The State of Precipitation Measurements at Mid-to-High Latitudes
Abstract
:1. Introduction
2. Background
3. Measuring Precipitation
3.1. Ground-Based Measurements
3.2. Satellite-Based Measurements
4. Precipitation Retrieval Schemes
4.1. Retrieval Schemes
4.2. CloudSat—GPM Comparison Studies
4.3. Integrated Multi-Satellite Retrievals
5. Discussion
5.1. Gaps and Challenges
5.1.1. Shallow Precipitation
5.1.2. Detecting and Quantifying Falling Snow
5.1.3. Orographic Precipitation
5.2. Challenges Mitigation Strategies
5.2.1. Field Campaigns
5.2.2. New Satellite Observations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Acronyms
ABI | Advanced Baseline Imager |
AMeDAS | Automated Meteorological Data Acquisition System |
AMSR-E | Advanced Microwave Scanning Radiometer-Earth Observing System |
AMSR2 | Advanced Microwave Scanning Radiometer—2 |
AMW | Active Microwave |
AOS | Atmosphere Observing System |
ATLID | Atmospheric Lidar |
ATMS | Advanced Technology Microwave Sounder |
AWS | Arctic Weather Satellite |
BBR | Broadband Radiometer |
CCP | Clouds Convection and Precipitation |
CMAP | Climate Prediction Center Merged Analysis of Precipitation |
CMORPH | CPC Morphing Technique |
CORRA | Combined Radar–Radiometer Algorithm |
CoSSIR | Configurable Scanning Submillimeter-wave Instrument/Radiometer |
COWVR | Compact Ocean Wind Vector Radiometer |
cPF | convective Precipitation Features |
CPR | Cloud Profiling Radar |
CSA | Canadian Space Agency |
D3D | Dual-frequency Dual-polarized Doppler Radar |
DMSP | DoD Meteorological Satellite Program |
DoD | Department of Defense |
DPR | Dual-frequency Precipitation Radar |
DSD | Drop Size Distribution |
EarthCARE | Earth Cloud Aerosol and Radiation Explorer |
ECMWF | European Center for Medium-range Weather Forecast |
EPS-SG | European Polar System—Second Generation |
ESA | European Space Agency |
EUMETSAT | European Organisation for the Exploitation of Meteorological Satellites |
FCI | Flexible Combined Imager |
FY | Feng Yun |
GCOM | Global Change Observation Mission |
GCOMW1 | GCOM Water 1 |
GCPEx | GPM Cold Season Precipitation Experiment |
GEO | Geostationary |
GLM | Geostationary Lightning Mapper |
GMI | GPM Microwave Imager |
GPCP | Global Precipitation and Climatology Project |
GPM | Global Precipitation Measurement |
GPM-CO | GPM Core Observatory |
GPROF | Goddard Profiling Algorithm |
GRACE | Gravity Recovery and Climate Experiment |
GSMaP | Global Satellite Mapping of Precipitation |
GTS | Global Telecommunication System |
ICI | Ice Cloud Imager |
IMERG | Integrated Multi-satellite Retrieval for GPM |
IMPACTS | Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms |
IPHEx | Integrated Precipitation and Hydrology Experiment |
IR | Infrared |
IWP | Ice Water Path |
JAXA | Japan Aerospace Exploration Agency |
JMA | Japan Meteorological Agency |
JPSS | Joint Polar Satellite System |
LEO | Low Earth Orbiting |
LM | Lightning Mapper |
LPVEx | Light Precipitation Validation Experiment |
MetOp | Meteorological Operational |
MHOPrEx | Monsoon Himalaya Orographic Precipitation Experiment |
MHS | Microwave Humidity Sounder |
MIT | Massachusetts Institute of Technology |
MRMS | Multi-Radar Multi-Sensor |
MRR | Micro Rain Radar |
MSI | Multi-spectral Imager |
MTG | Meteosat Third Generation |
MWI | Microwave Imager |
MWS | Microwave Sounder |
NASA | National Aeronautics Space Administration |
NOAA | National Oceanic and Atmospheric Administration |
NPOL NASA | S-band Dual Polarimetric Radar |
OLYMPEX | Olympic Mountains Experiment |
OPERA | Operational Programme for the Exchange of Weather Radar Information |
PIA | Path-Integrated Attenuation |
PIP | Precipitation Imaging Package |
PMW | Passive Microwave |
PPS | Precipitation Processing System |
PR | Precipitation Radar |
QPE | Quantitative Precipitation Estimation |
SAPHIR | Sondeur Atmospherique du Profil d’Humidite Intertropicale par Radiometrie |
SMMR | Scanning Multichannel Microwave Radiometer |
SPEI | Standardized Precipitation and Evapotranspiration Index |
SSM/I | Special Sensor Microwave/Imager |
SSMIS | Special Sensor Microwave Imager Sounder |
STP-H8 | Space Test Program—Houston 8 |
SWP | Snow Water Path |
TEMPEST-H8 | Temporal Experiment for Storms and Tropical Systems Technology—Houston 8 |
TMI | TRMM Microwave Imager |
TMS | TROPICS Millimeter-wave Sounder |
TPW | Total Precipitable Water |
TRMM | Tropical Rainfall Measuring Mission |
TROPICS | Time-Resolved Observations of Precipitation Structure and Storm Intensity with a Constellation of Smallsats |
VIIRS | Visible Infrared Imager Radiometer Suit |
Vis | Visible |
WMO | World Meteorological Organization |
XCAL GPM | Intersatellite Calibration Working Group |
References
- Kidd, C.; Becker, A.; Huffman, G.J.; Muller, C.L.; Joe, P.; Skofronick-Jackson, G.; Kirschbaum, D.B. So, how much of the Earth’s surface is covered by rain gauges? Bull. Am. Meteorol. Soc. 2017, 98, 69–78. [Google Scholar] [CrossRef]
- Council, N.R. Earth System Science; National Academies Press: Washington, DC, USA, 1988; ISBN 978-0-309-31866-2. [Google Scholar]
- Implementation plan for the Global Observing System for Climate in Support of the UNFCCC. Available online: https://library.wmo.int/records/item/58703-implementation-plan-for-the-global-observing-system-for-climate-in-support-of-the-unfccc (accessed on 1 September 2023).
- Skofronick-Jackson, G.; Petersen, W.A.; Berg, W.; Kidd, C.; Stocker, E.F.; Kirschbaum, D.B.; Kakar, R.; Braun, S.A.; Huffman, G.J.; Iguchi, T.; et al. The global precipitation measurement (GPM) mission for science and Society. Bull. Am. Meteorol. Soc. 2017, 98, 1679–1695. [Google Scholar] [CrossRef] [PubMed]
- Kidd, C.; Takayabu, Y.N.; Skofronick-Jackson, G.M.; Huffman, G.J.; Braun, S.A.; Kubota, T.; Turk, F.J. The Global Precipitation Measurement (GPM) Mission. In Satellite Precipitation Measurement; Advances in Global Change Research; Springer: Cham, Switzerland, 2020; Volume 67, pp. 3–23. [Google Scholar]
- Kidd, C.; Levizzani, V.; Laviola, S. Quantitative Precipitation Estimation from Earth Observation Satellites. Rainfall State Sci. 2013, 191, 127–158. [Google Scholar] [CrossRef]
- Levizzani, V.; Laviola, S.; Cattani, E. Detection and Measurement of Snowfall from Space. Remote Sens. 2011, 3, 145–166. [Google Scholar] [CrossRef]
- Prigent, C. Precipitation retrieval from space: An overview. Comptes Rendus Geosci. 2010, 342, 380–389. [Google Scholar] [CrossRef]
- Routson, C.C.; McKay, N.P.; Kaufman, D.S.; Erb, M.P.; Goosse, H.; Shuman, B.N.; Rodysill, J.R.; Ault, T. Mid-latitude net precipitation decreased with Arctic warming during the Holocene. Nature 2019, 568, 83–87. [Google Scholar] [CrossRef]
- Hénin, R.; Ramos, A.M.; Schemm, S.; Gouveia, C.M.; Liberato, M.L.R. Assigning precipitation to mid-latitudes fronts on sub-daily scales in the North Atlantic and European sector: Climatology and trends. Int. J. Climatol. 2019, 39, 317–330. [Google Scholar] [CrossRef]
- ESA 2004. EGPM—European Contribution to Global Precipitation Measurement, ESA SP-1279(5). ESA: Noordwijk, The Netherlands. Available online: https://esamultimedia.esa.int/docs/SP_1279_5_EGPM.pdf (accessed on 6 November 2023).
