An Optimized Framework for Precipitable Water Vapor Mapping Using TS-InSAR and GNSS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area and Data
2.2. Methodology
2.2.1. Zenith Wet Delay in InSAR Interferograms
2.2.2. Conversion of ZWD into PWV
3. Results
4. Discussion
- Difference in resolution between InSAR PWV and ERA5 PWV data. Compared to the high resolution of the Sentinel-1A observations, the resolution of ERA5 data (0.25° × 0.25°) is lower. Each pixel of ERA5 data represents the average value of all pixels within the same range of InSAR PWV. This may be one of the reasons for the deviation between ERA5 PWV values and InSAR PWV values.
- ERA5 data assimilate multi-source observation data, such as meteorological stations, microwave radiometer, and satellite remote sensing. In order to achieve a consistent spatial resolution of the data, the data are interpolated onto a global grid. This processing method may introduce errors in the resulting data. This may be one of the reasons for the deviation between ERA5 PWV values and InSAR PWV values.
- The impact of the simulation result of the main image’s acquisition time. During the process of obtaining InSAR PWV, we used the Kriging interpolation to process BDS data from eight CORS and obtained BDS PWV distribution maps corresponding to the main image’s acquisition time. This process may introduce errors. However, as the number of CORS increases, this error is expected to gradually decrease.
5. Conclusions
- In this study, we used BDS observations for calibration processing. This method can solve the problem of a lack of synchronous observations when retrieving non-differential PWV using Sentinel-1A satellite observations. To validate the consistency between ZHDERA5 and ZHDSaas, we calculated their deviations and analyzed their correlation. The results indicate that the deviations between them are small. In the data processing stage, if their deviation exceeds 6 mm, this dataset is excluded. If the deviation of hydrostatic delay exceeds 6 mm, it will result in a deviation of 1 mm on PWV.
- We used ERA5 data to calculate Tm to obtain the water vapor conversion factor. Using Tm-RS as the reference, the Tm in this study was more precise than Tm-Bevis. The PWV retrieval by this method was spatially continuous, which is beneficial for the study of PWV spatial features. The InSAR PWV has a strong consistency with BDS PWV. Using BDS PWV as a reference value, the average deviation of InSAR PWV is between 0.74 mm and 2.63 mm.
- The PWV distribution map obtained using high-resolution observation data can effectively reflect the local details of PWV. This study retrieved the PWV distribution map of Jinan in 2020. The results of this study can reflect the seasonal changes in PWV in the Jinan region. This has reference value for studying the distribution of PWV in the Jinan region.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manandhar, S.; Lee, Y.H.; Meng, Y.S.; Yuan, F.; Ong, J.T. GPS-Derived PWV for Rainfall Nowcasting in Tropical Region. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4835–4844. [Google Scholar] [CrossRef]
- Liang, H.; Cao, Y.; Wan, X.; Xu, Z.; Wang, H.; Hu, H. Meteorological applications of precipitable water vapor measurements retrieved by the national GNSS network of China. Geod. Geodyn. 2015, 6, 135–142. [Google Scholar] [CrossRef]
