Semiarid Lakes of Southwestern Siberia as Sentinels of On-Going Climate Change: Hydrochemistry, the Carbon Cycle, and Modern Carbonate Mineral Formation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological and Geographical Setting
2.2. Field Work and Sampling
2.3. Hydrochemical Analysis
2.4. Mineralogical and Textural Analysis
2.5. Statistical Treatment and Data Visualization
3. Results
3.1. Water Chemistry
3.2. Water Chemistry as a Factor of Mineral Formation
3.3. Lithology and the Bulk Mineralogical Composition of Sediments
3.4. Abundence and Diversity of Carbonate Minerals in Bottom Sediments of the Studied Lakes
4. Discussion
4.1. Hydrochemical Features and Variabillity of Forest-Steppe Lakes in the Southwest of Western Siberia
4.2. Diversity and Factors of Carbonate Formation in Bottom Sediments of Lakes in the Southwest of Western Siberia
5. Conclusions
- Lake waters exhibited significant differences in hydrochemistry, with sizable heterogeneity among groups of lakes and among water bodies within each group. Most lakes have weakly alkaline to strongly alkaline waters and are of the saline or brine type. A weak correlation was found between the morphology of lakes and the composition of waters. According to the composition of major solutes, most lakes are of the sodium-potassium chloride-sulfate salt type. The lakes of the eastern V group, confined to the Ishim Plain, are distinguished by the highest content of organic matter in bottom sediments and sizable amount of aquatic plants (macrophytes) in the coastal zones. The water bodies of the III group are characterized by the highest content of DOC and the lowest Ca concentrations in the water column. The lakes of the third group are distinguished from the other groups by the highest values of the Mg/Ca ratio. Overall, high DOC concentrations are characteristic for all studied groups of lakes.
- The mineral composition of lake sediments, as determined by XRD and SEM-EDS analyses, demonstrated that the bulk of sediments is represented by a terrigenous component, consisting mainly of quartz and feldspars. Among authigenic minerals, minerals of the carbonate class are most common, and to a lesser extent, halides, sulfates, sulfides, oxides, and hydroxides. Heterogeneity of the mineral composition, primarily in terms of authigenic minerals, was observed both between groups, and within certain water bodies. Alkaline-earth carbonates are the most common class of authigenic minerals and include calcite, Mg-calcite, aragonite, Ca-dolomite and hydromagnesite, as well as siderite and rhodochrosite in some cases.
- Water bodies of the group III with highest Mg/Ca molar ratios are characterized by the greatest variety of magnesium minerals, primarily magnesium carbonates, and also have abundant signs of biomineralization, whereas bottom sediments of the group V are distinguished by the presence of iron oxides, which, apparently, can be explained by the lithology and the nature of land use of adjacent agricultural areas within the lake watershed. Overall, the observed differences in the composition of the authigenic part of the mineral component of sediments may stem from a combination of factors, including, but not limited to, the degree of their eutrophication, the intensity of the erosion and agricultural activity within the watershed.
- The main limitation of the present study is its low seasonal resolution (lack of spring, autumn and winter measurements) when extensive exchange of CO2 with atmosphere could occur, as known from works on other regions in Siberia [79]. The obtained results, however, encompass the most active open water period and, as such, can be considered as representative for assessing atmospheric C sequestration potential in bottom sediments. Missing in these evaluations is organic C burial [80], which should be a focus of further research.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Lake | Group | Coordinates | Area, km2 | Watershed, km2 | Average Depth, m | |
---|---|---|---|---|---|---|
Sobachye | I | 54°22′4.97″ | 61°40′42.01″ | 0.45 | 1.57 | 1.8 |
Kichkibiz | I | 54°20′6.12″ | 61°40′25.07″ | 5.96 | 12.4 | 2.5 |
Goluboye | I | 54°20′1.73″ | 61°45′0.36″ | 1.4 | 2.9 | 2 |
Gorkoye’ | I | 54°19′22.49″ | 61°43′4.73″ | 3.63 | 5.9 | 1.5 |
Kazachka | II | 54°16′59.34″ | 62°31′7.55″ | 0.46 | 1.37 | 1.8 |
Kazachyi Sumki | II | 54°18′8.61″ | 62°31′8.11″ | 0.65 | 1.12 | 1.6 |
Spornoye | II | 54°19′56.78″ | 62°28′53.81″ | 0.41 | 0.75 | 1.3 |
Gorkoye’’ | II | 54°18′29.04″ | 62°27′57.05″ | 1 | 1.66 | 1.3 |
Maloye Shchuchye | II | 54°19′27.95″ | 62°27′27.52″ | 0.4 | 0.92 | 1.6 |
Solenoye’ | II | 54°18′34.18″ | 62°25′45.19″ | 0.27 | 0.6 | 1.4 |
Shchuchye | II | 54°19′48.53″ | 62°26′5.51″ | 0.5 | 0.87 | 1.5 |
Krugloye | III | 54°37′40.93″ | 64°1′42.36″ | 1.27 | 2.62 | 1.5 |