- Lu, M.; Hao, X. Diagnosis of the Tropical Moisture Exports to the Mid-Latitudes and the Role of Atmospheric Steering in the Extreme Precipitation. Atmosphere 2017, 8, 256. [Google Scholar] [CrossRef]
- Yoshimori, M.; Abe-Ouchi, A.; Tatebe, H.; Nozawa, T.; Oka, A. The Importance of Ocean Dynamical Feedback for Understanding the Impact of Mid–High-Latitude Warming on Tropical Precipitation Change. J. Clim. 2018, 31, 2417–2434. [Google Scholar] [CrossRef]
- Waliser, D.; Guan, B. Extreme winds and precipitation during landfall of atmospheric rivers. Nat. Geosci. 2017, 10, 179–183. [Google Scholar] [CrossRef]
- Doiteau, B.; Dournaux, M.; Montoux, N.; Baray, J.L. Atmospheric rivers and associated precipitation over france and western europe: 1980–2020 climatology and case study. Atmosphere 2021, 12, 1075. [Google Scholar] [CrossRef]
- Mateling, M.E.; Pettersen, C.; Kulie, M.S.; Mattingly, K.S.; Henderson, S.A.; L’Ecuyer, T.S. The Influence of Atmospheric Rivers on Cold-Season Precipitation in the Upper Great Lakes Region. J. Geophys. Res. Atmos. 2021, 126, e2021JD034754. [Google Scholar] [CrossRef]
- Mattingly, K.S.; Mote, T.L.; Fettweis, X.; As, D.V.A.N.; Tricht, K.V.A.N.; Lhermitte, S.; Pettersen, C.; Fausto, R.S. Strong summer atmospheric rivers trigger Greenland ice sheet melt through spatially varying surface energy balance and cloud regimes. J. Clim. 2020, 33, 6809–6832. [Google Scholar] [CrossRef]
- Saeed, S.; Almazroui, M. Impacts of mid-latitude circulation on winter precipitation over the Arabian Peninsula. Clim. Dyn. 2019, 53, 5253–5264. [Google Scholar] [CrossRef]
- Suriano, Z.J.; Wortman, R.D. Temporal trends in snowfall contribution induced by lake-effect synoptic types. Phys. Geogr. 2021, 42, 416–433. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Endo, Y.; Murakami, S. High correlation between winter precipitation and air temperature in heavy-snowfall areas in Japan. Ann. Glaciol. 2008, 49, 7–10. [Google Scholar] [CrossRef]
- Kuhn, M. The Antarctic—The World’s Largest Desert—The Special Circumstances of the Antarctic Climate. Umshau Wiss. Tecknik 1980, 80, 675–681. [Google Scholar]
- Beniston, M.; Farinotti, D.; Stoffel, M.; Andreassen, L.M.; Coppola, E.; Eckert, N.; Fantini, A.; Giacona, F.; Hauck, C.; Huss, M.; et al. The European mountain cryosphere: A review of its current state, trends, and future challenges. Cryosphere 2018, 12, 759–794. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef]
- Mangeruca, A.; Ferrari, G.; Garinei, A.; Cisco, L.; Sozzi, M.; Marconi, M.; Crespi, M.; Chini, A.; Piccioni, E.; Bavera, D.; et al. Snow water equivalent (SWE) measurements for better management of water resources to reduce drought risk. In Proceedings of the 2022 IEEE Workshop on Metrology for Agriculture and Forestry, MetroAgriFor, Perugia, Italy, 3–5 November 2022; pp. 307–312. [Google Scholar]
- Howat, I.M.; Tulaczyk, S.; Rhodes, P.; Israel, K.; Snyder, M. A precipitation-dominated, mid-latitude glacier system: Mount Shasta, California. Clim. Dyn. 2007, 28, 85–98. [Google Scholar] [CrossRef]
- Adams, N. Precipitation forecasting at high latitudes. Weather Forecast. 2004, 19, 456–472. [Google Scholar] [CrossRef]
- Davy, R.; Griewank, P. Arctic amplification has already peaked. Environ. Res. Lett. 2023, 18, 084003. [Google Scholar] [CrossRef]
- Yang, Y.-M.; Park, J.-H.; An, S.-I.; Wang, B.; Luo, X. Mean sea surface temperature changes influence ENSO-related precipitation changes in the mid-latitudes. Nat. Commun. 2021, 12, 1495. [Google Scholar] [CrossRef] [PubMed]
- Karagiannidis, A.F.; Karacostas, T.; Maheras, P.; Makrogiannis, T. Climatological aspects of extreme precipitation in Europe, related to mid-latitude cyclonic systems. Theor. Appl. Climatol. 2012, 107, 165–174. [Google Scholar] [CrossRef]
- Dukat, P.; Bednorz, E.; Ziemblińska, K.; Urbaniak, M. Trends in drought occurrence and severity at mid-latitude European stations (1951–2015) estimated using standardized precipitation (SPI) and precipitation and evapotranspiration (SPEI) indices. Meteorol. Atmos. Phys. 2022, 134, 20. [Google Scholar] [CrossRef]
- Osborne, J.M.; Lambert, F.H. The missing aerosol response in twentieth-century mid-latitude precipitation observations. Nat. Clim. Chang. 2014, 4, 374–378. [Google Scholar] [CrossRef]
- Wan, H.; Zhang, X.; Zwiers, F.; Min, S.-K. Attributing northern high-latitude precipitation change over the period 1966–2005 to human influence. Clim. Dyn. 2015, 45, 1713–1726. [Google Scholar] [CrossRef]
- Min, S.-K.; Zhang, X.; Zwiers, F. Human-Induced Arctic Moistening. Science 2008, 320, 518–520. [Google Scholar] [CrossRef]
- Mölders, N.; Olson, M.A. Impact of Urban Effects on Precipitation in High Latitudes. J. Hydrometeorol. 2004, 5, 409–429. [Google Scholar] [CrossRef]
- Poujol, B.; Mooney, P.A.; Sobolowski, S.P. Physical processes driving intensification of future precipitation in the mid- to high latitudes. Environ. Res. Lett. 2021, 16, 034051. [Google Scholar] [CrossRef]
- Hagemann, S.; Blome, T.; Ekici, A.; Beer, C. Soil-frost-enabled soil-moisture-precipitation feedback over northern high latitudes. Earth Syst. Dyn. 2016, 7, 611–625. [Google Scholar] [CrossRef]
- Strangeways, I. Measuring the Natural Environment, 2nd ed.; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Duchon, C.E.; Essenberg, G.R. Comparative rainfall observations from pit and aboveground rain gauges with and without wind shields. Water Resour. Res. 2001, 37, 3253–3263. [Google Scholar] [CrossRef]
- Goodison, B.; Louie, P.Y.T.; Yang, D. WMO solid precipitation measurement intercomparison, Instruments and Observing Methods Rep. 67 (WMO/TD 872). Final Rep. 1998, 67, 318. [Google Scholar]
- Nitu, R.; Wong, K. CIMO Survey On National Summaries Of Methods And Instruments For Solid Precipitation Measurement At Automatic Weather Stations; Instruments and Observing Methods Report No. 102; WMO: Geneva, Switzerland, 2010; 57p. [Google Scholar]
- Vuerich, E.; Monesi, C.; Lanza, L.G.; Stagi, L.; Lanzinger, E. WMO Field Intercomparison of Rainfall Intensity Gauges; Instruments and Observing Methods Report No. 99; WMO: Geneva, Switzerland, 2009; 290p. [Google Scholar]
- Sugiura, K.; Ohata, T.; Yang, D. Catch characteristics of precipitation gauges in high-latitude regions with high winds. J. Hydrometeorol. 2006, 7, 984–994. [Google Scholar] [CrossRef]
- Swenson, S. Assessing High-Latitude Winter Precipitation from Global Precipitation Analyses Using GRACE. J. Hydrometeorol. 2010, 11, 405–420. [Google Scholar] [CrossRef]
- Huuskonen, A.; Saltikoff, E.; Holleman, I. The operational weather radar network in Europe. Bull. Am. Meteorol. Soc. 2014, 95, 897–907. [Google Scholar] [CrossRef]
- Saltikoff, E.; Haase, G.; Delobbe, L.; Gaussiat, N.; Martet, M.; Idziorek, D.; Leijnse, H.; Novák, P.; Lukach, M.; Stephan, K. OPERA the Radar Project. Atmosphere 2019, 10, 320. [Google Scholar] [CrossRef]