- Nina, A.; Radović, J.; Nico, G.; Popović, L.Č.; Radovanović, M.; Biagi, P.F.; Vinković, D. The Influence of Solar X-ray Flares on SAR Meteorology: The Determination of the Wet Component of the Tropospheric Phase Delay and Precipitable Water Vapor. Remote Sens. 2021, 13, 2609–2626. [Google Scholar] [CrossRef]
- Liu, H.; Huang, S.; Xie, C.; Tian, B.; Chen, M.; Chang, Z. Monitoring Roadbed Stability in Permafrost Area of Qinghai–Tibet Railway by MT-InSAR Technology. Land 2023, 12, 474–492. [Google Scholar] [CrossRef]
- Pezzo, G.; Palano, M.; Beccaro, L.; Tolomei, C.; Albano, M.; Atzori, S.; Chiarabba, C. Coupling Flank Collapse and Magma Dynamics on Stratovolcanoes: The Mt. Etna Example from InSAR and GNSS Observations. Remote Sens. 2023, 15, 847–863. [Google Scholar] [CrossRef]
- Niu, C.; Yin, W.; Xue, W.; Sui, Y.; Xun, X.; Zhou, X.; Zhang, S.; Xue, Y. Multi-Window Identification of Landslide Hazards Based on InSAR Technology and Factors Predisposing to Disasters. Land 2023, 12, 173–187. [Google Scholar] [CrossRef]
- Awasthi, S.; Varade, D.; Bhattacharjee, S.; Singh, H.; Shahab, S.; Jain, K. Assessment of Land Deformation and the Associated Causes along a Rapidly Developing Himalayan Foothill Region Using Multi-Temporal Sentinel-1 SAR Datasets. Land 2022, 11, 2009–2029. [Google Scholar] [CrossRef]
- Liao, M.; Lin, H. Synthetlc Aperture Radar Interferometry Principle and Signal Processing, 1st ed.; Surveying and Mapping Publishing House: Beijing, China, 2003; pp. 84–103. [Google Scholar]
- Hu, J.; Li, Z.W.; Li, J.; Lei, Z.; Ding, X.L.; Zhu, J.J.; Qian, S. 3-D movement mapping of the alpine glacier in Qinghai-Tibetan Plateau by integrating D-InSAR, MAI and Offset-Tracking: Case study of the Dongkemadi Glacier. Glob. Planet. Chang. 2014, 118, 62–68. [Google Scholar] [CrossRef]
- Ge, D. Research on the Key Techniques of SAR Interferometry for Regional L Subsidence Monitoring. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2013. [Google Scholar]
- Zhu, J.; Li, Z.; Hu, J. Research Progress and Methods of InSAR for Deformation Monitoring. J. Geod. Geoinf. Sci. 2017, 46, 1717–1733. [Google Scholar]
- Li, S.; Xu, W.; Li, Z. Review of the SBAS InSAR Time-series algorithms, applications, and challenges. Geod. Geodyn. 2022, 13, 114–126. [Google Scholar] [CrossRef]
- Sun, L.; Chen, J.; Li, H.; Guo, S.; Han, Y. Statistical Assessments of InSAR Tropospheric Corrections: Applicability and Limitations of Weather Model Products and Spatiotemporal Filtering. Remote Sens. 2023, 15, 1905–1927. [Google Scholar] [CrossRef]
- Li, Z.; Han, B.; Liu, Z.; Zhang, M.; Yu, C.; Chen, B.; Liu, H.; Du, J.; Zhang, S.; Zhu, W.; et al. Source Parameters and Slip Distributions of the 2016 and 2022 Menyuan, Qinghai Earthquakes Constrained by InSAR Observations. Geomat. Inf. Sci. Wuhan Univ. 2022, 47, 887–897. [Google Scholar]
- Yu, C.; Li, Z.; Penna, N.T.; Paola, C. Generic atmospheric correction model for interferometric synthetic aperture radar observations. J. Geophys. Res. Solid Earth 2018, 123, 9202–9222. [Google Scholar] [CrossRef]
- Youhei, K.; Masato, F. Localized Delay Signals Detected by Synthetic Aperture Radar Interferometry and Their Simulation by WRF 4DVAR. SOLA 2017, 13, 79–84. [Google Scholar]
- Mateus, P.; Catalao, J.; Nico, G. Sentinel-1 Interferometric SAR Mapping of Precipitable Water Vapor Over a Country-Spanning Area. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2993–2999. [Google Scholar] [CrossRef]