Lomovo | III | 54°37′40.93″ | 64°1′42.36″ | 0.67 | 1.67 | 1.4 |
Vtoroye Zasechnoye | III | 54°37′42.85″ | 64°0′49.08″ | 1.68 | 3.62 | 2 |
Pervoye Zasechnoye | III | 54°37′40.93″ | 64°1′42.36″ | 1.39 | 3.14 | 1.1 |
Solenoye’’ | III | 54°37′40.93″ | 64°1′42.36″ | 1.11 | 2.44 | 2.3 |
Dolgoye | III | 54°38′27.99″ | 64°1′33.74″ | 1.7 | 4.51 | 1.8 |
Labzovitoye | III | 54°39′29.48″ | 63°55′28.94″ | 0.22 | 0.4 | 1.7 |
Belomoynoye | III | 54°39′34.36″ | 63°53′21.08″ | 1.25 | 1.97 | 1.5 |
Medvezh’ye | IV | 55°11′30.70″ | 67°57′5.77″ | 67.3 | 161 | 0.6 |
Krotovo | IV | 55°11′37.68″ | 66°54′48.40″ | 0.54 | 1.51 | 1.1 |
Bol’shoye Gorkoye | IV | 55°11′58.91″ | 66°53′23.57″ | 3.12 | 5.31 | 1.2 |
Solenoye’’’ | IV | 55°8′52.62″ | 66°54′47.29″ | 7.25 | 12.9 | 1.6 |
Krutoyar | IV | 55°9′49.59″ | 66°57′25.61″ | 0.47 | 0.78 | 1.4 |
Zolotoye | IV | 55°6′43.99″ | 66°58′42.62″ | 1.08 | 2.44 | 2.3 |
Makushino | IV | 55°12′0.01″ | 67°14′7.10″ | 2.45 | 4.21 | 1.8 |
Gorkoye’’’ | IV | 55°4′40.25″ | 67°1′39.21″ | 0.86 | 1.4 | 1.7 |
Solenoye’’’’ | IV | 55°2′53.15″ | 66°59′17.40″ | 0.83 | 1.35 | 1.5 |
Pritykal | IV | 54°58′26.95″ | 66°58′39.04″ | 0.44 | 0.63 | 1.6 |
Shashmura | IV | 54°57′10.48″ | 66°58′9.67″ | 0.62 | 0.95 | 1.1 |
Terenkol’ | IV | 54°55′18.74″ | 66°56′40.71″ | 2.7 | 4.2 | 1.2 |
Kureynoye | IV | 54°54′29.73″ | 66°57′13.31″ | 3.12 | 5.73 | 1.3 |
Ilyeneey | IV | 55°2′35.91″ | 66°55′36.77″ | 3.57 | 5.47 | 1.3 |
Splavnoye | IV | 66°55′36.77″ | 66°58′57.44″ | 1.67 | 3.32 | 1.2 |
Gankino | V | 55°49′27.39″ | 67°58′25.80″ | 0.37 | 0.72 | 1.6 |
Vasilki | V | 55°48′48.33″ | 67°58′23.01″ | 0.42 | 0.68 | 1.5 |
Yakunino | V | 55°47′47.18″ | 68°0′48.97″ | 0.75 | 1.25 | 2 |
Fomintsevo | V | 55°56′26.29″ | 67°52′49.61″ | 1.37 | 2.01 | 2.1 |
Bezymyannoye | V | 55°56′47.33″ | 67°55′7.17″ | 0.33 | 1.13 | 1.9 |
Maloye Solovoye | V | 55°56′49.92″ | 67°59′45.33″ | 2.21 | 3.66 | 3 |
Mokhovoye | V | 55°55′32.18″ | 68°0′9.00″ | 0.32 | 0.55 | 2.5 |
Maloye Kharlamovo | V | 55°54′2.02″ | 67°43′12.71″ | 1.43 | 2 | 3.1 |
Gagar’ye | V | 55°56′43.00″ | 67°45′41.41″ | 0.38 | 1.1 | 1.6 |
Lake | Date of Sampling | T, °C | pH | TDS | Mg2+ | Ca2+ | Na+ | K+ | Cl− | SO42− | DOC | DIC | Mg/Ca | (Na+K)/(Ca+Mg) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
g L−1 | mg L−1 | mol | ||||||||||||
Sobachye | 08.08.2019 | 22.3 | 9.01 | 21.6 | 1323.92 | 74.22 | 6915.42 | 209.19 | 5607.41 | 3630.65 | 119.03 | 193.7 | 29.4 | 5.4 |
Kichkibiz | 08.08.2019 | 20.8 | 8.93 | 23.0 | 1483.75 | 278.22 | 7150.81 | 136.4 | 6613 | 3359 | 56 | 69 | 8.8 | 4.6 |
Goluboye | 08.08.2019 | 18.7 | 9.15 | 9.84 | 555.71 | 49.68 | 3557.47 | 90.84 | 2060 | 1452.1 | 40.28 | 224.09 | 18.4 | 6.5 |
Gorkoye’ | 09.08.2019 | 23.1 | 7.7 | 122 | 11,165.43 | 92.98 | 55,617.87 | 438.69 | 83,090.75 | 63,892.74 | 1226 | 493.58 | 198 | 5.3 |
Kazachka | 04.08.2019 | 20.8 | 7.9 | 0.33 | 12.04 | 22.48 | 20.05 | 13.89 | 28.26 | 3.78 | 18.25 | 29.1 | 0.9 | 1.2 |
Kazachyi sumki | 04.08.2019 | 20.2 | 8.9 | 7.07 | 233.39 | 91.01 | 1300.4 | 37.75 | 2266.02 | 50.11 | 25.31 | 67.75 | 4.2 | 4.8 |
Spornoye | 05.08.2019 | 20.5 | 9.5 | 0.49 | 11.71 | 18.42 | 59.98 | 27.25 | 77.43 | 8 | 24.23 | 24.97 | 1 | 3.5 |
Gorkoye’’ | 05.08.2019 | 24.8 | 8.9 | 41.5 | 2217.79 | 82.13 | 10,786.64 | 143.77 | 15,898.1 | 557.29 | 83.56 | 110 | 44.5 | 5.1 |
Maloye Shchuchye | 05.08.2019 | 21.6 | 10.4 | 0.47 | 7.34 | 7.78 | 89.32 | 11.55 | 75.97 | 1 | 23.77 | 20.48 | 1.6 | 8.4 |
Solenoye’ | 06.08.2019 | 23.9 | 7.8 | 26.7 | 1308.08 | 226.26 | 6469.91 | 75.82 | 8784.08 | 1823.24 | 68.24 | 135.09 | 9.5 | 4.8 |
Shchuchye | 06.08.2019 | 23.8 | 10.1 | 0.53 | 19.05 | 21.75 | 87 | 14.34 | 86.35 | 3.7 | 18.28 | 27.43 | 1.4 | 3.1 |
Krugloye | 28.09.2018 | 22.3 | 9.12 | 42.4 | 170.49 | 29.71 | 9126.53 | 157.9 | 13,568.32 | 308.93 | 112.08 | 343.07 | 9.5 | 51.7 |
Lomovo | 28.09.2018 | 12.1 | 9.22 | 45.1 | 642.59 | 23.28 | 11,225.81 | 139.1 | 11,630.54 | 8731.11 | 102 | 364.91 | 45.5 | 18.2 |
Vtoroye Zasechnoye | 28.09.2018 | 24.3 | 9.1 | 67.4 | 1391.16 | 22.48 | 15,466.77 | 188.31 | 22,136 | 5645 | 95 | 275 | 102 | 11.7 |
Pervoye Zasechnoye | 29.09.2018 | 23 | 8.79 | 41.6 | 826.78 | 35.94 | 8629.57 | 110.53 | 12,605.69 | 3132.77 | 68.82 | 271.67 | 37.9 | 10.8 |
Solenoye’’ | 29.09.2018 | 24.9 | 8.84 | 84 | 2076.81 | 52.27 | 19,954.63 | 272.92 | 27,896 | 8754 | 100 | 240 | 65.5 | 10.1 |
Dolgoye | 30.09.2018 | 21 | 9.63 | 29.5 | 248.72 | 7.38 | 6167.87 | 119.98 | 8809.44 | 330.4 | 88.42 | 354.62 | 55.6 | 26.0 |
Labzovitoye | 30.09.2018 | 9.6 | 7.53 | 0.75 | 17.14 | 29.54 | 98.41 | 7.53 | 597.48 | 19.77 | 23.52 | 81.08 | 1 | 3.1 |
Belomoynoye | 30.09.2018 | 12.7 | 9.51 | 8.01 | 82.74 | 15.03 | 1761.57 | 121.95 | 1390.12 | 642.22 | 57.4 | 377.16 | 9.1 | 21.1 |
Medvezh’ye | 07.08.2018 | 23.4 | 7.2 | 160 | 3851.12 | 467.92 | 17,505.08 | 50.95 | 44,010.86 | 10,014 | 97.8 | 52.26 | 13.6 | 4.5 |