- Zhang, J.; Howard, K.; Langston, C.; Kaney, B.; Qi, Y.; Tang, L.; Grams, H.; Wang, Y.; Cockcks, S.; Martinaitis, S.; et al. Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Am. Meteorol. Soc. 2016, 97, 621–638. [Google Scholar] [CrossRef]
- Shibuya, R.; Takayabu, Y.; Kamahori, H. Dynamics of widespread extreme precipitation events and the associated large-scale environment using AMeDAS and JRA-55 data. J. Clim. 2021, 34, 8955–8970. [Google Scholar] [CrossRef]
- Illingworth, A.J.; Blackman, T.M. The need to represent raindrop size spectra as normalized gamma distributions for the interpretation of polarization radar observations. J. Appl. Meteorol. 2002, 41, 286–297. [Google Scholar] [CrossRef]
- Overeem, A.; van den Besselaar, E.; van der Schrier, G.; Meirink, J.F.; van der Plas, E.; Leijnse, H. EURADCLIM: The European climatological high-resolution gauge-adjusted radar precipitation dataset. Earth Syst. Sci. Data 2023, 15, 1441–1464. [Google Scholar] [CrossRef]
- Vignal, B.; Krajewski, W.F. Large-Sample Evaluation of Two Methods to Correct Range-Dependent Error for WSR-88D Rainfall Estimates. J. Hydrometeorol. 2001, 2, 490–504. [Google Scholar] [CrossRef]
- Golbon-Haghighi, M.-H.; Zhang, G. Detection of Ground Clutter for Dual-Polarization Weather Radar Using a Novel 3D Discriminant Function. J. Atmos. Ocean. Technol. 2019, 36, 1285–1296. [Google Scholar] [CrossRef]
- Golbon-Haghighi, M.-H.; Zhang, G.; Li, Y.; Doviak, R. Detection of Ground Clutter from Weather Radar Using a Dual-Polarization and Dual-Scan Method. Atmosphere 2016, 7, 83. [Google Scholar] [CrossRef]
- Hu, X.; Ge, J.; Du, J.; Li, Q.; Huang, J.; Fu, Q. A robust low-level cloud and clutter discrimination method for ground-based millimeter-wavelength cloud radar. Atmos. Meas. Tech. 2021, 14, 1743–1759. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, J.; Zhang, P.; Cao, Q. VPR correction of bright band effects in radar QPEs using polarimetric radar observations. J. Geophys. Res. Atmos. 2013, 118, 3627–3633. [Google Scholar] [CrossRef]
- Ware, E.C. Corrections to Radar-Estimated Precipitation Using Observed Rain Gauge Data. Master’s Thesis, Cornell University, Ithaca, NY, USA, 2005; 86p. [Google Scholar]
- Kidd, C.; Graham, E.; Smyth, T.; Gill, M. Assessing the impact of light/shallow precipitation retrievals from satellite-based observations using surface radar and micro rain radar observations. Remote Sens. 2021, 13, 1708. [Google Scholar] [CrossRef]
- Ma, N.; Chen, Y.; Jia, Z.; Liu, L.; Ma, X.; Huang, Y. Analyses of DSD Vertical Evolution and Rain Variation Mechanism in Stratiform Cloud Cases Using Micro Rain Radar. Remote Sens. 2022, 14, 1655. [Google Scholar] [CrossRef]
- Overeem, A.; Leijnse, H.; Uijlenhoet, R. Country-wide rainfall maps from cellular communication networks. Proc. Natl. Acad. Sci. USA 2013, 110, 2741–2745. [Google Scholar] [CrossRef]
- Silver, M.; Karnieli, A.; Fredj, E. Improved Gridded Precipitation Data Derived from Microwave Link Attenuation. Remote Sens. 2021, 13, 2953. [Google Scholar] [CrossRef]
- Chwala, C.; Kunstmann, H. Commercial microwave link networks for rainfall observation: Assessment of the current status and future challenges. WIREs Water 2019, 6, e1337. [Google Scholar] [CrossRef]
- Ma, B.B.; Nystuen, J.A. Passive Acoustic Detection and Measurement of Rainfall at Sea. J. Atmos. Ocean. Technol. 2005, 22, 1225–1248. [Google Scholar] [CrossRef]
- Taylor, W.O.; Anagnostou, M.N.; Cerrai, D.; Anagnostou, E.N. Machine Learning Methods to Approximate Rainfall and Wind from Acoustic Underwater Measurements (February 2020). IEEE Trans. Geosci. Remote Sens. 2021, 59, 2810–2821. [Google Scholar] [CrossRef]
- Petty, G.W.; Tran, H.K. Seventy-Year Trends in Ship-Reported Oceanic Precipitation Frequency. Geophys. Res. Lett. 2023, 50, e2023GL104270. [Google Scholar] [CrossRef]
- Kidd, C.; Levizzani, V. Quantitative precipitation estimation from satellite observations. In Extreme Hydroclimatic Events and Multivariate Hazards in a Changing Environment: A Remote Sensing Approach; Maggioni, V., Massari, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–39. ISBN 9780128148990. [Google Scholar]
- Kidd, C.; Huffman, G.; Maggioni, V.; Chambon, P.; Oki, R. The global satellite precipitation constellation current status and future requirements. Bull. Am. Meteorol. Soc. 2021, 102, E1844–E1861. [Google Scholar] [CrossRef]
- Kidd, C.; Levizzani, V. Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 1109–1116. [Google Scholar] [CrossRef]
- Kidd, C.; Huffman, G. Global precipitation measurement. Meteorol. Appl. 2011, 18, 334–353. [Google Scholar] [CrossRef]
- Zou, C.-Z.; Zhou, L.; Lin, L.; Sun, N.; Chen, Y.; Flynn, L.E.; Zhang, B.; Cao, C.; Iturbide-Sanchez, F.; Beck, T.; et al. The Reprocessed Suomi NPP Satellite Observations. Remote Sens. 2020, 12, 2891. [Google Scholar] [CrossRef]
- Klaes, K.D.; Cohen, M.; Buhler, Y.; Schlussel, P.; Munro, R.; Luntama, J.P.; von Engeln, A.; Clerigh, E.O.; Bonekamp, H.; Ackermann, J.; et al. An introduction to the Eumetsat polar system. Bull. Am. Meteorol. Soc. 2007, 88, 1085–1096. [Google Scholar] [CrossRef]
- Righetti, P.L.; de Juana Gamo, J.M.; Sancho, F. Metop-C deployment and start of three-satellite operations. Aeronaut. J. 2020, 124, 902–916. [Google Scholar] [CrossRef]
- Jin, Y.Q.; Lu, N.; Lin, M. Advancement of chinese meteorological feng-yun (FY) and oceanic hai-yang (HY) satellite remote sensing. Proc. IEEE 2010, 98, 844–861. [Google Scholar] [CrossRef]
- Weng, F.; Ferraro, R.R.; Grody, N.C. Global precipitation estimations using Defense Meteorological Satellite Program F10 and F11 special sensor microwave imager data. J. Geophys. Res. 1994, 99, 14493. [Google Scholar] [CrossRef]
- Imaoka, K.; Kachi, M.; Fujii, H.; Murakami, H.; Hori, M.; Ono, A.; Igarashi, T.; Nakagawa, K.; Oki, T.; Honda, Y.; et al. Global change observation mission (GCOM) for monitoring carbon, water cycles, and climate change. Proc. IEEE 2010, 98, 717–734. [Google Scholar] [CrossRef]
- Heuscher, L.; Liu, C.; Gatlin, P.; Petersen, W.A. Relationship Between Lightning, Precipitation, and Environmental Characteristics at Mid-/High Latitudes From a GLM and GPM Perspective. J. Geophys. Res. Atmos. 2022, 127, e2022JD036894. [Google Scholar] [CrossRef]
- Holmlund, K.; Grandell, J.; Schmetz, J.; Stuhlmann, R.; Bojkov, B.; Munro, R.; Lekouara, M.; Coppens, D.; Viticchie, B.; August, T.; et al. Meteosat Third Generation (MTG): Continuation and Innovation of Observations from Geostationary Orbit. Bull. Am. Meteorol. Soc. 2021, 102, E990–E1015. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef]
- Schmit, T.J.; Li, J.; Menzel, W.P. Advanced baseline imager (ABI) for future geostationary operational environmental satellites (GOES-R and beyond). In Applications with Weather Satellites, Proceedings of the Third International Asia-Pacific Environmental Remote Sensing Remote Sensing of the Atmosphere, Ocean, Environment, and Space, Hangzhou, China, 23–27 October 2002; Menzel, W.P., Zhang, W.-J., Le Marshall, J., Tokuno, M., Eds.; SPIE: Bellingham, WA, USA, 2003; Volume 4895, p. 111. [Google Scholar]
