An Enhanced Atmospheric Pre-Corrected Differential Absorption (APDA) Algorithm by Extending LUTs Applied to Analyze ZY1-02D Hyperspectral Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Introduction to ZY1-02D Hyperspectral Satellite Data
2.2. Introduction of AERONET Data
2.3. Principle of the APDA Algorithm
2.4. Optimizing the APDA Algorithm
2.4.1. Band Selection
2.4.2. Construction of LUT
- (1)
- Sensitivity analysis
- (a)
- Sensitivity analysis of AOD at 550 nm
- (b)
- Sensitivity analysis of elevation
- (2)
- Construction of the water vapor LUT
- Water vapor (g·cm−2): 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0
- AOD (550 nm): 0.01, 0.5, 1.0, 1.5, 2.0
- Ground elevation (m): 0, 100, 200, 500, 1000
- Solar zenith angle (°): 0°, 31°, 41.4°, 48.2°, 53.1°, 56.9°, 60°
- Aerosol model: desert, maritime, rural, urban
- Atmospheric model: mid-latitude summer, mid-latitude winter, tropic, US Standard
2.5. Data Processing
3. Results and Discussion
Water Vapor Inversion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J. Precipitable Water Vapor on the Tibetan Plateau Estimated by GPS, Water Vapor Radiometer, Radiosonde, and Numerical Weather Prediction Analysis and Its Impact on the Radiation Budget. J. Geophys. Res. 2005, 110, D17106. [Google Scholar] [CrossRef]
- Ferraro, R.R.; Grody, N.C.; Weng, F.; Basist, A. An Eight-Year (1987–1994) Time Series of Rainfall, Clouds, Water Vapor, Snow Cover, and Sea Ice Derived from SSM/I Measurements. Bull. Am. Meteorol. Soc. 1996, 77, 891–905. [Google Scholar] [CrossRef]
- Webb, E.K.; Pearman, G.I.; Leuning, R. Correction of Flux Measurements for Density Effects Due to Heat and Water Vapour Transfer. Q. J. R. Meteorol. Soc. 1980, 106, 85–100. [Google Scholar] [CrossRef]
- Ningombam, S.S.; Jade, S.; Shrungeshwara, T.S.; Song, H.-J. Validation of Water Vapor Retrieval from Moderate Resolution Imaging Spectro-Radiometer (MODIS) in near Infrared Channels Using GPS Data over IAO-Hanle, in the Trans-Himalayan Region. J. Atmos. Sol.-Terr. Phys. 2016, 137, 76–85. [Google Scholar] [CrossRef]
- Serrano, L. Deriving Water Content of Chaparral Vegetation from AVIRIS Data. Remote Sens. Environ. 2000, 74, 570–581. [Google Scholar] [CrossRef]
- Vasudevan, B.G.; Gohil, B.S.; Agarwal, V.K. Backpropagation Neural-Network-Based Retrieval of Atmospheric Water Vapor and Cloud Liquid Water from IRS-P4 MSMR. IEEE Trans. Geosci. Remote Sens. 2004, 42, 985–990. [Google Scholar] [CrossRef]
- Carrère, V.; Conel, J.E. Recovery of Atmospheric Water Vapor Total Column Abundance from Imaging Spectrometer Data around 940 Nm—Sensitivity Analysis and Application to Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Data. Remote Sens. Environ. 1993, 44, 179–204. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Gao, B.-C. Remote Sensing of Water Vapor in the near IR from EOS/MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 871–884. [Google Scholar] [CrossRef]
- Gao, B.-C.; Kaufman, Y.J. Water Vapor Retrievals Using Moderate Resolution Imaging Spectroradiometer (MODIS) near-Infrared Channels. J. Geophys. Res. 2003, 108, 4389. [Google Scholar] [CrossRef]