Krotovo | 07.08.2018 | 13.4 | 8.69 | 0.15 | 47.64 | 43.18 | 213.45 | 15.02 | 215.07 | 79.1 | 11.86 | 54.8 | 1.8 | 3.2 |
Bol’shoye Gorkoye | 07.08.2018 | 13.6 | 8.41 | 53.1 | 2532.57 | 201.84 | 9751.27 | 88.91 | 17,768.63 | 6751.59 | 71.04 | 93.72 | 20.7 | 3.9 |
Solenoye’’’ | 07.08.2018 | 14.2 | 8.39 | 75.6 | 4018.55 | 276.04 | 14,721.92 | 73.16 | 26,705.89 | 11,233 | 73.44 | 101.28 | 2 | 3.7 |
Krutoyar | 07.08.2018 | 15.0 | 8.91 | 14.5 | 283.55 | 54.39 | 2933.92 | 37.51 | 3439.42 | 2002.95 | 47.06 | 195.23 | 8.6 | 9.9 |
Zolotoye | 18.03.2019 | 0.9 | 9.1 | 6.4 | 144.75 | 126.75 | 524.55 | 129.17 | 742.61 | 13.27 | 73.48 | 190.57 | 1.9 | 2.9 |
Makushino | 07.08.2019 | 18 | 8.24 | 2.7 | 127.78 | 46.71 | 511.15 | 46.15 | 506.49 | 124.78 | 25.42 | 125.12 | 4.5 | 3.6 |
Gorkoye’’’ | 07.08.2019 | 21.6 | 8.56 | 9.86 | 500.42 | 163.92 | 2047.64 | 35.59 | 2677.86 | 1086.42 | 26.12 | 103.09 | 5. | 3.6 |
Solenoye’’’’ | 07.08.2019 | 22 | 8.35 | 59.1 | 5268.86 | 560.52 | 16,660.18 | 87.7 | 21,319.44 | 6668.22 | 64.35 | 75.17 | 15.5 | 3.1 |
Pritykal | 07.08.2019 | 22 | 9.04 | 22.6 | 889.74 | 45.22 | 8138.55 | 92.95 | 5890.3 | 3320.28 | 69.83 | 282.22 | 32.4 | 9.4 |
Shashmura | 07.08.2019 | 22.5 | 8.76 | 105 | 7538.47 | 136.03 | 47,308.13 | 176.2 | 37,500.75 | 22,717.09 | 160.34 | 211.21 | 91.4 | 6.6 |
Terenkol’ | 08.08.2019 | 20.3 | 9.26 | 0.7 | 26.62 | 34.53 | 112.64 | 22.97 | 155.7 | 32.18 | 12.37 | 43.29 | 1.3 | 2.8 |
Kureynoye | 08.08.2019 | 20.5 | 8.94 | 13.7 | 649.15 | 92.04 | 3980.9 | 129.14 | 3911.3 | 960.93 | 50.99 | 172.97 | 11.6 | 6.1 |
Ilyeneey | 08.08.2019 | 20 | 7.9 | 49.1 | 3988.41 | 668.58 | 13,587.42 | 161.31 | 17,750.18 | 4837.43 | 70.66 | 77.74 | 9.8 | 3.3 |
Splavnoye | 09.08.2019 | 19.9 | 8.92 | 2.1 | 97 | 61.55 | 353.45 | 25.86 | 404.79 | 141.96 | 20.99 | 93.8 | 2.6 | 2.9 |
Gankino | 01.08.2019 | 16.7 | 9.6 | 0.25 | 5.87 | 10.33 | 25.91 | 13.05 | 23.34 | 4.01 | 16.19 | 19.97 | 0.9 | 2.9 |
Vasilki | 01.08.2019 | 16.8 | 7.56 | 0.44 | 11.4 | 23.76 | 51.36 | 19.34 | 53.06 | 0.32 | 18.85 | 36.82 | 0.8 | 2.6 |
Yakunino | 01.08.2019 | 17.6 | 8.22 | 0.83 | 30.01 | 34.12 | 117.16 | 17.47 | 89.55 | 12.29 | 26.94 | 75.27 | 1.5 | 2.7 |
Fomintsevo | 02.08.2019 | 19.9 | 9.63 | 0.97 | 28.65 | 16.1 | 167.54 | 15.61 | 116.04 | 22.9 | 28.48 | 73.11 | 2.9 | 4.9 |
Bezymyannoye | 03.08.2019 | 19.4 | 8.5 | 0.58 | 14.15 | 20.77 | 116.02 | 9.91 | 12.31 | 1.41 | 28.64 | 72.75 | 1.1 | 4.8 |
Maloye Solovoye | 03.08.2019 | 18.4 | 6.9 | 0.11 | 50.05 | 46.87 | 207.51 | 20.72 | 347.28 | 2.41 | 20.7 | 57.79 | 1.8 | 3.0 |
Mokhovoye | 03.08.2019 | 18.5 | 9.01 | 0.34 | 11.82 | 24.09 | 28.09 | 22.53 | 8.58 | 0.29 | 18.61 | 39.91 | 0.8 | 1.7 |
Maloye Kharlamovo | 03.08.2019 | 18.0 | 9.1 | 3.83 | 113.96 | 52.38 | 585.71 | 19.34 | 729.73 | 21.88 | 32.41 | 105.23 | 3.6 | 4.3 |
Gagar’ye | 04.08.2019 | 17.6 | 7.4 | 3.07 | 200.98 | 55.45 | 905.60 | 22.11 | 1142.97 | 224.32 | 34.38 | 116.01 | 6.0 | 4.1 |
Lake | Arg | Art | MHC | C | DD | OD | H | HM | M | V |
---|---|---|---|---|---|---|---|---|---|---|
Sobachye | 1.305 | 0.689 | 0.105 | 1.450 | 3.932 | 4.493 | 6.224 | 2.337 | 1.973 | 0.877 |
Kichkibiz | 1.380 | 0.030 | 0.180 | 1.520 | 3.500 | 4.070 | 4.800 | 0.180 | 1.520 | 0.950 |
Goluboye | 1.422 | 0.385 | 0.225 | 1.570 | 3.921 | 4.497 | 5.982 | 1.675 | 1.968 | 0.987 |
Gorkoye’ | 0.216 | −1.735 | −1.007 | 0.361 | 2.592 | 3.150 | 4.376 | −0.871 | 1.695 | −0.211 |
Kazachka | −0.243 | −6.117 | −1.438 | −0.096 | −0.704 | −0.136 | −4.577 | −13.719 | −1.064 | −0.674 |
Kazachyi sumki | 1.262 | −1.049 | 0.066 | 1.409 | 2.951 | 3.521 | 3.382 | −2.198 | 1.107 | 0.830 |
Spornoye | 0.997 | −1.656 | −0.198 | 1.144 | 1.893 | 2.462 | 0.736 | −5.184 | 0.303 | 0.565 |
Gorkoye’’ | 1.044 | 0.708 | −0.156 | 1.188 | 3.566 | 4.117 | 5.632 | 2.022 | 1.785 | 0.621 |
Maloye Shchuchye | 0.952 | 0.106 | −0.243 | 1.098 | 2.059 | 2.623 | 1.315 | −2.798 | 0.477 | 0.522 |
Solenoye’ | 0.673 | −2.756 | −0.526 | 0.817 | 2.166 | 2.721 | 2.180 | −4.521 | 0.786 | 0.248 |
Shchuchye | 1.409 | 0.457 | 0.216 | 1.553 | 2.932 | 3.487 | 3.006 | −1.213 | 0.819 | 0.984 |
Krugloye | 1.263 | −0.534 | 0.063 | 1.409 | 3.373 | 3.934 | 4.631 | −0.439 | 1.456 | 0.835 |
Lomovo | 0.958 | −0.194 | −0.238 | 1.111 | 3.261 | 3.866 | 4.996 | 0.575 | 2.015 | 0.509 |
Vtoroye Zasechnoye | 0.906 | 0.989 | −0.297 | 1.050 | 3.676 | 4.229 | 6.241 | 3.047 | 2.049 | 0.482 |
Pervoye Zasechnoye | 0.987 | −0.195 | −0.213 | 1.132 | 3.398 | 3.956 | 5.254 | 0.799 | 1.734 | 0.560 |
Solenoye’’ | 1.006 | 0.544 | −0.198 | 1.150 | 3.681 | 4.231 | 6.051 | 2.310 | 1.934 | 0.584 |
Dolgoye | 0.938 | 1.050 | −0.261 | 1.085 | 3.514 | 4.080 | 5.712 | 2.553 | 1.966 | 0.508 |
Labzovitoye | −0.384 | −7.731 | −1.566 | −0.228 | −1.173 | −0.557 | −5.598 | −16.202 | −0.983 | −0.837 |
Belomoynoye | 1.308 | −0.487 | 0.118 | 1.461 | 3.373 | 3.975 | 4.622 | −0.437 | 1.753 | 0.861 |