- Schmit, T.J.; Gunshor, M.M.; Menzel, W.P.; Gurka, J.J.; Li, J.; Bachmeier, A.S. Introducing the Next-Generation Advanced Baseline Imager on GOES-R. Bull. Am. Meteorol. Soc. 2005, 86, 1079–1096. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9—Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Njoku, E.; Stacey, J.; Barath, F. The Seasat scanning multichannel microwave radiometer (SMMR): Instrument description and performance. IEEE J. Ocean. Eng. 1980, 5, 100–115. [Google Scholar] [CrossRef]
- Colton, M.C.; Poe, G.A. Intersensor calibration of DMSP SSM/I’s: F-8 to F-14, 1987-1997. IEEE Trans. Geosci. Remote Sens. 1999, 37, 418–439. [Google Scholar] [CrossRef]
- Yan, B.; Weng, F. Intercalibration Between Special Sensor Microwave Imager/Sounder and Special Sensor Microwave Imager. IEEE Trans. Geosci. Remote Sens. 2008, 46, 984–995. [Google Scholar] [CrossRef]
- Sanò, P.; Casella, D.; Camplani, A.; D’Adderio, L.P.; Panegrossi, G. A Machine Learning Snowfall Retrieval Algorithm for ATMS. Remote Sens. 2022, 14, 1467. [Google Scholar] [CrossRef]
- Kummerow, C.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Ocean. Technol. 1998, 15, 809–817. [Google Scholar] [CrossRef]
- Kummerow, C.; Simpson, J.; Thiele, O.; Barnes, W.; Chang, A.T.C.; Stocker, E.; Adler, R.F.; Hou, A.; Kakar, R.; Wentz, F.; et al. The Status of the Tropical Rainfall Measuring Mission (TRMM) after Two Years in Orbit. J. Appl. Meteorol. 2000, 39, 1965–1982. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Iguchi, T.; Haddad, Z.S. Introduction to Radar Rain Retrieval Methods. Adv. Glob. Chang. Res. 2020, 67, 169–182. [Google Scholar]
- Iguchi, T. Dual-Frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) Mission’s Core Observatory. In Advances in Global Change Research; Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J., Eds.; Springer: Cham, Switzerland, 2020; Volume 67, pp. 183–192. [Google Scholar]
- Draper, D.W.; Newell, D.A.; Wentz, F.J.; Krimchansky, S.; Skofronick-Jackson, G.M. The Global Precipitation Measurement (GPM) microwave imager (GMI): Instrument overview and early on-orbit performance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3452–3462. [Google Scholar] [CrossRef]
- Kidd, C.; Matsui, T.; Chern, J.; Mohr, K.; Kummerow, C.; Randel, D. Global precipitation estimates from cross-track passive microwave observations using a physically based retrieval scheme. J. Hydrometeorol. 2016, 17, 383–400. [Google Scholar] [CrossRef]
- Laviola, S.; Levizzani, V.; Cattani, E.; Kidd, C. The 183-WSL fast rain rate retrieval algorithm. Part II: Validation using ground radar measurements. Atmos. Res. 2013, 134, 77–86. [Google Scholar] [CrossRef]
- Kummerow, C.D. Introduction to Passive Microwave Retrieval Methods. In Satellite Precipitation Measurement; Advances in Global Change Research; Springer: Cham, Switzerland, 2020; Volume 67, pp. 123–140. [Google Scholar]
- Roca, R.; Dejus, M.; Chambon, P.; Cloché, S.; Capderou, M. The Megha-Tropiques Mission After Seven Years in Space. In Satellite Precipitation Measurement; Advances in Global Change Research; Springer: Cham, Switzerland, 2020; Volume 67, pp. 45–62. [Google Scholar]
- Aonashi, K.; Ferraro, R.R. Microwave Sensors, Imagers and Sounders. In Satellite Precipitation Measurement; Advances in Global Change Research; Springer: Cham, Switzerland, 2020; Volume 67, pp. 63–81. [Google Scholar]
- Battaglia, A.; Kollias, P.; Dhillon, R.; Roy, R.; Tanelli, S.; Lamer, K.; Grecu, M.; Lebsock, M.; Watters, D.; Mroz, K.; et al. Spaceborne Cloud and Precipitation Radars: Status, Challenges, and Ways Forward. Rev. Geophys. 2020, 58, e2019RG000686. [Google Scholar] [CrossRef]
- Stephens, G.L.; Vane, D.G.; Boain, R.J.; Mace, G.G.; Sassen, K.; Wang, Z.; Illingworth, A.J.; O’Connor, E.J.; Rossow, W.B.; Durden, S.L.; et al. The cloudsat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Am. Meteorol. Soc. 2002, 83, 1771–1790. [Google Scholar] [CrossRef]
- Stephens, G.; Winker, D.; Pelon, J.; Trepte, C.; Vane, D.; Yuhas, C.; L’Ecuyer, T.; Lebsock, M. CloudSat and CALIPSO within the A-Train: Ten Years of Actively Observing the Earth System. Bull. Am. Meteorol. Soc. 2018, 99, 569–581. [Google Scholar] [CrossRef]
- L’Ecuyer, T.S.; Stephens, G.L. An estimation-based precipitation retrieval algorithm for attenuating radars. J. Appl. Meteorol. 2002, 41, 272–285. [Google Scholar] [CrossRef]
- Matrosov, S.Y. Modeling Backscatter Properties of Snowfall at Millimeter Wavelengths. J. Atmos. Sci. 2007, 64, 1727–1736. [Google Scholar] [CrossRef]
- Haynes, J.M.; L’Ecuyer, T.S.; Stephens, G.L.; Miller, S.D.; Mitrescu, C.; Wood, N.B.; Tanelli, S. Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res. Atmos. 2009, 114, D00A22. [Google Scholar] [CrossRef]
- Lebsock, M.D.; L’Ecuyer, T.S.; Wood, N.B.; Haynes, J.M.; Smalley, M.A. Status of the CloudSat Mission. In Advances in Global Change Research; Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J., Eds.; Springer: Cham, Switzerland, 2020; Volume 67, pp. 25–43. [Google Scholar]
- Kollias, P.; Clothiaux, E.E.; Miller, M.A.; Albrecht, B.A.; Stephens, G.L.; Ackerman, T.P. Millimeter-Wavelength Radars: New Frontier in Atmospheric Cloud and Precipitation Research. Bull. Am. Meteorol. Soc. 2007, 88, 1608–1624. [Google Scholar] [CrossRef]
- Skofronick-Jackson, G.; Kulie, M.; Milani, L.; Munchak, S.J.; Wood, N.B.; Levizzani, V. Satellite estimation of falling snow: A global precipitation measurement (GPM) core observatory perspective. J. Appl. Meteorol. Climatol. 2019, 58, 1429–1448. [Google Scholar] [CrossRef]
- Kroodsma, R.A.; McKague, D.S.; Ruf, C.S. Vicarious Cold Calibration for Conical Scanning Microwave Imagers. IEEE Trans. Geosci. Remote Sens. 2017, 55, 816–827. [Google Scholar] [CrossRef]
- Berg, W.; Bilanow, S.; Chen, R.; Datta, S.; Draper, D.; Ebrahimi, H.; Farrar, S.; Jones, W.L.; Kroodsma, R.; McKague, D.; et al. Intercalibration of the GPM Microwave Radiometer Constellation. J. Atmos. Ocean. Technol. 2016, 33, 2639–2654. [Google Scholar] [CrossRef]
- Kummerow, C.; Hong, Y.; Olson, W.S.; Yang, S.; Adler, R.F.; McCollum, J.; Ferraro, R.; Petty, G.; Shin, D.B.; Wilheit, T.T. The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteorol. 2001, 40, 1801–1820. [Google Scholar] [CrossRef]
- Kummerow, C.D.; Randel, D.L.; Kulie, M.; Wang, N.Y.; Ferraro, R.; Joseph Munchak, S.; Petkovic, V. The evolution of the goddard profiling algorithm to a fully parametric scheme. J. Atmos. Ocean. Technol. 2015, 32, 2265–2280. [Google Scholar] [CrossRef]
- Randel, D.L.; Kummerow, C.D.; Ringerud, S. The Goddard Profiling (GPROF) Precipitation Retrieval Algorithm. In Advances in Global Change Research; Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J., Eds.; Springer: Cham, Switzerland, 2020; Volume 67, pp. 141–152. [Google Scholar]
- Masaki, T.; Kubota, T.; Oki, R.; Furukawa, K.; Kojima, M.; Miura, T.; Iguchi, T.; Hanado, H.; Kai, H.; Yoshida, N.; et al. Current status of GPM/DPR level 1 algorithm development and DPR calibration. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 2615–2618. [Google Scholar]
