Decadal Changes in the Antarctic Sea Ice Response to the Changing ENSO in the Last Four Decades
Abstract
:1. Introduction
1.1. Teleconnection in the Antarctic as a Remote Response to ENSO
1.2. Impact of ENSO Type and Intensity Change on the Antarctic Teleconnection
1.3. Motivation and Expected Contribution of this Study to the Antarctic Climate Science
2. Data and Method
2.1. Data
2.2. Method
3. Results
3.1. Decadal Change in the Antarctic Dipole (AD) Pattern
3.2. Decadal Change in the Relationship between the RAB SST/Sea Ice and ENSO
3.3. Difference in the Type and Intensity of ENSO between the L20 and E21
3.4. Lagged Responses of the SST and Sea Ice to the Mature Phase of ENSO
4. Discussion
4.1. Lagged Responses of the Lower Atmosphere to the Mature Phase of ENSO
4.2. Lagged Responses of the Upper Troposphere and Wave Activity to the Mature Phase of ENSO
4.3. Lagged Responses of the Hadley/Ferrell Cell in the Pacific Sector to the Mature Phase of ENSO
4.4. Discussion about the Cause of Decadal Changes in ENSO Type and Intensity
4.5. Potential Model Experiments in the Upcoming Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Carleton, A.M. Antarctic sea-ice relationship with indices of the atmospheric circulation of the Southern Hemisphere. Clim. Dyn. 1989, 3, 207–220. [Google Scholar] [CrossRef]
- Gloersen, P. Modulation of hemispheric sea-ice cover by ENSO events. Nature 1995, 373, 503–506. [Google Scholar] [CrossRef]
- Simmonds, I.; Jacka, T.H. Relationship between the interannual variability of Antarctic sea ice and the Southern Oscillation. J. Clim. 1995, 8, 637–647. [Google Scholar] [CrossRef]
- Ledley, T.S.; Huang, Z. A possible ENSO signal in the Ross Sea. Geophys. Res. Lett. 1997, 24, 3253–3256. [Google Scholar] [CrossRef]
- Yuan, X.; Martinson, D.G. Antarctic sea ice extent variability and its global connectivity. J. Clim. 2000, 13, 1697–1717. [Google Scholar] [CrossRef]
- Yuan, X.; Li, C.H. Climate modes in southern high latitudes and their impacts on Antarctic sea ice. J. Geophys. Res. 2008, 113, C06S916. [Google Scholar] [CrossRef]
- Simpkins, G.R.; Ciastro, L.M.; Thompson, D.W.J.; England, M.H. Seasonal relationships between large-scale climate variability and Antarctic sea ice concentration. J. Clim. 2012, 25, 5451–5469. [Google Scholar] [CrossRef]
- Kwok, R.; Comiso, J.C.; Lee, T.; Holland, P.R. Linked trends in the south Pacific sea ice edge and southern oscillation index. Geophys. Res. Lett. 2016, 43, 10295–10302. [Google Scholar] [CrossRef]
- Mo, K.C.; Ghil, M. Statistics and dynamics of persistent anomalies. J. Atmos. Sci. 1987, 44, 877–901. [Google Scholar] [CrossRef]
- Kidson, J.W. Interannual variations in the Southern Hemisphere circulation. J. Clim. 1988, 1, 1177–1198. [Google Scholar] [CrossRef]
- Karoly, D.J. Southern Hemisphere circulation features associated with El Niño-Southern Oscillation events. J. Clim. 1989, 2, 1239–1251. [Google Scholar] [CrossRef]
- Mo, K.C.; Higgins, R.W. The Pacific-South American modes and tropical convection during the Southern Hemisphere winter. Mon. Weather Rev. 1998, 126, 1581–1596. [Google Scholar] [CrossRef]
- Carleton, A.M. Atmospheric teleconnections involving the Southern Ocean. J. Geophys. Res. Ocean. 2003, 108, 8080. [Google Scholar] [CrossRef]