- Bennouna, Y.S.; Torres, B.; Cachorro, V.E.; Ortiz de Galisteo, J.P.; Toledano, C. The Evaluation of the Integrated Water Vapour Annual Cycle over the Iberian Peninsula from EOS-MODIS against Different Ground-Based Techniques: Water Vapour Annual Cycle Over Iberia. Q. J. R. Meteorol. Soc. 2013, 139, 1935–1956. [Google Scholar] [CrossRef]
- Schläpfer, D.; Borel, C.C.; Keller, J.; Itten, K.I. Atmospheric Precorrected Differential Absorption Technique to Retrieve Columnar Water Vapor. Remote Sens. Environ. 1998, 65, 353–366. [Google Scholar] [CrossRef]
- Makarau, A.; Richter, R.; Schlapfer, D.; Reinartz, P. APDA Water Vapor Retrieval Validation for Sentinel-2 Imagery. IEEE Geosci. Remote Sens. Lett. 2017, 14, 227–231. [Google Scholar] [CrossRef]
- Russell, P.B.; Bergstrom, R.W.; Shinozuka, Y.; Clarke, A.D.; DeCarlo, P.F.; Jimenez, J.L.; Livingston, J.M.; Redemann, J.; Dubovik, O.; Strawa, A. Absorption Angstrom Exponent in AERONET and Related Data as an Indicator of Aerosol Composition. Atmos. Chem. Phys. 2010, 10, 1155–1169. [Google Scholar] [CrossRef]
- Kahn, R.A.; Garay, M.J.; Nelson, D.L.; Yau, K.K.; Bull, M.A.; Gaitley, B.J.; Martonchik, J.V.; Levy, R.C. Satellite-Derived Aerosol Optical Depth over Dark Water from MISR and MODIS: Comparisons with AERONET and Implications for Climatological Studies. J. Geophys. Res. 2007, 112, D18205. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Smirnov, A.; Sinyuk, A.; Schafer, J.; Giles, D.; Dubovik, O. Aeronet’s Version 2.0 Quality Assurance Criteria. In Proceedings of the Remote Sensing of the Atmosphere and Clouds, Goa, India, 13–17 November 2006; Tsay, S.-C., Nakajima, T., Singh, R.P., Sridharan, R., Eds.; SPIE: Bellingham, WA, USA, 2006; Volume 6408, p. 64080Q. [Google Scholar]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary Analysis of the Performance of the Landsat 8/OLI Land Surface Reflectance Product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, J.; Ma, Q.; Zhang, H.K.; Liu, J. Evaluation of Sentinel-2A Surface Reflectance Derived Using Sen2Cor in North America. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1997–2021. [Google Scholar] [CrossRef]
- SchlŠpfer, D.; Borel, C.C.; Keller, J.; Itten, K.I. Atmospheric Pre-Corrected Differential Absorption Techniques to Retrieve Columnar Water Vapor: Application to Aviris 91/95 Data. 9. Available online: https://digital.library.unt.edu/ark:/67531/metadc670441/ (accessed on 7 September 2023).
- Berk, A.; Conforti, P.; Kennett, R.; Perkins, T.; Hawes, F.; van den Bosch, J. MODTRAN6: A Major Upgrade of the MODTRAN Radiative Transfer Code. In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX, Baltimore, MD, USA, 13 June 2014; Velez-Reyes, M., Kruse, F.A., Eds.; SPIE: Bellingham, WA, USA, 2014; Volume 9088, p. 90880H. [Google Scholar]
- Berk, A.; Conforti, P.; Hawes, F. An Accelerated Line-by-Line Option for MODTRAN Combining on-the-Fly Generation of Line Center Absorption within 0.1 Cm-1 Bins and Pre-Computed Line Tails. In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXI, Baltimore, MD, USA, 21 May 2015; Velez-Reyes, M., Kruse, F.A., Eds.; SPIE: Bellingham, WA, USA, 2015; Volume 9472, p. 947217. [Google Scholar]
- Acito, N.; Diani, M.; Corsini, G. CWV-Net: A Deep Neural Network for Atmospheric Column Water Vapor Retrieval From Hyperspectral VNIR Data. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8163–8175. [Google Scholar] [CrossRef]