- Seto, S.; Iguchi, T.; Shimozuma, T.; Hayashi, S. NUBF correction methods for the GPM/DPR level-2 algorithms. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 2612–2614. [Google Scholar]
- Grecu, M.; Olson, W.S.; Munchak, S.J.; Ringerud, S.; Liao, L.; Haddad, Z.; Kelley, B.L.; Mclaughlin, S.F. The GPM combined algorithm. J. Atmos. Ocean. Technol. 2016, 33, 2225–2245. [Google Scholar] [CrossRef]
- Grecu, M.; Olson, W.S. Precipitation Retrievals from Satellite Combined Radar and Radiometer Observations. In Satellite Precipitation Measurement; Advances in Global Change Research; Springer: Cham, Switzerland, 2020; Volume 67, pp. 231–248. [Google Scholar]
- Sims, E.M.; Liu, G. A parameterization of the probability of snow-rain transition. J. Hydrometeorol. 2015, 16, 1466–1477. [Google Scholar] [CrossRef]
- Adler, R.F.; Kidd, C.; Petty, G.; Morissey, M.; Goodman, H.M. Intercomparison of Global Precipitation Products: The Third Precipitation Intercomparison Project (PIP–3). Bull. Am. Meteorol. Soc. 2001, 82, 1377–1396. [Google Scholar] [CrossRef]
- Behrangi, A.; Song, Y. A new estimate for oceanic precipitation amount and distribution using complementary precipitation observations from space and comparison with GPCP. Environ. Res. Lett. 2020, 15, 124042. [Google Scholar] [CrossRef]
- Becker, A.; Finger, P.; Meyer-Christoffer, A.; Rudolf, B.; Schamm, K.; Schneider, U.; Ziese, M. A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data 2013, 5, 71–99. [Google Scholar] [CrossRef]
- Liu, G. Deriving snow cloud characteristics from CloudSat observations. J. Geophys. Res. 2008, 113, D00A09. [Google Scholar] [CrossRef]
- Liu, Y.; Li, F.; Hao, W.; Barriot, J.-P.; Wang, Y. Evaluation of Synoptic Snowfall on the Antarctic Ice Sheet Based on CloudSat, In-Situ Observations and Atmospheric Reanalysis Datasets. Remote Sens. 2019, 11, 1686. [Google Scholar] [CrossRef]
- Milani, L.; Kulie, M.S.; Casella, D.; Dietrich, S.; L’Ecuyer, T.S.; Panegrossi, G.; Porcù, F.; Sanò, P.; Wood, N.B. CloudSat snowfall estimates over Antarctica and the Southern Ocean: An assessment of independent retrieval methodologies and multi-year snowfall analysis. Atmos. Res. 2018, 213, 121–135. [Google Scholar] [CrossRef]
- Palerme, C.; Kay, J.E.; Genthon, C.; L’Ecuyer, T.; Wood, N.B.; Claud, C. How much snow falls on the Antarctic ice sheet? Cryosphere 2014, 8, 1577–1587. [Google Scholar] [CrossRef]
- Surussavadee, C.; Staelin, D.H. Global millimeter-wave precipitation retrievals trained with a cloud-resolving numerical weather prediction model, part I: Retrieval design. IEEE Trans. Geosci. Remote Sens. 2008, 46, 99–108. [Google Scholar] [CrossRef]
- King, F.; Fletcher, C.G. Using CloudSat-CPR Retrievals to Estimate Snow Accumulation in the Canadian Arctic. Earth Sp. Sci. 2020, 7, e2019EA000776. [Google Scholar] [CrossRef]
- Panegrossi, G.; Rysman, J.F.; Casella, D.; Marra, A.C.; Sanò, P.; Kulie, M.S. CloudSat-based assessment of GPM microwave imager snowfall observation capabilities. Remote Sens. 2017, 9, 1263. [Google Scholar] [CrossRef]
- Wood, N.B.; L’Ecuyer, T.S. Level 2C Snow Profile Process Description and Interface Control Document, Product Version P1_R05; NASA JPL CloudSat Project Document Revision 0. National Aeronautics and Space Administration, Jet Propulsion Laboratory: Pasadena, California, USA, 2018; pp. 1–26. Available online: https://www.cloudsat.cira.colostate.edu/cloudsat-static/info/dl/2c-snow-profile/2C-SNOW-PROFILE_PDICD.P1_R05.rev0_.pdf (accessed on 10 November 2023).
- Wood, N.B.; L’Ecuyer, T.S. What millimeter-wavelength radar reflectivity reveals about snowfall: An information-centric analysis. Atmos. Meas. Tech. 2021, 14, 869–888. [Google Scholar] [CrossRef]
- Wood, N.B.; L’Ecuyer, T.S.; Heymsfield, A.J.; Stephens, G.L.; Hudak, D.R.; Rodriguez, P. Estimating snow microphysical properties using collocated multisensor observations. J. Geophys. Res. Atmos. 2014, 119, 8941–8961. [Google Scholar] [CrossRef]
- Wood, N.B.; L’Ecuyer, T.S.; Heymsfield, A.J.; Stephens, G.L. Microphysical Constraints on Millimeter-Wavelength Scattering Properties of Snow Particles. J. Appl. Meteorol. Climatol. 2015, 54, 909–931. [Google Scholar] [CrossRef]
- Wood, N.B.; L’Ecuyer, T.S.; Bliven, F.L.; Stephens, G.L. Characterization of video disdrometer uncertainties and impacts on estimates of snowfall rate and radar reflectivity. Atmos. Meas. Tech. 2013, 6, 3635–3648. [Google Scholar] [CrossRef]
- Maahn, M.; Burgard, C.; Crewell, S.; Gorodetskaya, I.V.; Kneifel, S.; Lhermitte, S.; Van Tricht, K.; van Lipzig, N.P.M. How does the spaceborne radar blind zone affect derived surface snowfall statistics in polar regions? J. Geophys. Res. Atmos. 2014, 119, 13604–13620. [Google Scholar] [CrossRef]
- Valdivia, J.M.; Gatlin, P.N.; Kumar, S.; Scipión, D.; Silva, Y.; Petersen, W.A. The GPM-DPR Blind Zone Effect on Satellite-Based Radar Estimation of Precipitation over the Andes from a Ground-Based Ka-band Profiler Perspective. J. Appl. Meteorol. Climatol. 2022, 61, 441–456. [Google Scholar] [CrossRef]
- You, Y.; Wang, N.Y.; Ferraro, R.; Rudlosky, S. Quantifying the snowfall detection performance of the GPM microwave imager channels over land. J. Hydrometeorol. 2017, 18, 729–751. [Google Scholar] [CrossRef]
- You, Y.; Huffman, G.; Petkovic, V.; Milani, L.; Yang, J.X.; Ebtehaj, A.; Vahedizade, S.; Gu, G. Evaluation of Snowfall Retrieval Performance of GPM Constellation Radiometers Relative to Spaceborne Radars. J. Hydrometeorol. 2023, 24, 389–405. [Google Scholar] [CrossRef]
- Edel, L.; Claud, C.; Genthon, C.; Palerme, C.; Wood, N.; L’Ecuyer, T.; Bromwich, D. Arctic snowfall from CloudSat observations and reanalyses. J. Clim. 2020, 33, 2093–2109. [Google Scholar] [CrossRef]
- Thomas, M.A.; Devasthale, A.; L’Ecuyer, T.; Wang, S.; Koenigk, T.; Wyser, K. Snowfall distribution and its response to the Arctic Oscillation: An evaluation of HighResMIP models in the Arctic using CPR/CloudSat observations. Geosci. Model Dev. 2019, 12, 3759–3772. [Google Scholar] [CrossRef]
- Kulie, M.S.; Milani, L.; Wood, N.B.; Tushaus, S.A.; Bennartz, R.; L’Ecuyer, T.S. A shallow cumuliform snowfall census using spaceborne radar. J. Hydrometeorol. 2016, 17, 1261–1279. [Google Scholar] [CrossRef]
- Kulie, M.S.; Milani, L.; Wood, N.B.; L’Ecuyer, T.S. Global snowfall detection and measurement. In Advances in Global Change Research; Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J., Eds.; Springer: Cham, Switzerland, 2020; Volume 69, pp. 699–716. [Google Scholar]
- Milani, L.; Wood, N.B. Biases in CloudSat Falling Snow Estimates Resulting from Daylight-Only Operations. Remote Sens. 2021, 13, 2041. [Google Scholar] [CrossRef]
- Kulie, M.S.; Milani, L. Seasonal variability of shallow cumuliform snowfall: A CloudSat perspective. Q. J. R. Meteorol. Soc. 2018, 144, 329–343. [Google Scholar] [CrossRef]