- Bodart, J.A.; Bingham, R.J. The impact of the extreme 2015-2016 El Niño on the mass balance of the Antarctic ice sheet. Geophys. Res. Lett. 2019, 46, 13862–13871. [Google Scholar] [CrossRef]
- Issacs, F.E.; Renwick, J.A.; Mackintosh, A.N.; Dadic, R. ENSO modulates summer and autumn sea ice variability around Dronning Maud Land, Antarctica. J. Geophys. Res.-Atmos. 2021, 126, e2020JD033140. [Google Scholar] [CrossRef]
- Zhang, Y.; Wallace, J.M.; Battisti, D.S. ENSO-like interdecadal variability: 1900–93. J. Clim. 1997, 10, 1004–1020. [Google Scholar] [CrossRef]
- Garreaud, R.; Battisti, D.S. Interannual (ENSO) and interdecadal variability in the Southern Hemisphere tropospheric circulation. J. Clim. 1999, 12, 2113–2123. [Google Scholar] [CrossRef]
- Yuan, X. ENSO-related impacts on Antarctic sea ice: A synthesis of phenomenon and mechanisms. Antarct. Sci. 2004, 16, 415–425. [Google Scholar] [CrossRef]
- Kalnay, E.; Mo, K.C.; Paegle, J. Large-amplitude, short-scale stationary Rossby waves in the Southern Hemisphere: Observations and mechanistic experiments to determine their origin. J. Atmos. Sci. 1986, 43, 252–275. [Google Scholar] [CrossRef]
- Berbery, E.H.; Nogues-Paegle, J.; Horel, J.D. Wavelike Southern Hemisphere extratropical teleconnections. J. Atmos. Sci. 1992, 49, 155–177. [Google Scholar] [CrossRef]
- Grimm, A.M.; Silva-Dias, P.L. Analysis of tropical-extratropical interactions with influence functions of a barotropic model. J. Atmos. Sci. 1995, 52, 3538–3555. [Google Scholar] [CrossRef]
- Renwick, J.A.; Revell, M.J. Blocking over the South Pacific and Rossby wave propagation. Mon. Weather Rev. 1999, 127, 2233–2247. [Google Scholar] [CrossRef]
- Mo, K.C.; Paegle, J.N. The Pacific-South American mode and their downstream effects. Int. J. Climatol. 2001, 21, 1211–1229. [Google Scholar] [CrossRef]
- Irving, D.; Simmonds, I. A new method for identifying the Pacific-South American pattern and its influence on regional climate variability. J. Clim. 2016, 29, 6109–6125. [Google Scholar] [CrossRef]
- Lou, J.; O’Kane, T.J.; Holbrook, N.J. Linking the atmospheric Pacific-South American mode with oceaninc variability and predictability. Commun. Earth Environ. 2021, 2, 223. [Google Scholar] [CrossRef]
- Dou, J.; Zhang, R. Weakened relationship between ENSO and Antarctic sea ice in recent decades. Clim. Dyn. 2023, 60, 1313–1327. [Google Scholar] [CrossRef]
- Cai, W.; Santoso, A.; Collins, M.; Dewitte, B.; Karamperidou, C.; Kug, J.-S.; Lengaigne, M.; McPhaden, M.J.; Stuecker, M.F.; Taschetto, A.S.; et al. Changing El Niño-Southern Oscillation in a warming climate. Nat. Rev. Earth Environ. 2021, 2, 628–644. [Google Scholar] [CrossRef]
- Hu, K.; Huang, G.; Huang, P.; Kosaka, Y.; Xie, S.-P. Intensification of El Niño-induced atmospheric anomalies under greenhouse warming. Nat. Geosci. 2021, 14, 377–382. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, G.; Hu, K.; Tao, W.; Gong, H.; Yang, K.; Tang, H. Understanding the eastward shift and intensification of the ENSO teleconnection over South Pacific and Antarctica under greenhouse warming. Front. Earth Sci. 2022, 10, 916624. [Google Scholar] [CrossRef]
- Fogt, R.L.; Bromwich, D.H. Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the Southern Annular Mode. J. Clim. 2006, 19, 979–997. [Google Scholar] [CrossRef]