Medvezh’ye | −0.242 | −4.596 | −1.451 | −0.097 | 0.438 | 0.995 | −1.170 | −8.806 | −0.010 | −0.668 |
Krotovo | 0.830 | −3.207 | −3.207 | 0.983 | 1.611 | 2.210 | 0.286 | −7.014 | 0.443 | 0.385 |
Bol’shoye Gorkoye | 0.754 | −1.660 | −0.446 | 0.906 | 2.481 | 3.079 | 3.046 | −2.640 | 1.382 | 0.308 |
Solenoye’’’ | 0.836 | −1.384 | −0.367 | 0.988 | 2.714 | 3.309 | 3.574 | −1.922 | 1.510 | 0.392 |
Krutoyar | 1.189 | −1.234 | −0.005 | 1.340 | 3.049 | 3.641 | 3.867 | −1.823 | 1.463 | 0.747 |
Zolotoye | 1.796 | −1.978 | 0.642 | 1.958 | 3.304 | 3.960 | 3.595 | −3.413 | 1.672 | 1.323 |
Makushino | 0.730 | −3.157 | −0.465 | 0.879 | 1.893 | 2.472 | 1.288 | −5.866 | 0.657 | 0.293 |
Gorkoye’’’ | 1.265 | −1.334 | 0.069 | 1.412 | 3.060 | 3.624 | 3.692 | −2.176 | 1.164 | 0.836 |
Solenoye’’’’ | 1.120 | −0.625 | −0.087 | 1.266 | 3.217 | 3.779 | 4.451 | −0.575 | 1.453 | 0.691 |
Pritykal | 1.278 | 0.563 | 0.079 | 1.424 | 3.922 | 4.484 | 6.250 | 2.263 | 2.000 | 0.850 |
Shashmura | 1.115 | 1.067 | −0.101 | 1.261 | 3.993 | 4.553 | 6.785 | 3.447 | 2.217 | 0.688 |
Terenkol’ | 1.259 | −1.525 | 0.064 | 1.407 | 2.466 | 3.036 | 1.932 | −4.120 | 0.621 | 0.828 |
Kureynoye | 1.455 | −0.031 | 0.258 | 1.602 | 3.793 | 4.361 | 5.518 | 0.761 | 1.745 | 1.024 |
Ilyeneey | 0.833 | −2.238 | −0.373 | 0.980 | 2.417 | 2.988 | 2.640 | −3.710 | 1.009 | 0.400 |
Splavnoye | 1.393 | −1.342 | 0.198 | 1.541 | 3.029 | 3.600 | 3.356 | −2.647 | 1.064 | 0.960 |
Gankino | 0.739 | −2.278 | −0.455 | 0.889 | 1.267 | 1.851 | −0.597 | −6.880 | 0.069 | 0.300 |
Vasilki | −0.549 | −7.464 | −1.743 | −0.399 | −1.435 | −0.851 | −6.127 | −16.309 | −1.349 | −0.988 |
Yakunino | 0.519 | −4.400 | −0.676 | 0.668 | 0.983 | 1.564 | −1.014 | −9.200 | −0.027 | 0.081 |
Fomintsevo | 1.278 | −0.415 | 0.083 | 1.425 | 2.941 | 3.512 | 3.322 | −1.638 | 1.091 | 0.845 |
Bezymyannoye | 0.598 | −4.029 | −0.597 | 0.746 | 1.089 | 1.662 | −0.872 | −8.767 | −0.064 | 0.165 |
Maloye Solovoye | −0.875 | −8.124 | −2.070 | −0.726 | −1.728 | −1.151 | −6.368 | −16.885 | −1.373 | −1.311 |
Mokhovoye | 0.924 | −2.943 | −0.270 | 1.073 | 1.574 | 2.151 | −0.060 | −7.195 | 0.127 | 0.489 |
Maloye Kharlamovo | 1.453 | −0.862 | 0.258 | 1.602 | 3.265 | 3.844 | 3.959 | −1.623 | 1.307 | 1.016 |
Gagar’ye | −0.163 | −5.510 | −1.359 | −0.014 | 0.212 | 0.793 | −1.964 | −10.578 | −0.116 | −0.601 |
Lake | Quartz | Calcite | Mg-Calcite | Feldspar | Gypsum | Aragonite | Dolomite | Illite | Hydromagnesite | Siderite | Goethite | Halite |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sobachye | 62.2 | 2.9 | 2 | 14.3 | – | 4.8 | 0.8 | 10.9 | 1.1 | – | – | 1 |
Kichkibiz | 76 | 6.0 | 2.2 | 2.2 | 3.3 | 2 | – | 4.3 | 3.8 | – | – | 0.2 |
Goluboye | 76.9 | 7.1 | – | 12.7 | – | 3.3 | – | – | – | – | – | – |
Gorkoye’ | 74.8 | 3.1 | – | 18.4 | 2.7 | 1 | – | – | – | – | – | – |
Kazachyi sumki | 97.3 | – | – | 2.7 | – | – | – | – | – | – | – | – |
Spornoye | 92.4 | 0.5 | – | 7.1 | – | – | – | – | – | – | – | – |
Gorkoye’’ | 57.9 | 2.1 | – | 8.5 | 1 | 2.5 | – | 22.4 | 5.6 | – | – | – |
Maloye Shchuchye | 92.5 | 0.4 | – | 7.1 | – | – | – | – | – | – | – | – |
Solenoye’ | 34.7 | 12 | 6.1 | 5.6 | 1.4 | 5.6 | – | 20.4 | 5 | – | – | 9.2 |
Shchuchye | 87 | 0.5 | – | 12.5 | – | – | – | – | – | – | – | – |
Krugloye | 78.6 | 2.2 | 2.2 | 5.2 | 1.9 | – | – | 5 | 3 | – | – | 1.9 |
Vtoroye Zasechnoye | 69.6 | – | – | 1.5 | – | 5.3 | – | 5.4 | 18.2 | – | – | – |
Pervoye Zasechnoye | 81.9 | 0.1 | – | 2.8 | 2.3 | 2.7 | – | 7 | 2.8 | – | – | 0.4 |
Solenoye’’ | 78.1 | – | 1 | 2 | 2.4 | 1.7 | – | 6.4 | 4 | – | – | 4.4 |
Dolgoye | 82.5 | 0.9 | – | 6.2 | 0.8 | 0.8 | 3 | 2.8 | 2.1 | – | – | 0.9 |
Belomoynoye | 71.7 | 5.3 | – | 0.7 | 3.9 | 1.5 | 2.5 | 9.1 | 5.3 | – | – | – |
Medvezh’ye | 75.5 | 2.5 | 1 | 9.7 | 3.7 | – | 3.6 | – | – | 4 | – | – |
Krotovo | 72.9 | – | – | 25 | 0.7 | 1.4 | – | – | – | – | – | – |
Bol’shoye Gorkoye | 59.1 | 10.0 | 1.8 | 17.1 | 4.6 | 7.4 | – | – | – | – | – | – |
Makushino | 65.3 | 9.7 | 1.3 | 22.1 | – | 1.3 | – | – | – | – | – | 0.3 |
Solenoye’’’’ | 69.8 | 6.6 | 0.2 | 20.8 | – | – | – | – | – | – | – | 2.6 |
Pritykal | 78.9 | 1.3 | 0.5 | 18.5 | – | – | – | – | – | – | – | 0.8 |
Shashmura | 53.8 | 24.2 | – | 16.2 | 2.2 | 1.3 | – | – | – | – | – | 2.3 |
Terenkol’ | 75.8 | 0.6 | – | 22.4 | – | 0.9 | – | – | – | – | – | 0.3 |
Kureynoye | 57.5 | 14.5 | 2.4 | 17.1 | 5 | – | 0.6 | – | 2.9 | – | – | – |
Ilyeneey | 94.3 | 1 | – | 3 | – | – | 1.7 | – | – | – | – | – |
Splavnoye | 73.1 | 5 | – | 19.3 | 2.6 | – | – | – | – | – | – | – |
Gankino | 74.9 | – | – | 25.1 | – | – | – | – | – | – | – | – |
Vasilki | 53.5 | 0.8 | 7.8 | 6.1 | – | – | – | 31.8 | – | – | – | – |
Yakunino | 29.4 | 10.5 | 12.4 | 5.8 | 5.4 | 4.5 | – | 32 | – | – | – | – |
Fomintsevo | 53.7 | – | – | 15.3 | 23.2 | – | – | – | – | – | 7.8 | – |
Bezymyannoye | 73 | – | – | 16 | – | – | – | – | – | – | 11 | – |
Maloye Solovoye | 69 | – | – | 18 | – | – | 3 | – | – | – | 10 | – |