- Casella, D.; Panegrossi, G.; Sanò, P.; Marra, A.C.; Dietrich, S.; Johnson, B.T.; Kulie, M.S. Evaluation of the GPM-DPR snowfall detection capability: Comparison with CloudSat-CPR. Atmos. Res. 2017, 197, 64–75. [Google Scholar] [CrossRef]
- Adhikari, A.; Liu, C.; Kulie, M.S. Global distribution of snow precipitation features and their properties from 3 years of GPM observations. J. Clim. 2018, 31, 3731–3754. [Google Scholar] [CrossRef]
- Chase, R.J.; Nesbitt, S.W.; McFarquhar, G.M.; Wood, N.B.; Heymsfield, G.M. Direct Comparisons between GPM-DPR and CloudSat Snowfall Retrievals. J. Appl. Meteorol. Climatol. 2022, 61, 1257–1271. [Google Scholar] [CrossRef]
- Hayden, L.; Liu, C. A multiyear analysis of global precipitation combining cloudsat and GPM precipitation retrievals. J. Hydrometeorol. 2018, 19, 1935–1952. [Google Scholar] [CrossRef]
- Turk, F.J.; Ringerud, S.E.; Camplani, A.; Casella, D.; Chase, R.J.; Ebtehaj, A.; Gong, J.; Kulie, M.; Liu, G.; Milani, L.; et al. Applications of a cloudsat-trmm and cloudsat-gpm satellite coincidence dataset. Remote Sens. 2021, 13, 2264. [Google Scholar] [CrossRef]
- Rysman, J.F.; Panegrossi, G.; Sanò, P.; Marra, A.C.; Dietrich, S.; Milani, L.; Kulie, M.S. SLALOM: An all-surface snow water path retrieval algorithm for the GPM microwave imager. Remote Sens. 2018, 10, 1278. [Google Scholar] [CrossRef]
- Rysman, J.-F.; Panegrossi, G.; Sanò, P.; Marra, A.C.; Dietrich, S.; Milani, L.; Kulie, M.S.; Casella, D.; Camplani, A.; Claud, C.; et al. Retrieving Surface Snowfall With the GPM Microwave Imager: A New Module for the SLALOM Algorithm. Geophys. Res. Lett. 2019, 46, 13593–13601. [Google Scholar] [CrossRef]
- Camplani, A.; Casella, D.; Sanò, P.; Panegrossi, G. The High lAtitude sNowfall Detection and Estimation aLgorithm for ATMS (HANDEL-ATMS): A new algorithm for the snowfall retrieval at high latitudes. Atmos. Meas. Tech. Discuss. 2023, 2023, 1–30. [Google Scholar] [CrossRef]
- Camplani, A.; Casella, D.; Sanò, P.; Panegrossi, G. The Passive microwave Empirical cold Surface Classification Algorithm (PESCA): Application to GMI and ATMS. J. Hydrometeorol. 2021, 22, 1727–1744. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.L.; Joyce, R.J.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Stocker, E.F.; Tan, J.; et al. Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG). Adv. Glob. Chang. Res. 2020, 67, 343–353. [Google Scholar] [CrossRef]
- Aonashi, K.; Awaka, J.; Hirose, M.; Kozu, T.; Kubota, T.; Liu, G.; Shige, S.; Kida, S.; Seto, S.; Takahashi, N.; et al. Gsmap passive microwave precipitation retrieval algorithm: Algorithm description and validation. J. Meteorol. Soc. Jpn. 2009, 87A, 119–136. [Google Scholar] [CrossRef]
- USHIO, T.; SASASHIGE, K.; KUBOTA, T.; SHIGE, S.; OKAMOTO, K.; AONASHI, K.; INOUE, T.; TAKAHASHI, N.; IGUCHI, T.; KACHI, M.; et al. A Kalman Filter Approach to the Global Satellite Mapping of Precipitation (GSMaP) from Combined Passive Microwave and Infrared Radiometric Data. J. Meteorol. Soc. Jpn. Ser. II 2009, 87A, 137–151. [Google Scholar] [CrossRef]
- Kubota, T.; Iguchi, T.; Kojima, M.; Liao, L.; Masaki, T.; Hanado, H.; Meneghini, R.; Oki, R. A Statistical Method for Reducing Sidelobe Clutter for the Ku-Band Precipitation Radar on board the GPM Core Observatory. J. Atmos. Ocean. Technol. 2016, 33, 1413–1428. [Google Scholar] [CrossRef]
- Yamamoto, M.K.; Shige, S. Implementation of an orographic/nonorographic rainfall classification scheme in the GSMaP algorithm for microwave radiometers. Atmos. Res. 2015, 163, 36–47. [Google Scholar] [CrossRef]
- Kubota, T.; Shige, S.; Hashizume, H.; Aonashi, K.; Takahashi, N.; Seto, S.; Hirose, M.; Takayabu, Y.N.; Ushio, T.; Nakagawa, K.; et al. Global Precipitation Map Using Satellite-Borne Microwave Radiometers by the GSMaP Project: Production and Validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2259–2275. [Google Scholar] [CrossRef]
- Shimizu, R.; Shige, S.; Iguchi, T.; Yu, C.-K.; Cheng, L.-W. Narrowing the Blind Zone of the GPM Dual-Frequency Precipitation Radar to Improve Shallow Precipitation Detection in Mountainous Areas. J. Appl. Meteorol. Climatol. 2023, 62, 1437–1450. [Google Scholar] [CrossRef]
- Chen, H.; Cifelli, R.; Chandrasekar, V.; Ma, Y. A Flexible Bayesian Approach to Bias Correction of Radar-Derived Precipitation Estimates over Complex Terrain: Model Design and Initial Verification. J. Hydrometeorol. 2019, 20, 2367–2382. [Google Scholar] [CrossRef]
- Arulraj, M.; Barros, A.P. Automatic detection and classification of low-level orographic precipitation processes from space-borne radars using machine learning. Remote Sens. Environ. 2021, 257, 112355. [Google Scholar] [CrossRef]
- Milani, L.; Kulie, M.S.; Casella, D.; Kirstetter, P.E.; Panegrossi, G.; Petkovic, V.; Ringerud, S.E.; Rysman, J.F.; Sano, P.; Wang, N.Y.; et al. Extreme lake-effect snow from a gpm microwave imager perspective: Observational analysis and precipitation retrieval evaluation. J. Atmos. Ocean. Technol. 2021, 38, 293–311. [Google Scholar] [CrossRef]
- Rahimi, R.; Ebtehaj, A.; Panegrossi, G.; Milani, L.; Ringerud, S.E.; Turk, F.J. Vulnerability of Passive Microwave Snowfall Retrievals to Physical Properties of Snowpack: A Perspective from Dense Media Radiative Transfer Theory. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Takbiri, Z.; Milani, L.; Guilloteau, C.; Foufoula-Georgiou, E. Quantitative investigation of radiometric interactions between snowfall, snow cover, and cloud liquid water over land. Remote Sens. 2021, 13, 2641. [Google Scholar] [CrossRef]
- Vahedizade, S.; Ebtehaj, A.; You, Y.; Ringerud, S.E.; Turk, F.J. Passive Microwave Signatures and Retrieval of High-Latitude Snowfall Over Open Oceans and Sea Ice: Insights from Coincidences of GPM and CloudSat Satellites. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Pettersen, C.; Kulie, M.S.; Bliven, L.F.; Merrelli, A.J.; Petersen, W.A.; Wagner, T.J.; Wolff, D.B.; Wood, N.B. A composite analysis of snowfall modes from four winter seasons in Marquette, Michigan. J. Appl. Meteorol. Climatol. 2020, 59, 103–124. [Google Scholar] [CrossRef]
- Pettersen, C.; Bliven, L.F.; Von Lerber, A.; Wood, N.B.; Kulie, M.S.; Mateling, M.E.; Moisseev, D.N.; Munchak, S.J.; Petersen, W.A.; Wolff, D.B. The precipitation imaging package: Assessment of microphysical and bulk characteristics of snow. Atmosphere 2020, 11, 785. [Google Scholar] [CrossRef]
- King, F.; Duffy, G.; Milani, L.; Fletcher, C.G.; Pettersen, C.; Ebell, K. DeepPrecip: A deep neural network for precipitation retrievals. Atmos. Meas. Tech. 2022, 15, 6035–6050. [Google Scholar] [CrossRef]
- Bailey, M.; Hallett, J. Growth rates and habits of ice crystals between −20° and −70 °C. J. Atmos. Sci. 2004, 61, 514–544. [Google Scholar] [CrossRef]
- Libbrecht, K.G. The physics of snow crystals. Rep. Prog. Phys. 2005, 68, 855–895. [Google Scholar] [CrossRef]
- Kneifel, S.; Leinonen, J.; Tyynelä, J.; Ori, D.; Battaglia, A. Scattering of Hydrometeors. In Advances in Global Change Research; Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J., Eds.; Springer: Cham, Switzerland, 2020; Volume 67, pp. 249–276. [Google Scholar]