- Yu, J.-Y.; Paek, H.; Saltzman, E.S.; Lee, T. The early 1990s change in ENSO-PSA-SAM relationships and its impact on Southern Hemisphere change. J. Clim. 2015, 28, 9393–9408. [Google Scholar] [CrossRef]
- Yeo, S.; Kim, K.-Y. Decadal changes in the Southern Hemisphere sea surface temperature in association with El Niño-Southern Oscillation and Southern Annular Mode. Clim. Dyn. 2015, 45, 3227–3242. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T.; Li, S. Impacts of CP and EP El Niño events on the Antarctic sea ice in Austral spring. J. Clim. 2021, 34, 9327–9348. [Google Scholar] [CrossRef]
- Harangozo, S. The relationship of Pacific deep tropical convection to the winter and springtime extratropical atmospheric circulation of the South Pacific in El Niño events. Geophys. Res. Lett. 2004, 31, L05206. [Google Scholar] [CrossRef]
- Lachlan-Cope, T.; Connolley, W. Teleconnections between the tropical Pacific and the Amundsen-Bellingshausen Sea: Role of the El Niño-Southern Oscillation. J. Geophys. Res. 2006, 111, D23101. [Google Scholar] [CrossRef]
- Chen, X.; Li, S.; Zhang, C. Distinct impacts of two kinds of El Niño on precipitation over the Antarctic Peninsula and West Antarctica in austral spring. Atmos. Ocean. Sci. Lett. 2023, 16, 100387. [Google Scholar] [CrossRef]
- Hartmann, D.L.; Lo, F. Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci. 1998, 55, 1303–1315. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Wallace, J.M. Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Clim. 2000, 13, 1000–1016. [Google Scholar] [CrossRef]
- Song, H.-J.; Choi, E.; Lim, G.-H.; Kim, Y.H.; Kug, J.-S.; Yeh, S.-W. The central Pacific as the export region of the El Niño-Southern Oscillation sea surface temperature anomaly to Antarctic sea ice. J. Geophys. Res.-Atmos. 2011, 116, D21113. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Hack, J.J.; Shea, D.; Caron, J.M.; Rosinski, J. A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Clim. 2008, 21, 5145–5153. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- GMAO 2015a MERRA-2 instM_3d_asm_Np, 3d, Monthly Mean, Instantaneous, Pressure-Level, Assimilation, Assimilated Meteorological Fields, version 5.12.4; Global Modeling and Assimilation Office, Goddard Space Flight Center Distributed Active Archive Center (GSFC DAAC): Greenbelt, MD, USA, 2015. Available online: https://disc.gsfc.nasa.gov/datasets/M2IMNPASM_5.12.4/summary?keywords=MERRA2 (accessed on 10 April 2023).
- GMAO 2015b MERRA-2 tavgM_2d_slv_Nx, 2d, Monthly Mean, Time-Averaged, Single Level, Assimilation, Single-Level Diagnostics, version 5.12.4; Global Modeling and Assimilation Office, Goddard Space Flight Center Distributed Active Archive Center (GSFC DAAC): Greenbelt, MD, USA, 2015. Available online: https://disc.gsfc.nasa.gov/datasets/MATMNXSLV_5.2.0/summary (accessed on 10 April 2023).
- GMAO 2015c MERRA-2 tavgM_2d_rad_Nx, 2d, Monthly Mean, Time-Averaged, Single Level, Assimilation, Radiation Diagnostics, version 5.12.4; Global Modeling and Assimilation Office, Goddard Space Flight Center Distributed Active Archive Center (GSFC DAAC): Greenbelt, MD, USA, 2015. Available online: https://disc.gsfc.nasa.gov/datasets/M2TMNXRAD_5.12.4/summary (accessed on 10 April 2023).