Mokhovoye | 82 | 1.6 | – | 8 | – | – | – | – | – | – | 8.4 | – |
Maloye Kharlamovo | 26.5 | 16.5 | 25 | 6.6 | – | 4.7 | 1 | 19.7 | – | – | – | – |
Gagar’ye | 16.2 | 26.1 | 37.3 | 5.1 | 7.6 | 5.8 | – | – | – | – | 1.9 | – |
Parameter | Kruskal–Wallis Test | Median Test | |||
---|---|---|---|---|---|
H | p | χ2 | df | p | |
pH | 3.75 | 0.441 | 2.33 | 4 | 0.675 |
TDS | 17.0 | 0.002 * | 14.9 | 4 | 0.005 * |
Mg2+ | 16.9 | 0.002 * | 16.4 | 4 | 0.003 * |
Ca2+ | 19.5 | 0.0006 * | 14.7 | 4 | 0.005 * |
Na+ | 17.1 | 0.002 * | 16.9 | 4 | 0.002 * |
K+ | 20.4 | 0.0004 * | 18.8 | 4 | 0.0008 * |
Cl− | 18.4 | 0.001 * | 14.9 | 4 | 0.005 * |
SO42− | 22.4 | 0.0002 * | 16.4 | 4 | 0.003 * |
DOC | 14.3 | 0.007 * | 16.4 | 4 | 0.003 * |
DIC | 21.1 | 0.0003 * | 9.61 | 4 | 0.05 * |
Area | Watershed | Average Depth | pH | TDS | Mg2+ | Ca2+ | Na+ | K+ | Cl− | SO42− | DOC | DIC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Area | 1 | ||||||||||||
Watershed | 0.96 * | 1 | |||||||||||
Average Depth | −0.08 | −0.05 | 1 | ||||||||||
pH | −0.06 | 0.09 | 0.11 | 1 | |||||||||
TDS | 0.49 * | −0.07 | −0.26 | −0.14 | 1 | ||||||||
Mg2+ | 0.52 * | 0.47 * | −0.25 | −0.29 | 0.93 * | 1 | |||||||
Ca2+ | 0.41 * | 0.5 * | −0.22 | −0.53 * | 0.57 * | 0.76 * | 1 | ||||||
Na+ | 0.51 * | 0.37 * | −0.26 | −0.19 | 0.97 * | 0.96 * | 0.61 * | 1 | |||||
K+ | 0.46 * | 0.5 * | −0.14 | 0.05 | 0.82 * | 0.8 * | 0.44 * | 0.84 * | 1 | ||||
Cl− | 0.52 * | 0.48 * | −0.3 | −0.22 | 0.97 * | 0.95 * | 0.62 * | 0.98 * | 0.82 * | 1 | |||
SO42− | 0.49 * | 0.5 * | −0.33 * | −0.18 | 0.93 * | 0.93 * | 0.61 * | 0.94 * | 0.77 * | 0.93 * | 1 | ||
DOC | 0.36 * | 0.48 * | −0.11 | −0.04 | 0.9 * | 0.81 * | 0.4 * | 0.89 * | 0.86 * | 0.86 * | 0.79 * | 1 | |
DIC | 0.26 | 0.4 * | −0.01 | 0.07 | 0.65 * | 0.57 * | 0.15 | 0.67 * | 0.73 * | 0.64 * | 0.62 * | 0.75 * | 1 |
References
- Kühling, I.; Broll, G.; Trautz, D. Spatio-Temporal Analysis of Agricultural Land-use Intensity Across the Western Siberian Grain Belt. Sci. Total Environ. 2016, 544, 271–280. [Google Scholar] [CrossRef]
- Tkachev, B.P. Inland Regions of the South of Western Siberia; Tomsk State University Publ.: Tomsk, Russia, 2001. (In Russian) [Google Scholar]
- Beletskaya, N.P. Genetic Classification of Lake Basins at the West Siberian Plain. Geomorfologiya 1987, 1, 50–58. (In Russian) [Google Scholar]
- Savchenko, N.V. Lakes of the Southern Plains of Western Siberia; Siberian University of Consumer Cooperation: Novosibirsk, Russia, 1997. (In Russian) [Google Scholar]
- Chupina, D.A.; Zolnikov, I.D. Geoinformation Mapping of Relief Forms and Types Based on Morphometric Analysis. Geod. I Kartogr. 2016, 6, 35–43, (In Russian, English abstract). [Google Scholar]
- Bejrom, S.; Vasil’ev, I.; Gadzhiev, I. Natural Resources of the Novosibirsk Region; Nauka: Novosibirsk, Russia, 1986. (In Russian) [Google Scholar]
- Ovdina, E.; Strakhovenko, V.; Solotchina, E. Authigenic Carbonates in the Water—Biota–Bottom Sediments’ System of Small Lakes (South of Western Siberia). Minerals 2020, 10, 552. [Google Scholar] [CrossRef]
- Gerasimova, E.A.; Balkin, A.S.; Filonchikova, E.S.; Mindolina, Y.V.; Zagumyonnyi, D.G.; Tikhonenkov, D.V. Taxonomic Structure of Planktonic Protist Communities in Saline and Hypersaline Continental Waters Revealed by Metabarcoding. Water 2023, 15, 2008. [Google Scholar] [CrossRef]
- Tranvik, L.J.; Downing, J.A.; Cotner, J.B.; Loiselle, S.A.; Striegl, R.G.; Ballatore, T.J.; Dillon, P.; Finlay, K.; Fortino, K.; Knoll, L.B.; et al. Lakes and Reservoirs as Regulators of Carbon Cycling and Climate. Limnol. Oceanogr. 2009, 54, 2298–2314. [Google Scholar] [CrossRef]
- Downing, J.A. Emerging Global Role of Small Lakes and Ponds: Little Things Mean a Lot. Limnetica 2010, 29, 9–24. [Google Scholar] [CrossRef]
- Holgerson, M.; Raymond, P. Large Contribution to Inland Water CO2 and CH4 Emissions from Very Small Ponds. Nat. Geosci. 2016, 9, 222–226. [Google Scholar] [CrossRef]
- Myrbo, A. Carbon Cycle in Lakes. In Encyclopedia of Lakes and Reservoirs. Encyclopedia of Earth Sciences Series; Bengtsson, L., Herschy, R.W., Fairbridge, R.W., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 121–125. [Google Scholar] [CrossRef]
- Bouton, A.; Vennin, E.; Amiotte-Suchet, P.; Thomazo, C.; Sizun, J.-P.; Virgone, A.; Gaucher, E.C.; Visscher, P.T. Prediction of the Calcium Carbonate Budget in a Sedimentary Basin: A “Source-to-sink” Approach Applied to Great Salt Lake, Utah, USA. Basin Res. 2020, 32, 1005–1034. [Google Scholar] [CrossRef]
- Lebedeva (Verba), M.P.; Lopukhina, O.V.; Kalinina, N.V. Specificity of the Chemical and Mineralogical Composition of Salts in Solonchak Playas and Lakes of the Kulunda Steppe. Eurasian Soil Sci. 2008, 41, 416–428. [Google Scholar] [CrossRef]
- Mees, F.; Castañeda, C.; Van Ranst, E. Sedimentary and Diagenetic Features in Saline Lake Deposits of the Monegros Region, Northern Spain. Catena 2011, 85, 245–252. [Google Scholar] [CrossRef]