- Kneifel, S.; Dias Neto, J.; Ori, D.; Moisseev, D.; Tyynelä, J.; Adams, I.S.; Kuo, K.-S.; Bennartz, R.; Berne, A.; Clothiaux, E.E.; et al. Summer Snowfall Workshop: Scattering Properties of Realistic Frozen Hydrometeors from Simulations and Observations, as well as Defining a New Standard for Scattering Databases. Bull. Am. Meteorol. Soc. 2018, 99, ES55–ES58. [Google Scholar] [CrossRef]
- Geer, A.J.; Baordo, F. Improved scattering radiative transfer for frozen hydrometeors at microwave frequencies. Atmos. Meas. Tech. 2014, 7, 1839–1860. [Google Scholar] [CrossRef]
- Tyynelä, J.; Leinonen, J.; Moisseev, D.; Nousiainen, T. Radar Backscattering from Snowflakes: Comparison of Fractal, Aggregate, and Soft Spheroid Models. J. Atmos. Ocean. Technol. 2011, 28, 1365–1372. [Google Scholar] [CrossRef]
- Tyynelä, J.; Chandrasekar, V. Characterizing falling snow using multifrequency dual-polarization measurements. J. Geophys. Res. Atmos. 2014, 119, 8268–8283. [Google Scholar] [CrossRef]
- Leinonen, J.; Moisseev, D. What do triple-frequency radar signatures reveal about aggregate snowflakes? J. Geophys. Res. Atmos. 2015, 120, 229–239. [Google Scholar] [CrossRef]
- Kuo, K.S.; Olson, W.S.; Johnson, B.T.; Grecu, M.; Tian, L.; Clune, T.L.; Van Aartsen, B.H.; Heymsfield, A.J.; Liao, L.; Meneghini, R. Full access the microwave radiative properties of falling snow derived from nonspherical ice particle models. Part I: An extensive database of simulated pristine crystals and aggregate particles, and their scattering properties. J. Appl. Meteorol. Climatol. 2016, 55, 691–708. [Google Scholar] [CrossRef]
- Ekelund, R.; Brath, M.; Mendrok, J.; Eriksson, P. ARTS Microwave Single Scattering Properties Database (1.1.0) [Data set]; Zenodo: Meyrin, Switzerland, 2020. [Google Scholar] [CrossRef]
- Leinonen, J.; Szyrmer, W. Radar signatures of snowflake riming: A modeling study. Earth Sp. Sci. 2015, 2, 346–358. [Google Scholar] [CrossRef] [PubMed]
- Botta, G.; Aydin, K.; Verlinde, J. Modeling of Microwave Scattering from Cloud Ice Crystal Aggregates and Melting Aggregates: A New Approach. IEEE Geosci. Remote Sens. Lett. 2010, 7, 572–576. [Google Scholar] [CrossRef]
- Ori, D.; Maestri, T.; Rizzi, R.; Cimini, D.; Montopoli, M.; Marzano, F.S. Scattering properties of modeled complex snowflakes and mixed-phase particles at microwave and millimeter frequencies. J. Geophys. Res. Atmos. 2014, 119, 9931–9947. [Google Scholar] [CrossRef]
- Johnson, B.T.; Olson, W.S.; Skofronick-Jackson, G. The microwave properties of simulated melting precipitation particles: Sensitivity to initial melting. Atmos. Meas. Tech. 2016, 9, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Gou, Y.; Ma, Y.; Chen, H.; Wen, Y. Radar-derived quantitative precipitation estimation in complex terrain over the eastern Tibetan Plateau. Atmos. Res. 2018, 203, 286–297. [Google Scholar] [CrossRef]
- Zhang, J.; Qi, Y.; Kingsmill, D.; Howard, K. Radar-Based Quantitative Precipitation Estimation for the Cool Season in Complex Terrain: Case Studies from the NOAA Hydrometeorology Testbed. J. Hydrometeorol. 2012, 13, 1836–1854. [Google Scholar] [CrossRef]
- Germann, U.; Boscacci, M.; Clementi, L.; Gabella, M.; Hering, A.; Sartori, M.; Sideris, I.V.; Calpini, B. Weather Radar in Complex Orography. Remote Sens. 2022, 14, 503. [Google Scholar] [CrossRef]
- Chen, H.; Cifelli, R.; White, A. Improving Operational Radar Rainfall Estimates Using Profiler Observations Over Complex Terrain in Northern California. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1821–1832. [Google Scholar] [CrossRef]
- Dinku, T.; Anagnostou, E.N.; Borga, M. Improving Radar-Based Estimation of Rainfall over Complex Terrain. J. Appl. Meteorol. 2002, 41, 1163–1178. [Google Scholar] [CrossRef]
- Bartsotas, N.S.; Anagnostou, E.N.; Nikolopoulos, E.I.; Kallos, G. Investigating Satellite Precipitation Uncertainty Over Complex Terrain. J. Geophys. Res. Atmos. 2018, 123, 5346–5359. [Google Scholar] [CrossRef]
- Duan, Y.; Wilson, A.M.; Barros, A.P. Scoping a field experiment: Error diagnostics of TRMM precipitation radar estimates in complex terrain as a basis for IPHEx2014. Hydrol. Earth Syst. Sci. 2015, 19, 1501–1520. [Google Scholar] [CrossRef]
- Kollias, P.; Albrecht, B. Why the melting layer radar reflectivity is not bright at 94 GHz. Geophys. Res. Lett. 2005, 32, L24818. [Google Scholar] [CrossRef]
- Marzano, F.S.; Roberti, L.; Di Michele, S.; Mugnai, A.; Tassa, A. Modeling of apparent radar reflectivity due to convective clouds at attenuating wavelengths. Radio Sci. 2003, 38, 2-1–2-16. [Google Scholar] [CrossRef]
- Bouniol, D.; Protat, A.; Plana-Fattori, A.; Giraud, M.; Vinson, J.-P.; Grand, N. Comparison of Airborne and Spaceborne 95-GHz Radar Reflectivities and Evaluation of Multiple Scattering Effects in Spaceborne Measurements. J. Atmos. Ocean. Technol. 2008, 25, 1983–1995. [Google Scholar] [CrossRef]
- Battaglia, A.; Tanelli, S.; Mroz, K.; Tridon, F. Multiple scattering in observations of the GPM dual-frequency precipitation radar: Evidence and impact on retrievals. J. Geophys. Res. Atmos. 2015, 120, 4090–4101. [Google Scholar] [CrossRef] [PubMed]
- Palerme, C.; Claud, C.; Wood, N.B.; L’Ecuyer, T.; Genthon, C. How Does Ground Clutter Affect CloudSat Snowfall Retrievals over Ice Sheets? IEEE Geosci. Remote Sens. Lett. 2019, 16, 342–346. [Google Scholar] [CrossRef]
- Arulraj, M.; Barros, A.P. Shallow Precipitation Detection and Classification Using Multifrequency Radar Observations and Model Simulations. J. Atmos. Ocean. Technol. 2017, 34, 1963–1983. [Google Scholar] [CrossRef]
- Arulraj, M.; Barros, A.P. Improving quantitative precipitation estimates in mountainous regions by modelling low-level seeder-feeder interactions constrained by Global Precipitation Measurement Dual-frequency Precipitation Radar measurements. Remote Sens. Environ. 2019, 231, 111213. [Google Scholar] [CrossRef]
- Derin, Y.; Anagnostou, E.; Anagnostou, M.N.; Kalogiros, J.; Casella, D.; Marra, A.C.; Panegrossi, G.; Sano, P. Passive microwave rainfall error analysis using high-resolution X-band dual-polarization radar observations in complex terrain. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2565–2586. [Google Scholar] [CrossRef]
- Derin, Y.; Yilmaz, K.K. Evaluation of Multiple Satellite-Based Precipitation Products over Complex Topography. J. Hydrometeorol. 2014, 15, 1498–1516. [Google Scholar] [CrossRef]
- Hirpa, F.A.; Gebremichael, M.; Hopson, T. Evaluation of high-resolution satellite precipitation products over very complex terrain in Ethiopia. J. Appl. Meteorol. Climatol. 2010, 49, 1044–1051. [Google Scholar] [CrossRef]
- L’Ecuyer, T.; Petersen, W.; Moiseev, D. Light Precipitation Validation Experiment (LPVEx) Science Plan. 2010. Available online: https://ghrc.nsstc.nasa.gov/home/sites/default/files/lpvex_science_plan_June2010.pdf (accessed on 10 November 2023).