- Richter, R.; Heege, T.; Kiselev, V.; Schläpfer, D. Correction of Ozone Influence on TOA Radiance. Int. J. Remote Sens. 2014, 35, 8044–8056. [Google Scholar] [CrossRef]
- Anderson, G.P.; Felde, G.W.; Hoke, M.L.; Ratkowski, A.J.; Cooley, T.W.; Chetwynd, J.H., Jr.; Gardner, J.A.; Adler-Golden, S.M.; Matthew, M.W.; Berk, A.; et al. MODTRAN4-Based Atmospheric Correction Algorithm: FLAASH (Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes). In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII, Orlando, FL, USA, 1–5 April 2002; Shen, S.S., Lewis, P.E., Eds.; SPIE: Bellingham, WA, USA, 2002; Volume 4725, pp. 65–71. [Google Scholar]
- Perkins, T.; Adler-Golden, S.; Matthew, M.; Berk, A.; Anderson, G.; Gardner, J.; Felde, G. Retrieval of Atmospheric Properties from Hyper and Multispectral Imagery with the FLAASH Atmospheric Correction Algorithm. In Proceedings of the Remote Sensing of Clouds and the Atmosphere X, Bruges, Belgium, 19–22 September 2005; Schäfer, K., Comerón, A., Slusser, J.R., Picard, R.H., Carleer, M.R., Sifakis, N.I., Eds.; SPIE: Bellingham, WA, USA, 2005; Volume 5979, p. 59790E. [Google Scholar]
- Felde, G.W.; Anderson, G.P.; Gardner, J.A.; Adler-Golden, S.M.; Matthew, M.W.; Berk, A. Water Vapor Retrieval Using the FLAASH Atmospheric Correction Algorithm. In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X, Orlando, FL, USA, 12–16 April 2004; Shen, S.S., Lewis, P.E., Eds.; SPIE: Bellingham, WA, USA, 2004; Volume 5425, p. 357. [Google Scholar]
Parameter Name | Parameter Values |
---|---|
Wavelength range | 0.4–2.5 μm |
Number of bands | 166 (VNIR:1–76; SWIR:77–166) |
Spatial resolution/m | 30 |
Swath width/km | 60 |
Spectral resolution/nm | VNIR:10; SWIR:20 |
Quantization bits | 12 bits |
Data format | BSQ |
Scene Number | Site Name | Latitude and Longitude (°) | Elevation (m) | Date and Time | AOD_550 nm | Solar Zenith Angle (°) |
---|---|---|---|---|---|---|
1 | Beijing | 39.97/ 116.38 | 92 | 8 September 2020. 3:25 | 0.0719 | 35.80 |
2 | 17 September 2020. 3:15 | 0.0756 | 39.89 | |||
3 | 16 October 2021. 3:25 | 0.0546 | 49.73 | |||
4 | 1 March 2022. 3:25 | 0.0853 | 49.79 | |||
5 | AOE_Baotou | 40.85/ 109.62 | 1314 | 22 September 2021. 3:53 | 0.3637 | 41.78 |
6 | NAM_CO | 30.77/ 90.96 | 4746 | 13 December 2020. 4:57 | 0.0261 | 55.46 |
7 | QOMS_CAS | 28.36/ 86.94 | 4276 | 30 December 2020. 5:12 5:12 | 0.0219 | 53.90 |
8 | XiangHe | 39.75/ 116.96 | 36 | 2 December 2019. 3:13 3:13 | 0.0928 | 62.58 |
9 | 3 February 2021. 3:21 | 0.2079 | 58.10 | |||
10 | 14 November 2021. 3:24 | 0.1808 | 58.44 |
Absorption Range (nm) | Water Channel Absorption | Central Wavelength (nm) | Water Channel Reference | Central Wavelength (nm) |
---|---|---|---|---|
940 | 64 | 937.093 | 57 | 876.881 |
65 | 945.712 | |||
66 | 954.243 | 72 | 1005.836 | |
1130 | 84 | 1122.592 | 79 | 1039.191 |
85 | 1139.444 | |||
86 | 1156.412 | 88 | 1190.166 |
Parameter Name | Parameter Setting |
---|---|
Atmospheric model | Midlatitude summer |
Aerosol model | Rural |
AOD_550 nm | 0.4 |
Ground elevation (m) | 500 |
Solar zenith angle (°) | 0 |
Surface reflectance | 0.4 |
Water vapor (g·cm−2) | 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 |