- Last, F.M.; Last, W.M. Lacustrine Carbonates of the Northern Great Plains of Canada. Sediment. Geol. 2012, 277–278, 1–31. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Mischke, S.; Herzschuh, U. Environmental Constraints on Lake Sediment Mineral Compositions from the Tibetan Plateau and Implications for Paleoenvironment Reconstruction. J. Paleolimnol. 2012, 47, 71–85. [Google Scholar] [CrossRef]
- Strakhovenko, V.D.; Solotchina, E.P.; Vosel’, Y.S.; Solotchin, P.A. Geochemical Factors for Endogenic Mineral Formation in the Bottom Sediments of the Tazheran Lakes (Baikal Area). Russ. Geol. Geophys. 2015, 56, 1437–1450. [Google Scholar] [CrossRef]
- Strakhovenko, V.D.; Taran, O.P.; Ermolaeva, N.I. Geochemical Characteristics of the Sapropel Sediments of Small Lakes in the Ob’-Irtysh Interfluve. Russ. Geol. Geophys. 2014, 55, 1160–1169. [Google Scholar] [CrossRef]
- Balci, N.; Demirel, C.; Ön, S.A.; Gültekin, A.H.; Kurt, M.A. Evaluating Abiotic and Microbial Factors on Carbonate Precipitation in Lake Acigöl, a Hypersaline Lake in Southwestern Turkey. Quat. Int. 2018, 486, 116–128. [Google Scholar] [CrossRef]
- Cabestrero, Ó.; Sanz-Montero, M.E. Brine Evolution in Two Inland Evaporative Environments: Influence of Microbial Mats in Mineral Precipitation. J. Paleolimnol. 2018, 59, 139–157. [Google Scholar] [CrossRef]
- De Deckker, P. Groundwater Interactions Control Dolomite and Magnesite Precipitation in Saline Playas in the Western District Volcanic Plains of Victoria, Australia. Sediment. Geol. 2019, 380, 105–126. [Google Scholar] [CrossRef]
- Kolpakova, M.N.; Gaskova, O.L.; Naymushina, O.S.; Karpov, A.V.; Vladimirov, A.G.; Krivonogov, S.K. Saline lakes of Northern Kazakhstan: Geochemical correlations of elements and controls on their accumulation in water and bottom sediments. Appl. Geochem. 2019, 107, 8–18. [Google Scholar] [CrossRef]
- Li, J.; Zhu, L.; Li, M.; Wang, J.; Ma, Q. Origin of Modern Dolomite in Surface Lake Sediments on the Central and Western Tibetan Plateau. Quat. Int. 2020, 544, 65–75. [Google Scholar] [CrossRef]
- Saccò, M.; White, N.E.; Campbell, M.; Allard, S.; Humphreys, W.F.; Pringle, P.; Sepanta, F.; Laini, A.; Allentoft, M.E. Metabarcoding under Brine: Microbial Ecology of Five Hypersaline Lakes at Rottnest Island (WA, Australia). Water 2021, 13, 1899. [Google Scholar] [CrossRef]
- Shlyapnikov, D.S.; Demchuk, N.G.; Okunev, P.V. Mineral Components of Bottom Sediments of the Lakes of the Urals; Ural State University: Sverdlovsk, Russia, 1990. (In Russian) [Google Scholar]
- Novoselov, A.; Konstantinov, A.; Konstantinova, E.; Dudnikova, T.; Barbashev, A.; Lobzenko, I. Micromorphological and Mineralogical Features of Saline Playa Surface Sediments from Two Large Trans-Uralian lakes. Eurasian J. Soil Sci. 2022, 11, 93–101. [Google Scholar] [CrossRef]
- Novoselov, A.A.; Konstantinov, A.; Lim, A.G.; Goetschl, K.; Loiko, S.V.; Mavromatis, V.M.; Pokrovsky, O.S. Mg-rich authigenic carbonates in lakes of south western Siberia: First assessment and possible mechanisms of formation. Minerals 2019, 9, 763. [Google Scholar] [CrossRef]
- Pogoda i Klimat [Weather and Climate]. Available online: http://www.pogodaiklimat.ru/climate.php?id=28367 (accessed on 24 September 2023).
- Kozin, V.V.; Garmash, A.A. Landscape Structure of the Ishim Plain Central Part. Tyumen State Univ. Herald. Nat. Resour. Use Ecol. 2011, 4, 114–120, (In Russian, English summary). [Google Scholar]
- Konstantinova, E.Y. Trace metals in soils of the main geomorphological units in the southwestern part of Western Siberia. IOP C. Ser. Earth. Env. 2016, 43, 012002. [Google Scholar] [CrossRef]
- Puzhakov, B.A.; Saveliev, V.P.; Kuznetsov, N.S.; Shokh, V.D.; Schulkin, E.P.; Schulkina, N.E.; Zhdanov, A.V.; Dolgova, O.Y.; Tarelkina, E.A.; Orlov, M.V. Explanatory note. In State Geological Map of the Russian Federation; Scale 1: 1,000,000 (3rd Generation); Series Ural. Sheet N41—Chelyabinsk; Zotova, E.A., Ed.; Cartographic Factory VSEGEI: St. Petersburg, Russia, 2013. (In Russian) [Google Scholar]
- Pokrovsky, O.S.; Shirokova, L.S.; Kirpotin, S.N.; Audry, S.; Viers, J.; Dupré, B. Effect of Permafrost Thawing on Organic Carbon and Trace Element Colloidal Speciation in the Thermokarst Lakes of Western Siberia. Biogeosciences 2011, 8, 565–583. [Google Scholar] [CrossRef]
- Vorobyova, L.A. Theory and Practice of Chemical Analysis of Soils; GEOS: Moscow, Russia, 2006. (In Russian) [Google Scholar]
- Soil Science Division Staff. Soil Survey Manual. United States Department of Agriculture Handbook No. 18: U.S. Department of Agriculture; Natural Resources Conservation Service: Washington, DC, USA, 2017. [Google Scholar]
- Visual MINTEQ ver. 3.1. Available online: https://vminteq.lwr.kth.se (accessed on 25 August 2023).