- Li, Z.; Eric, J.F.; Paul, C. Integration of InSAR Time-Series Analysis and Water-Vapor Correction for Mapping Postseismic Motion After the 2003 Bam (Iran) Earthquake. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3220–3230. [Google Scholar]
- Webb, T.L.; Wadge, G.; Pascal, K. Mapping water vapour variability over a mountainous tropical island using InSAR and an atmospheric model for geodetic observations. Remote Sens. Environ. 2020, 237, 111560–111576. [Google Scholar] [CrossRef]
- Fadwa, A.; Stefan, H.; Michael, M.; Franz, J.M. Constructing accurate maps of atmospheric water vapor by combining interferometric synthetic aperture radar and GNSS observations. J. Geophys. Res. Atmos. 2015, 120, 1391–1403. [Google Scholar]
- Fattahi, H.; Amelung, F. InSAR bias and uncertainty due to the systematic and stochastic tropospheric delay. J. Geophys. Res. Solid Earth 2015, 120, 8758–8773. [Google Scholar] [CrossRef]
- Mateus, P.; Nico, G.; Tome, R.; Catalao, J.; Miranda, P.M.A. Experimental Study on the Atmospheric Delay Based on GPS, SAR Interferometry, and Numerical Weather Model Data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 6–11. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res. Atmos. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Wiederhold, P.R. Water Vapor Measurement: Methods and Instrumentation, 1st ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 1–384. [Google Scholar]
- Wang, X.; Zhang, K.; Wu, S.; Fan, S.; Cheng, Y. Water vapor-weighted mean temperature and its impact on the determination of precipitable water vapor and its linear trend. J. Geophys. Res. Atmos. 2016, 121, 833–852. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, J.; Zhang, B.; He, C. Nonlinear Relationships Between the Surface Temperature and the Weighted Mean Temperature. Geomat. Inf. Sci. Wuhan Univ. 2015, 40, 112–116. [Google Scholar]
- Yu, S.; Liu, L. Validation and Analysis of the Water-Vapor-Weighted Mean Temperature from T_m-T_s Relationship. Geomat. Inf. Sci. Wuhan Univ. 2009, 34, 741–744. [Google Scholar]
- Gong, S. The spatial and temporal variations of weighted mean atmospheric temperature and its models in China. J. Appl. Meteorol. Sci 2013, 24, 332–341. [Google Scholar]
- Yao, Y.; Sun, Z.; Xu, C. Applicability of Bevis formula at different height levels and global weighted mean temperature model based on near-earth atmospheric temperature. J. Geod. Geoinf. Sci. 2020, 3, 1–11. [Google Scholar]
- Ma, Y.; Zhao, Q.; Wu, K.; Yao, W.; Liu, Y.; Li, Z.; Shi, Y. Comprehensive Analysis and Validation of the Atmospheric Weighted Mean Temperature Models in China. Remote Sens. 2022, 14, 3435–3453. [Google Scholar] [CrossRef]
- Lavers, D.A.; Simmons, A.; Vamborg, F.; Rodwell, M.J. An evaluation of ERA5 precipitation for climate monitoring. Q. J. R. Meteorol. Soc. 2022, 148, 3152–3165. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Meyer, F.; Bamler, R.; Leinweber, R.; Fischer, J. A Comparative Analysis of Tropospheric Water Vapor Measurements from MERIS and SAR. In Proceedings of the Geoscience and Remote Sensing Symposium, 2008 IEEE International-IGARSS, Boston, MA, USA, 7–11 July 2008. [Google Scholar]
- Mateus, P.; Catalao, J.; Nico, G.; Benevides, P. Mapping precipitable water vapor time series from senti-nel-1 interferometric SAR. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1373–1379. [Google Scholar] [CrossRef]