Absorption Range/nm | Water Channel Absorption | Central Wavelength (nm) | StdDev |
---|---|---|---|
940 | 64 | 937.093 | 0.1938 |
65 | 945.712 | 0.2083 | |
66 | 954.243 | 0.2190 | |
1130 | 84 | 1122.592 | 0.1549 |
85 | 1139.444 | 0.1598 | |
86 | 1156.412 | 0.2162 |
Parameter Name | Parameter Setting |
---|---|
Atmospheric model | Midlatitude summer |
Aerosol model | Rural |
AOD_550 nm | 0.01, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 |
Ground elevation (m) | 500 |
Solar zenith angle (°) | 0 |
Surface reflectance | 0.4 |
Water vapor (g·cm−2) | 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 |
Parameter Name | Parameter Setting |
---|---|
Atmospheric model | Midlatitude summer |
Aerosol model | Rural |
AOD_550 nm | 0.4 |
Ground elevation (m) | 0, 100, 200, 500, 1000, 2000, 3000, 4000, 5000 |
Solar zenith angle (°) | 0 |
Surface reflectance | 0.4 |
Water vapor (g·cm−2) | 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 |
Scene Number | WVP (AERONET) | APDA | (APDA-Enhanced) | FLAASH | |||
---|---|---|---|---|---|---|---|
WVP | Error AE/RE | WVP | Error AE/RE | WVP | Error AE/RE | ||
1 | 2.2095 | 1.8710 | 0.33/15.32% | 2.4236 | 0.21/9.69% | 1.8132 | 0.39/17.93% |
2 | 1.2287 | 0.9150 | 0.31/25.53% | 1.2167 | 0.01/0.97% | 0.9236 | 0.30/24.83% |
3 | 0.3028 | 0.2240 | 0.07/26.02% | 0.3013 | 0.001/0.51% | 0.2037 | 0.09/32.72% |
4 | 0.3659 | 0.2330 | 0.13/36.32% | 0.4546 | 0.08/24.23% | 0.2963 | 0.06/19.02% |
5 | 1.2140 | 0.8126 | 0.40/33.06% | 1.1792 | 0.03/2.87% | 0.9599 | 0.25/20.93% |
6 | 0.0663 | 0.0023 | 0.06/96.53% | 0.0624 | 0.003/5.86% | 0.0704 | 0.0041/6.18% |
7 | 0.0252 | 0.0010 | 0.02/96.03% | 0.0253 | 0.00014/0.55% | 0.0648 | 0.03/157.14% |
8 | 0.3299 | 0.2510 | 0.07/23.91% | 0.4745 | 0.14/43.83% | 0.3339 | 0.004/1.21% |
9 | 0.3066 | 0.2520 | 0.05/17.80% | 0.2758 | 0.03/10.03% | 0.2897 | 0.01/5.51% |
10 | 0.5901 | 0.3700 | 0.22/37.29% | 0.6275 | 0.03/6.33% | 0.4380 | 0.15/25.77% |
Average | 0.6639 | 0.4932 | 0.17/40.78% | 0.7041 | 0.056/10.49% | 0.539 | 0.13/31.12% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhang, H.; Zhu, X.; Zhang, S.; Ma, Z.; Hao, X. An Enhanced Atmospheric Pre-Corrected Differential Absorption (APDA) Algorithm by Extending LUTs Applied to Analyze ZY1-02D Hyperspectral Images. Atmosphere 2023, 14, 1560. https://doi.org/10.3390/atmos14101560
Zhang H, Zhang H, Zhu X, Zhang S, Ma Z, Hao X. An Enhanced Atmospheric Pre-Corrected Differential Absorption (APDA) Algorithm by Extending LUTs Applied to Analyze ZY1-02D Hyperspectral Images. Atmosphere. 2023; 14(10):1560. https://doi.org/10.3390/atmos14101560
Chicago/Turabian StyleZhang, Hongwei, Hao Zhang, Xiaobo Zhu, Shuning Zhang, Zhonghui Ma, and Xuetao Hao. 2023. "An Enhanced Atmospheric Pre-Corrected Differential Absorption (APDA) Algorithm by Extending LUTs Applied to Analyze ZY1-02D Hyperspectral Images" Atmosphere 14, no. 10: 1560. https://doi.org/10.3390/atmos14101560
APA StyleZhang, H., Zhang, H., Zhu, X., Zhang, S., Ma, Z., & Hao, X. (2023). An Enhanced Atmospheric Pre-Corrected Differential Absorption (APDA) Algorithm by Extending LUTs Applied to Analyze ZY1-02D Hyperspectral Images. Atmosphere, 14(10), 1560. https://doi.org/10.3390/atmos14101560