- Lawrence, G.; Siemion, J.; Antidormi, M.; Bonville, D.; McHale, M. Have Sustained Acidic Deposition Decreases Led to Increased Calcium Availability in Recovering Watersheds of the Adirondack Region of New York, USA? Soil Syst. 2021, 5, 6. [Google Scholar] [CrossRef]
- El Ouahabi, M.; Hubert-Ferrari, A.; Fagel, N. Lacustrine Clay Mineral Assemblages as a Proxy for Land-use and Climate Changes over the Last 4 kyr: The Amik Lake Case Study, Southern Turkey. Quatern. Int. 2017, 438B, 15–29. [Google Scholar] [CrossRef]
- Fortin, D.; Leppard, G.G.; Tessier, A. Characteristics of Lacustrine Diagenetic Iron Oxyhydroxides. Geochim. Et Cosmochim. Acta 1993, 57, 4391–4404. [Google Scholar] [CrossRef]
- Crowe, S.A.; Roberts, J.A.; Weisener, C.G.; Fowle, D.A. Alteration of iron-rich lacustrine sediments by dissimilatory iron-reducing bacteria. Geobiology 2007, 5, 63–73. [Google Scholar] [CrossRef]
- Novoselov, A.; Konstantinov, A.; Leonova, L.; Soktoev, B.; Morgalev, S. Carbonate Neoformations on Modern Buildings and Engineering Structures in Tyumen City, Russia: Structural Features and Development Factors. Geosciences 2019, 9, 128. [Google Scholar] [CrossRef]
- Areias, C.; Fernandes Barbosa, C.; Soares Cruz, A.P.; McKenzie, J.A.; Ariztegui, D.; Eglinton, T.; Haghipour, N.; Vasconcelos, C.; Sánchez-Román, M. Organic Matter Diagenesis and Precipitation of Mg-Rich Carbonate and Dolomite in Modern Hypersaline Lagoons Linked to Climate Changes. Geochim. Cosmochim. Acta 2022, 337, 14–32. [Google Scholar] [CrossRef]
- Alibrahim, A.S.; Sodhi, R.N.S.; Duane, M.J.; Dittrich, M. Imaging of Ancient Microbial Biomarkers within Miocene Dolomite (Kuwait) Using Time-of-Flight Secondary Ion Mass Spectrometry. Minerals 2023, 13, 968. [Google Scholar] [CrossRef]
- Power, I.M.; Wilson, S.A.; Harrison, A.L.; Dipple, G.M.; McCutcheon, J.; Southam, G.; Kenward, P.A. A Depositional Model for Hydromagnesite–Magnesite Playas near Atlin, British Columbia, Canada. Sedimentology 2014, 61, 1701–1733. [Google Scholar] [CrossRef]
- Lin, Y.; Zheng, M.; Ye, C. Hydromagnesite Precipitation in the Alkaline Lake Dujiali, Central Qinghai-Tibetan Plateau: Constraints on Hydromagnesite Precipitation from Hydrochemistry and Stable Isotopes. Appl. Geochem. 2017, 78, 139–148. [Google Scholar] [CrossRef]
- Scheller, E.L.; Swindle, C.; Grotzinger, J.; Barnhart, H.; Bhattacharjee, S.; Ehlmann, B.L.; Farley, K.; Fischer, W.W.; Greenberger, R.; Ingalls, M.; et al. Formation of Magnesium Carbonates on Earth and Implications for Mars. J. Geophys. Res. Planet. 2021, 126, e2021JE006828. [Google Scholar] [CrossRef]
- Zeyen, N.; Benzerara, K.; Beyssac, O.; Daval, D.; Muller, E.; Thomazo, C.; Tavera, R.; López-García, P.; Moreira, D.; Duprat, E. Integrative Analysis of the Mineralogical and Chemical Composition of Modern Microbialites from Ten Mexican Lakes: What Do We Learn about Their Formation? Geochim. Cosmochim. Acta 2021, 305, 148–184. [Google Scholar] [CrossRef]
- Konstantinova, E.Y. Microelements in Soils of Forest-Steppe Sequent Series in Central Part of Tobol-Ishim Interfluve. Bull. Tomsk. Polytech. Univ. Geo Assets Eng. 2016, 327, 57–66, (In Russian, English summary). [Google Scholar]
- Zhou, S.L.; Zhang, W.C.; Wang, F. Spatial-Temporal Variations and Their Dynamics of the Saline Lakes in the Qaidam Basin Over the Past 40 Years. IOP Conf. Ser. Earth Environ. 2016, 46, 012043. [Google Scholar] [CrossRef]
- Lengyel, E.; Pálmai, T.; Padisák, J.; Stenger-Kovács, C. Annual Hydrological Cycle of Environmental Variables in Astatic Soda Pans (Hungary). J. Hydrol. 2019, 575, 1188–1199. [Google Scholar] [CrossRef]
- Yagmur, N.; Bilgilioglu, B.B.; Dervisoglu, A.; Musaoglu, N.; Tanik, A. Long and Short–Term Assessment of Surface Area Changes in Saline and Freshwater Lakes via Remote Sensing. Water Environ. J. 2020, 35, 107–122. [Google Scholar] [CrossRef]
- Aydin-Kandemir, F.; Erlat, E. Assessment of the Relationship of the Salt-Covered Area and the Groundwater Storage/Drought Indicators in the Disappearing Lake Tuz in Turkey (1985–2021). Environ. Monit. Assess. 2023, 195, 333. [Google Scholar] [CrossRef] [PubMed]
- Sui, Q.; Duan, L.; Zhang, Y.; Zhang, X.; Liu, Q.; Zhang, H. Seasonal Water Quality Changes and the Eutrophication of Lake Yilong in Southwest China. Water 2022, 14, 3385. [Google Scholar] [CrossRef]
- Ryabogina, N.E.; Afonin, A.S.; Ivanov, S.N.; Nicolaenko, S.A.; Li, H.C.; Kalinin, P.I.; Udaltsov, S.N. Holocene Paleoenvironmental Chances Reflected in Peat and Lake Sediments Records of Western Siberia: Geochemical and Plant Macrofossil Proxies. Quat. Int. 2019, 528, 73–87. [Google Scholar] [CrossRef]
- Ryabogina, N.E.; Yuzhanina, E.D.; Afonin, A.S.; Yakimov, A.S.; Novikov, I.K. Paleoenvironmental Studies of Lakeside Watershed Settlements of the Tobol-Ishim Interfluve (Zolotoe 1 Settlement, Kurgan Oblast). Vestn. Arheol. Antropol. I Etnogr. 2022, 4, 43–55, (In Russian, English summary). [Google Scholar] [CrossRef]
- Krivonogov, S.K.; Zhdanova, A.N.; Solotchin, P.A.; Kazansky, A.Y.; Chegis, V.V.; Liu, Z.; Song, M.; Zhilich, S.V.; Rudaya, N.A.; Cao, X.; et al. The Holocene Environmental Changes Revealed from the Sediments of the Yarkov Sub-basin of Lake Chany, South-Western Siberia. Geosci. Front. 2023, 14, 101518. [Google Scholar] [CrossRef]
- Manasypov, R.M.; Pokrovsky, O.S.; Kirpotin, S.N.; Shirokova, L.S. Thermokarst Lake Waters Across the Permafrost Zones of Western Siberia. Cryosphere 2014, 8, 1177–1193. [Google Scholar] [CrossRef]
- Song, K.; Wen, Z.; Xu, Y.; Yang, H.; Lyu, L.; Zhao, Y.; Fang, C.; Shang, Y.; Du, J. Dissolved Carbon in a Large Variety of Lakes Across Five Limnetic Regions in China. J. Hydrol. 2018, 563, 143–154. [Google Scholar] [CrossRef]
- Song, K.; Wen, Z.; Shang, Y.; Yang, H.; Lyu, L.; Liu, G.; Fang, C.; Du, J.; Zhao, Y. Quantification of Dissolved Organic Carbon (DOC) Storage in Lakes and Reservoirs of Mainland China. J. Environ. Manage. 2018, 217, 391–402. [Google Scholar] [CrossRef]
- Curtis, P.J.; Adams, H.E. Dissolved Organic Matter Quantity and Quality from Freshwater and Saltwater Lakes in East-Central Alberta. Biogeochemistry 1995, 30, 59–76. [Google Scholar] [CrossRef]
- Curtis, P.J.; Prepas, E.E. Trends of Dissolved Organic Carbon (DOC) Concentrations from Freshwater to Saltwater. Verh. Internat. Verein. Limnol. 1993, 25, 298–301. [Google Scholar] [CrossRef]