- Miranda, P.M.; Mateus, P.; Nico, G.; Catalão, J.; Tomé, R.; Nogueira, M. InSAR meteorology: High-resolution geodetic data can increase atmospheric predictability. Geophys. Res. Lett. 2019, 46, 2949–2955. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, L.; Li, J.; Yang, Y.; Zhang, T.; Mao, Y.; Sun, B.; Ren, X. Featured services and performance of BDS-3. Sci. Bull. 2021, 66, 2135–2143. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Li, J.; Lu, L.; Tian, Z. Application research of BeiDou Satellite Navigation System in water vapor detection. In Proceedings of the China Beidou Application Conference and the 9th Annual Conference of China Satellite Navigation and Location Services, Wuhan, China, 23 September 2020. [Google Scholar]
- Yu, C.; Li, Z.; Penna, N.T. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model. Remote Sens. Environ. 2018, 204, 109–121. [Google Scholar] [CrossRef]
- Hoffmann, L.; Günther, G.; Li, D.; Stein, O.; Wu, X.; Griessbach, S.; Heng, Y.; Konopka, P.; Müller, R.; Vogel, B.; et al. From ERA-Interim to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys. 2019, 19, 3097–3124. [Google Scholar] [CrossRef]
- Murray, K.D.; Bekaert, D.P.S.; Lohman, R.B. Tropospheric corrections for InSAR: Statistical assessments and applications to the Central United States and Mexico. Remote Sens. Environ. 2019, 232, 111326–111368. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, B.; Bai, Z.; Zhao, W.; Zhu, M.; Zheng, K.; Yang, S.; Li, G. Applicability Assessment of Multi-Source DEM-Assisted Separately InSAR Deformation Monitoring Considering Two Topographical Features. Land 2023, 12, 1284–1298. [Google Scholar] [CrossRef]
- Ran, P.; Li, S.; Zhuo, G.; Wang, X.; Meng, M.; Liu, L.; Chen, Y.; Huang, H.; Ye, Y.; Lei, X. Early Identification and Influencing Factors Analysis of Active Landslides in Mountainous Areas of Southwest China Using SBAS−InSAR. Sustainability 2023, 15, 4366–4383. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis, 3rd ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001; pp. 1–275. [Google Scholar]
- Nazzareno, P.; Ida, M.; Eugenio, S.; Giovanna, V.; Stefano, B.; Rossella, F.; Andrea, G.; Manzo, M.; Andrea, V.M.G.; Federica, M.; et al. Excess path delays from Sentinel-1 interferometry to improve weather forecasts. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3213–3228. [Google Scholar]
- Mulder, G.; Van Leijen, F.J.; Barkmeijer, J.; De Haan, S.; Hanssen, R.F. Estimating single-epoch integrated atmospheric refractivity from InSAR for assimilation in numerical weather models. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Fornaro, G.; D’Agostino, N.; Giuliani, R.; Noviello, C.; Reale, D.; Verde, S. Assimilation of GPS-derived atmospheric propagation delay in DInSAR data processing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 8, 784–799. [Google Scholar] [CrossRef]
- Matsuzawa, K.; Kinoshita, Y. Error Evaluation of L-Band InSAR Precipitable Water Vapor Measurements by Comparison with GNSS Observations in Japan. Remote Sens. 2021, 13, 4866–4883. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, X.; Wu, K.; Liu, Y.; Li, Z.; Shi, Y. Comprehensive Precipitable Water Vapor Retrieval and Application Platform Based on Various Water Vapor Detection Techniques. Remote Sens. 2022, 14, 2507–2525. [Google Scholar] [CrossRef]
- Tregoning, P.; Boers, R.; O’Brien, D.; Hendy, M. Accuracy of absolute precipitable water vapor estimates from GPS observations. J. Geophys. Res. Atmos. 1998, 103, 28701–28710. [Google Scholar] [CrossRef]
