwest. Nat. Commun. 2021, 12, 1476. [Google Scholar] [CrossRef] [PubMed]
- Berner, L.T.; Massey, R.; Jantz, P.; Forbes, B.C.; Macias-Fauria, M.; Myers-Smith, I.; Kumpula, T.; Gauthier, G.; Andreu-Hayles, L.; Gaglioti, B.V.; et al. Summer Warming Explains Widespread but Not Uniform Greening in the Arctic Tundra Biome. Nat. Commun. 2020, 11, 4621. [Google Scholar] [CrossRef]
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing Trends in Regional Heatwaves. Nat. Commun. 2020, 11, 3357. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Tett, S.F.B.; Yan, Z.; Zhai, P.; Feng, J.; Xia, J. Anthropogenically-Driven Increases in the Risks of Summertime Compound Hot Extremes. Nat. Commun. 2020, 11, 528. [Google Scholar] [CrossRef] [PubMed]
- Pal, I.; Anderson, B.T.; Salvucci, G.D.; Gianotti, D.J. Shifting Seasonality and Increasing Frequency of Precipitation in Wet and Dry Seasons across the U.S. Geophys. Res. Lett. 2013, 40, 4030–4035. [Google Scholar] [CrossRef]
- Mallakpour, I.; Villarini, G. Investigating the Relationship between the Frequency of Flooding over the Central United States and Large-Scale Climate. Adv. Water Resour. 2016, 92, 159–171. [Google Scholar] [CrossRef]
- Deng, S.; Yang, N.; Li, M.; Cheng, L.; Chen, Z.; Chen, Y.; Chen, T.; Liu, X. Rainfall Seasonality Changes and Its Possible Teleconnections with Global Climate Events in China. Clim. Dyn. 2019, 53, 3529–3546. [Google Scholar] [CrossRef]
- Li, F.; Zhang, G.; Xu, Y.J. Spatiotemporal Variability of Climate and Streamflow in the Songhua River Basin, Northeast China. J. Hydrol. 2014, 514, 53–64. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, H.; Zhou, W.; Ma, J. Recent Changes in the Summer Precipitation Pattern in East China and the Background Circulation. Clim. Dyn. 2011, 36, 1463–1473. [Google Scholar] [CrossRef]
- Shao, Z. The New Urban Area Development: A Case Study in China; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Deng, Y.; Jiang, W.; He, B.; Chen, Z.; Jia, K. Change in Intensity and Fccrequency of Extreme Precipitation and Its Possible Teleconnection With Large-Scale Climate Index Over the China From 1960 to 2015. J. Geophys. Res. Atmos. 2018, 123, 2068–2081. [Google Scholar] [CrossRef]
- Xiao, C.; Wu, P.; Zhang, L.; Song, L. Robust Increase in Extreme Summer Rainfall Intensity during the Past Four Decades Observed in China. Sci. Rep. 2016, 6, 38506. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Zhang, Q.; Singh, V.P.; Shi, P. Non-Stationarities in the Occurrence Rate of Heavy Precipitation across China and Its Relationship to Climate Teleconnection Patterns. Int. J. Climatol. 2017, 37, 4186–4198. [Google Scholar] [CrossRef]
- Hoerling, M.; Eischeid, J.; Perlwitz, J.; Quan, X.-W.; Wolter, K.; Cheng, L. Characterizing Recent Trends in U.S. Heavy Precipitation. J. Clim. 2016, 29, 2313–2332. [Google Scholar] [CrossRef]
- Kajikawa, Y.; Yasunari, T.; Yoshida, S.; Fujinami, H. Advanced Asian Summer Monsoon Onset in Recent Decades. Geophys. Res. Lett. 2012, 39, L03803. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, T.; Liu, Y.; Zhang, S.; Meng, X. Spatial and Temporal Characteristics of Annual and Seasonal Precipitation Variation in Shijiazhuang Region, North China. Environ. Earth Sci. 2021, 80, 656. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, H.; Fan, K.; Gao, Y. The Western Pacific Subtropical High after the 1970s: Westward or Eastward Shift? Clim. Dyn. 2015, 44, 2035–2047. [Google Scholar] [CrossRef]
- Yu, R.; Zhou, T. Seasonality and Three-Dimensional Structure of Interdecadal Change in the East Asian Monsoon. J. Clim. 2007, 20, 5344–5355. [Google Scholar] [CrossRef]
- Chen, W.; Feng, J.; Wu, R. Roles of ENSO and PDO in the Link of the East Asian Winter Monsoon to the Following Summer Monsoon. J. Clim. 2013, 26, 622–635. [Google Scholar] [CrossRef]
- Qian, C.; Zhou, T. Multidecadal Variability of North China Aridity and Its Relationship to PDO during 1900–2010. J. Clim. 2014, 27, 1210–1222. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Mao, Y. Significant Reduction in Precipitation Seasonality and the Association with Extreme Precipitation in the Hai River Basin of China from 1960 to 2018. Atmosphere 2023, 14, 1552. https://doi.org/10.3390/atmos14101552
Zhang X, Mao Y. Significant Reduction in Precipitation Seasonality and the Association with Extreme Precipitation in the Hai River Basin of China from 1960 to 2018. Atmosphere. 2023; 14(10):1552. https://doi.org/10.3390/atmos14101552
Chicago/Turabian StyleZhang, Xin, and Yuna Mao. 2023. "Significant Reduction in Precipitation Seasonality and the Association with Extreme Precipitation in the Hai River Basin of China from 1960 to 2018" Atmosphere 14, no. 10: 1552. https://doi.org/10.3390/atmos14101552
APA StyleZhang, X., & Mao, Y. (2023). Significant Reduction in Precipitation Seasonality and the Association with Extreme Precipitation in the Hai River Basin of China from 1960 to 2018. Atmosphere, 14(10), 1552. https://doi.org/10.3390/atmos14101552