- Al Disi, Z.A.; Bontognali, T.R.R.; Jaoua, S.; Attia, E.; Al-Kuwari, H.A.S.; Zouari, N. Influence of Temperature, Salinity and Mg2+: Ca2+ Ratio on Microbially-Mediated Formation of Mg-Rich Carbonates by Virgibacillus Strains Isolated from a Sabkha Environment. Sci. Rep. 2019, 9, 19633. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Li, Y.; Ma, Q.; He, H.; Wang, S.; Sun, Z.; Cai, W.-J.; Dong, B.; Di, Y.; Fu, W.; et al. The Role of Mg2+ in Inhibiting CaCO3 Precipitation from Seawater. Mar. Chem. 2021, 237, 104036. [Google Scholar] [CrossRef]
- Han, Z.; Qi, P.; Zhao, Y.; Guo, N.; Yan, H.; Tucker, M.E.; Li, D.; Wang, J.; Zhao, H. High Mg/Ca Molar Ratios Promote Protodolomite Precipitation Induced by the Extreme Halophilic Bacterium Vibrio harveyi QPL2. Front. Microbiol. 2022, 13, 821968. [Google Scholar] [CrossRef] [PubMed]
- Zeyen, N.; Daval, D.; Lopez-Garcia, P.; Moreira, D.; Gaillardet, J.; Benzerara, K. Geochemical Conditions Allowing the Formation of Modern Lacustrine Microbialites. Procedia Earth Planet. Sci. 2017, 17, 380–383. [Google Scholar] [CrossRef]
- Runnegar, B. The Evolution of Mineral Skeletons. In Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals; Crick, R.E., Ed.; Springer: Boston, MA, USA, 1989; pp. 75–94. [Google Scholar] [CrossRef]
- Bischoff, K.; Sirantoine, E.; Wilson, M.E.; George, A.D.; Mendes Monteiro, J.; Saunders, M. Spherulitic Microbialites from Modern Hypersaline Lakes, Rottnest Island, Western Australia. Geobiology 2020, 18, 725–741. [Google Scholar] [CrossRef]
- Braithwaite, C.J.R.; Zedef, V. Hydromagnesite Stromatolites and Sediments in an Alkaline Lake, Salda Golu, Turkey. J. Sediment. Res. 1996, 66, 991–1002. [Google Scholar] [CrossRef]
- Renaut, R.W. Morphology, Distribution, and Preservation Potential of Microbial Mats in the Hydromagnesite-Magnesite Playas of the Cariboo Plateau, British-Columbia, Canada. Hydrobiologia 1993, 267, 75–98. [Google Scholar] [CrossRef]
- Coshell, L.; Rosen, M.R.; McNamara, K.J. Hydromagnesite Replacement of Biomineralized Aragonite in a New Location of Holocene Stromatolites, Lake Walyungup, Western Australia. Sedimentology 1998, 45, 1005–1018. [Google Scholar] [CrossRef]
- Sanz-Montero, M.E.; Cabestrero, Ó.; Rodríguez-Aranda, J. Hydromagnesite Precipitation in Microbial Mats from a Highly Alkaline Lake, Central Spain. Miner. Mag 2013, 77, 2133. [Google Scholar]
- Sanz-Montero, M.E.; Cabestrero, Ó.; Sánchez-Román, M. Microbial Mg-rich Carbonates in an Extreme Alkaline Lake (Las Eras, Central Spain). Front. Microbiol. 2019, 10, 148. [Google Scholar] [CrossRef] [PubMed]
- Shirokova, L.S.; Mavromatis, V.; Bundeleva, I.A.; Pokrovsky, O.S.; Bénézeth, P.; Gérard, E.; Pearce, C.R.; Oelkers, E.H. Using Mg isotopes to trace cyanobacterially mediated magnesium carbonate precipitation in alkaline lakes. Aquat. Geochem. 2013, 19, 1–24. [Google Scholar] [CrossRef]
- Balci, N.; Gunes, Y.; Kaiser, J.; On, S.A.; Eris, K.; Garczynski, B.; Horgan, B.H. Biotic and Abiotic Imprints on Mg-Rich Stromatolites: Lessons from Lake Salda, SW Turkey. Geomicrobiol. J. 2020, 37, 401–425. [Google Scholar] [CrossRef]
- Kaya, M.; Yildirim, B.A.; Kumral, M.; Sasmaz, A. Trace and Rare Earth Element (REE) Geochemistry of Recently Formed Stromatolites at Lake Salda, SW Turkey. Water 2023, 15, 733. [Google Scholar] [CrossRef]
- Maltsev, A.E.; Leonova, G.A.; Bobrov, V.A.; Krivonogov, S.K.; Miroshnichenko, L.V.; Vossel, Y.S.; Melgunov, M.S. Geochemistry of Carbonates in Small Lakes of Southern West Siberia Exampled from the Holocene Sediments of Lake Itkul’. Rus. Geol. Geoph. 2020, 61, 303–321. [Google Scholar] [CrossRef]
- Solotchin, P.A.; Solotchina, E.P.; Maltsev, A.E.; Leonova, G.A.; Krivonogov, S.K.; Zhdanova, A.N.; Danilenko, I.V. Carbonate Sedimentation in High-Mineralized Lake Bolshoi Bagan (South of West Siberia): Dependence on Holocene Climate Changes. Russ. Geol. Geophys. 2023, 64, 1098–1107. [Google Scholar] [CrossRef]
- Chen, X.; Meng, X.; Song, Y.; Zhang, B.; Wan, Z.; Zhou, B.; Zhang, E. Spatial Patterns of Organic and Inorganic Carbon in Lake Qinghai Surficial Sediments and Carbon Burial Estimation. Front. Earth Sci. 2021, 9, 714936. [Google Scholar] [CrossRef]
- Serikova, S.; Pokrovsky, O.S.; Laudon, H.; Krickov, I.V.; Lim, A.G.; Manasypov, R.M.; Karlsson, J. High carbon emissions from thermokarst lakes of Western Siberia. Nat. Commun. 2019, 10, Art No 1552. [Google Scholar] [CrossRef]
- Manasypov, R.M.; Lim, A.G.; Aliev, V.; Shevchenko, V.P.; Shirokova, L.S.; Karlsson, J.; Pokrovsky, O.S. Carbon and nitrogen storage in thermokarst lake sediments of WSL peatlands: Impact of climate, permafrost and lake size. Biogeochemistry 2022, 159, 69–86. [Google Scholar] [CrossRef]
Parameter | Unit | Mean | Med | Min | Max | SD | CV, % | SE |
---|---|---|---|---|---|---|---|---|
pH | – | 8.7 | 8.9 | 6.9 | 10.4 | 0.8 | 8.8 | 0.1 |
TDS | g L−1 | 26.9 | 9.8 | 0.1 | 160 | 37.1 | 138 | 5.7 |
Mg2+ | mg L−1 | 1260 | 233 | 6 | 11,200 | 2260 | 179 | 344 |
Ca2+ | 103 | 46.9 | 7.4 | 669 | 147 | 142 | 22 | |
Na+ | 7100 | 2050 | 20.1 | 55,600 | 11,500 | 162 | 1760 | |
K+ | 84.9 | 51 | 7.5 | 439 | 85.9 | 101 | 13 | |
Cl− | 9510 | 2270 | 8.6 | 83,100 | 15,800 | 166 | 2400 | |
SO42− | 4010 | 330 | 0.3 | 63,900 | 10,300 | 258 | 1600 | |
DOC | 80.3 | 47.1 | 11.9 | 1230 | 182 | 227 | 28 | |
DIC | 144 | 101 | 20 | 494 | 116 | 81 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novoselov, A.; Konstantinov, A.; Konstantinova, E.; Simakova, Y.; Lim, A.; Kurasova, A.; Loiko, S.; Pokrovsky, O.S. Semiarid Lakes of Southwestern Siberia as Sentinels of On-Going Climate Change: Hydrochemistry, the Carbon Cycle, and Modern Carbonate Mineral Formation. Atmosphere 2023, 14, 1624. https://doi.org/10.3390/atmos14111624
Novoselov A, Konstantinov A, Konstantinova E, Simakova Y, Lim A, Kurasova A, Loiko S, Pokrovsky OS. Semiarid Lakes of Southwestern Siberia as Sentinels of On-Going Climate Change: Hydrochemistry, the Carbon Cycle, and Modern Carbonate Mineral Formation. Atmosphere. 2023; 14(11):1624. https://doi.org/10.3390/atmos14111624
Chicago/Turabian StyleNovoselov, Andrey, Alexandr Konstantinov, Elizaveta Konstantinova, Yulia Simakova, Artem Lim, Alina Kurasova, Sergey Loiko, and Oleg S. Pokrovsky. 2023. "Semiarid Lakes of Southwestern Siberia as Sentinels of On-Going Climate Change: Hydrochemistry, the Carbon Cycle, and Modern Carbonate Mineral Formation" Atmosphere 14, no. 11: 1624. https://doi.org/10.3390/atmos14111624
APA StyleNovoselov, A., Konstantinov, A., Konstantinova, E., Simakova, Y., Lim, A., Kurasova, A., Loiko, S., & Pokrovsky, O. S. (2023). Semiarid Lakes of Southwestern Siberia as Sentinels of On-Going Climate Change: Hydrochemistry, the Carbon Cycle, and Modern Carbonate Mineral Formation. Atmosphere, 14(11), 1624. https://doi.org/10.3390/atmos14111624