- Yao, Y.; Zhu, S.; Yue, S. A globally applicable, season-specific model for estimating the weighted mean temperature of the atmosphere. J. Geod. 2012, 86, 1125–1135. [Google Scholar] [CrossRef]
- Li, M.; Li, W.; Shi, C.; Zhao, Q.; Su, X.; Qu, L.; Liu, Z. Assessment of precipitable water vapor derived from ground-based BeiDou observations with Precise Point Positioning approach. Adv. Space Res. 2015, 55, 150–162. [Google Scholar] [CrossRef]
- Tang, W.; Liao, M.; Zhang, L.; Li, W.; Yu, W. High-spatial-resolution mapping of precipitable water vapor using SAR interferograms, GPS observations and ERA-Interim reanalysis. Atmos. Meas. Tech. 2016, 9, 4487–4501. [Google Scholar] [CrossRef]
- Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- Bevis, M.; Chiswell, S.; Businger, S.; Herring, T.A.; Bock, Y. Estimating wet delays using numerical weather analyses and predictions. Radio Sci. 1996, 31, 477–487. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Data Type | Sentinel-1 SLC IW |
Track Number | 142 |
Oblique/Azimuth | 2.3 m/13.9 m |
Start/End Time | 10:13:09 Z/10:13:36 Z |
Polarization Mode | VV |
Track Direction | Ascending |
Revisit Period | 12 days |
Resolution | 5 m × 20 m |
Wavelength/Frequency Band | 5.6 cm/C |
Number | Master | Slave | Normal Baseline (day) | Temporal Baseline (m) |
---|---|---|---|---|
1 | 15 January 2020 | 17 January 2020 | 12 | 47.55 |
2 | 17 January 2020 | 29 January 2020 | 12 | 7.93 |
3 | 22 February 2020 | 17 March 2020 | 24 | 100.05 |
4 | 5 March 2020 | 29 March 2020 | 24 | 30.25 |
5 | 10 April 2020 | 22 April 2020 | 12 | 38.71 |
6 | 22 April 2020 | 4 May 2020 | 12 | 10.88 |
7 | 28 May 2020 | 9 June 2020 | 12 | 76.53 |
8 | 9 June 2020 | 21 June 2020 | 12 | 29.26 |
9 | 21 June 2020 | 3 July 2020 | 12 | 78.86 |
10 | 21 June 2020 | 15 July 2020 | 24 | 12.08 |
11 | 15 July 2020 | 27 July 2020 | 12 | 103.35 |
12 | 8 August 2020 | 20 August 2020 | 12 | 128.58 |
13 | 1 September 2020 | 13 September 2020 | 12 | 76.01 |
14 | 25 September 2020 | 7 October 2020 | 12 | 5.63 |
15 | 7 October 202010 | 19 October 2020 | 12 | 114.51 |
16 | 19 October 2020 | 31 October 2020 | 12 | 45.30 |
17 | 12 November 2020 | 24 November 2020 | 12 | 31.85 |
18 | 24 November 2020 | 6 December 2020 | 12 | 63.56 |
19 | 6 December 2020 | 18 December 2020 | 12 | 2.32 |
20 | 18 December 2020 | 30 December 2020 | 12 | 97.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Yu, M.; Li, D.; Huang, S.; Xue, X.; Sun, Y.; Zhou, C. An Optimized Framework for Precipitable Water Vapor Mapping Using TS-InSAR and GNSS. Atmosphere 2023, 14, 1674. https://doi.org/10.3390/atmos14111674
Guo Q, Yu M, Li D, Huang S, Xue X, Sun Y, Zhou C. An Optimized Framework for Precipitable Water Vapor Mapping Using TS-InSAR and GNSS. Atmosphere. 2023; 14(11):1674. https://doi.org/10.3390/atmos14111674
Chicago/Turabian StyleGuo, Qiuying, Miao Yu, Dewei Li, Shoukai Huang, Xuelong Xue, Yingjun Sun, and Chenghu Zhou. 2023. "An Optimized Framework for Precipitable Water Vapor Mapping Using TS-InSAR and GNSS" Atmosphere 14, no. 11: 1674. https://doi.org/10.3390/atmos14111674
APA StyleGuo, Q., Yu, M., Li, D., Huang, S., Xue, X., Sun, Y., & Zhou, C. (2023). An Optimized Framework for Precipitable Water Vapor Mapping Using TS-InSAR and GNSS. Atmosphere, 14(11), 1674. https://doi.org/10.3390/atmos14111674