- Walsh, J.E.; Chapman, W.L.; Fetterer, F.; Steward, J.S. Gridded Monthly Sea Ice Extent and Concentration, 1850 Onward, version 2; National Snow and Ice Data Center (NSIDC): Boulder, CO, USA, 2019. Available online: https://nsidc.org/data/G10010 (accessed on 10 April 2023). [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Li, S.; Cai, W.; Wu, L. Weakened Antarctic Dipole under global warming in CMIP6 models. Geophys. Res. Lett. 2021, 48, e2021GL094863. [Google Scholar] [CrossRef]
- Takaya, K.; Nakamura, H. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci. 2001, 58, 608–627. [Google Scholar] [CrossRef]
- Plumb, R.A. On the three-dimensional propagation of stationary waves. J. Atmos. Sci. 1985, 42, 217–229. [Google Scholar] [CrossRef]
- Sardeshmukh, P.D.; Hoskins, B.J. The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci. 1988, 45, 1228–1251. [Google Scholar] [CrossRef]
- Jakovlev, A.R.; Smyshlyaev, S.P.; Galin, V.Y. Interannual variability and trends in sea surface temperature, lower and middle atmosphere temperature at different latitudes for 1980–2019. Atmosphere 2021, 12, 454. [Google Scholar] [CrossRef]
- Bromwich, D.H.; Du, Y. Numerical simulation of winter katabatic winds from West Antarctica crossing Siple Coast and the Ross Ice Shelf. Mon. Weather Rev. 1994, 122, 1417–1435. [Google Scholar] [CrossRef]
- Parish, T.R.; Cassano, J.J. Diagnosis of the katabatic wind influence on the wintertime Antarctic surface wind field from numerical simulations. Mon. Weather Rev. 2003, 131, 1128–1139. [Google Scholar] [CrossRef]
- DeWeaver, E.; Nigam, S. Linearity in ENSO’s atmospheric response. J. Clim. 2002, 15, 2446–2461. [Google Scholar] [CrossRef]
- Lu, Z.; Zhao, T.; Zhou, W.; Zhao, H. Interdecadal variation of the Antarctic circumpolar wave based on the 20CRV3 dataset. Atmosphere 2022, 13, 736. [Google Scholar] [CrossRef]
- Kang, I.S.; No, H.H.; Kucharski, F. ENSO amplitude modulation associated with the mean SST changes in the tropical central Pacific induced by Atlantic Multidecadal Oscillation. J. Clim. 2014, 27, 7911–7920. [Google Scholar] [CrossRef]
- Xiang, B.Q.; Wang, B.; Li, T. A new paradigm for the predominance of standing central Pacific warming after the late 1990s. Clim. Dyn. 2013, 41, 327–340. [Google Scholar] [CrossRef]
- Chung, P.H.; Li, T. Interdecadal relationship between the mean state and El Niño types. J. Clim. 2013, 26, 361–379. [Google Scholar] [CrossRef]
- The State of the Ocean Climate. Available online: https://stateoftheocean.osmc.noaa.gov/atm/amo.php (accessed on 25 September 2023).
- Lim, Y.-K.; Schubert, S.D.; Chang, Y.; Wang, H. The boreal winter El Niño precipitation response over North America: Insights into why January is more difficult to predict than February. J. Clim. 2020, 33, 8651–8670. [Google Scholar] [CrossRef]
- Kim, J.; Kang, D.; Lee, M.-I.; Jin, E.K.; Kug, J.-S.; Lee, W.S. Remote influences of ENSO and IOD on the interannual variability of the West Antarctic sea ice. J. Geophys. Res.-Atmos. 2023, 128, e2022JD038313. [Google Scholar] [CrossRef]
RAB | Ross/Amundsen/Bellingshausen | SO | Southern Ocean |
SIF | Sea ice fraction | EP | Eastern Pacific |
PSA | Pacific South American | CP | Central Pacific |
SAM | Southern Annular Mode | L20 | Late 20th century |
AD | Antarctic Dipole | E21 | Early 21st century |
ENSO Years in the Order of the Amplitude of Niño 3.4 SST Anomaly | |
---|---|
El Niño | 2015, 1997, 1982, 1991, 2009, 1986, 1994, 2002, 1987, 2018, 2004, 2006, 2014, 2019 |
La Niña | 1988, 1999, 2007, 1998, 2010, 2020, 2021, 1984, 1995, 2011, 2005, 2008, 2017, 1983, 2000, 2016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, Y.-K.; Wu, D.L.; Kim, K.-M.; Lee, J.N. Decadal Changes in the Antarctic Sea Ice Response to the Changing ENSO in the Last Four Decades. Atmosphere 2023, 14, 1659. https://doi.org/10.3390/atmos14111659
Lim Y-K, Wu DL, Kim K-M, Lee JN. Decadal Changes in the Antarctic Sea Ice Response to the Changing ENSO in the Last Four Decades. Atmosphere. 2023; 14(11):1659. https://doi.org/10.3390/atmos14111659
Chicago/Turabian StyleLim, Young-Kwon, Dong L. Wu, Kyu-Myong Kim, and Jae N. Lee. 2023. "Decadal Changes in the Antarctic Sea Ice Response to the Changing ENSO in the Last Four Decades" Atmosphere 14, no. 11: 1659. https://doi.org/10.3390/atmos14111659
APA StyleLim, Y. -K., Wu, D. L., Kim, K. -M., & Lee, J. N. (2023). Decadal Changes in the Antarctic Sea Ice Response to the Changing ENSO in the Last Four Decades. Atmosphere, 14(11), 1659. https://doi.org/10.3390/atmos14111659