- Iguchi, T.; Matsui, T.; Tao, W.K.; Khain, A.P.; Phillips, V.T.J.; Kidd, C.; Lecuyer, T.; Braun, S.A.; Hou, A. WRF-SBM simulations of melting-layer structure in mixed-phase precipitation events observed during LPVEx. J. Appl. Meteorol. Climatol. 2014, 53, 2710–2731. [Google Scholar] [CrossRef]
- Skofronick-Jackson, G.; Hudak, D.; Petersen, W.; Nesbitt, S.W.; Chandrasekar, V.; Durden, S.; Gleicher, K.J.; Huang, G.J.; Joe, P.; Kollias, P.; et al. Global precipitation measurement cold season precipitation experiment (GCPEX): For measurement’s sake, let it snow. Bull. Am. Meteorol. Soc. 2015, 96, 1719–1741. [Google Scholar] [CrossRef]
- Houze, R.A.; McMurdie, L.A.; Petersen, W.A.; Schwall Er, M.R.; Baccus, W.; Lundquist, J.D.; Mass, C.F.; Nijssen, B.; Rutledge, S.A.; Hudak, D.R.; et al. The olympic mountains experiment (Olympex). Bull. Am. Meteorol. Soc. 2017, 98, 2167–2188. [Google Scholar] [CrossRef] [PubMed]
- Chase, R.J.; Finlon, J.A.; Borque, P.; McFarquhar, G.M.; Nesbitt, S.W.; Tanelli, S.; Sy, O.O.; Durden, S.L.; Poellot, M.R. Evaluation of Triple-Frequency Radar Retrieval of Snowfall Properties Using Coincident Airborne In Situ Observations During OLYMPEX. Geophys. Res. Lett. 2018, 45, 5752–5760. [Google Scholar] [CrossRef]
- Erlingis, J.M.; Gourley, J.J.; Kirstetter, P.E.; Anagnostou, E.N.; Kalogiros, J.; Anagnostou, M.N.; Petersen, W. Evaluation of operational and experimental precipitation algorithms and microphysical insights during iphex. J. Hydrometeorol. 2018, 19, 113–125. [Google Scholar] [CrossRef]
- Barros, A.P.; Petersen, W.; Wilson, A.M. Integrated Precipitation and Hydrology Experiment (IPHEx)/Orographic Precipitation Processes Study Field Campaign Report; DOE ARM Climate Research Facility: Washington, DC, USA, 2016. [Google Scholar]
- Barros, A.P.; Lang, T.J. Monitoring the Monsoon in the Himalayas: Observations in Central Nepal, June 2001. Mon. Weather Rev. 2003, 131, 1408–1427. [Google Scholar] [CrossRef]
- McMurdie, L.A.; Heymsfield, G.M.; Yorks, J.E.; Braun, S.A.; Skofronick-Jackson, G.; Rauber, R.M.; Yuter, S.; Colle, B.; McFarquhar, G.M.; Poellot, M.; et al. Chasing Snowstorms: The Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) Campaign. Bull. Am. Meteorol. Soc. 2022, 103, E1243–E1269. [Google Scholar] [CrossRef]
- Schultz, C.J.; Harkema, S.S.; Mach, D.M.; Bateman, M.; Lang, T.J.; Heymsfield, G.M.; McLinden, M.L.; Li, L.; Poellot, M.; Sand, K. Remote Sensing of Electric Fields Observed Within Winter Precipitation During the 2020 Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) Field Campaign. J. Geophys. Res. Atmos. 2021, 126, e2021JD034704. [Google Scholar] [CrossRef]
- Colle, B.A.; Yeh, P.; Finlon, J.A.; McMurdie, L.; McDonald, V.; DeLaFrance, A. An Investigation of a Northeast U.S. Cyclone Event Without Well-Defined Snow Banding During IMPACTS. Mon. Weather Rev. 2023, 151, 2465–2484. [Google Scholar] [CrossRef]
- Heymsfield, A.; Bansemer, A.; Heymsfield, G.; Noone, D.; Grecu, M.; Toohey, D. Relationship of Multiwavelength Radar Measurements to Ice Microphysics from the IMPACTS Field Program. J. Appl. Meteorol. Climatol. 2023, 62, 289–315. [Google Scholar] [CrossRef]
- Blackwell, W.J.; Braun, S.; Bennartz, R.; Velden, C.; DeMaria, M.; Atlas, R.; Dunion, J.; Marks, F.; Rogers, R.; Annane, B.; et al. An overview of the TROPICS NASA Earth Venture Mission. Q. J. R. Meteorol. Soc. 2018, 144, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Kidd, C.; Matsui, T.; Blackwell, W.; Braun, S.; Leslie, R.; Griffith, Z. Precipitation Estimation from the NASA TROPICS Mission: Initial Retrievals and Validation. Remote Sens. 2022, 14, 2992. [Google Scholar] [CrossRef]
- Accadia, C.; Mattioli, V.; Colucci, P.; Schlüssel, P.; D’Addio, S.; Klein, U.; Wehr, T.; Donlon, C. Microwave and Sub-mm Wave Sensors: A European Perspective. In Satellite Precipitation Measurement; Advances in Global Change Research; Springer: Cham, Switzerland, 2020; Volume 67, pp. 83–97. [Google Scholar]
- Kayal, G.; Schlüssel, P. Introduction to the next generation EUMETSAT Polar System (EPS-SG) observation missions. In Proceedings of the SPIE Remote Sensing, Warsaw, Poland, 11–14 September 2017. [Google Scholar] [CrossRef]
- Mattioli, V.; Accadia, C.; Ackermann, J.; Di Michele, S.; Hans, I.; Schlussel, P.; Colucci, P.; Canestri, A. The EUMETSAT Polar System—Second Generation (EPS-SG) Passive Microwave and Sub-mm Wave Missions. Prog. Electromagn. Res. Symp. 2019, 2019, 3926–3933. [Google Scholar] [CrossRef]
- Birkeland, R. An Overview of Existing and Future Satellite Systems for Arctic Communication. In Proceedings of the 4S Symposium 2014, Majorca, Spain, 26–30 May 2014; pp. 1–11. [Google Scholar]
- Wehr, T.; Kubota, T.; Tzeremes, G.; Wallace, K.; Nakatsuka, H.; Ohno, Y.; Koopman, R.; Rusli, S.; Kikuchi, M.; Eisinger, M.; et al. The EarthCARE mission—Science and system overview. Atmos. Meas. Tech. 2023, 16, 3581–3608. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine; Division on Engineering and Physical Sciences; Space Studies Board; Committee on the Decadal Survey for Earth Science and Applications from Space. Thriving on Our Changing Planet; National Academies Press: Washington, DC, USA, 2018; ISBN 978-0-309-46757-5. [Google Scholar]
- Braun, S.A.; Yorks, J.; Thorsen, T.; Cecil, D.; Kirschbaum, D. NASA’S Earth System Observatory-Atmosphere Observing System. In Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 7391–7393. [Google Scholar]
- Kummerow, C.D.; Tanelli, S.; Takahashi, N.; Furukawa, K.; Klein, M.; Levizzani, V. Plans for Future Missions. Adv. Glob. Chang. Res. 2020, 67, 99–119. [Google Scholar] [CrossRef]
- Mitnik, L.; Kuleshov, V.; Baranyuk, A.; Mitnik, M.; Khazanova, E.; Panfilova, M. Monitoring of the Arctic Region Using Optical and Infrared Data from the Highly Elliptical Arktika-M Space System and Microwave Measurements from Low Earth Orbit Satellites. In Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 7194–7197. [Google Scholar]
Sensor | SSMIS | AMSR2 | GMI | MHS | ATMS | DPR | CPR |
---|---|---|---|---|---|---|---|
Type | Conical | Conical | Conical | Cross-track | Cross-track | Cross-track | Nadir only |
Satellite(s) | DMSP-F16 DMSP-F17 DMSP-F18 | GCOMW1 | GPM | NOAA-19 MetOp-B MeOp-C | SNPP NOAA-20 NOAA-21 | GPM | CloudSat |
Frequencies (GHz) | - | 6.925/7.3 VH | - | - | - | - | - |
- | 10.65 VH | 10.65 VH | - | - | 13.8 | - | |
19.35 VH | 18.70 VH | 18.70 VH | - | - | - | - | |
22.235 V | 23.80 VH | 23.80 V | - | 23.8 QV | - | - | |
37.0 VH | 36.5 VH | 36.5 VH | - | 31.4 QV | 35.5 | - | |
91.65 VH | 89.0 VH | 89.0 VH | 89 V | 87–91 QV | - | 94.05 | |
150 H | - | 165.5 VH | 157 V | 164–167 QH | - | - | |
183.31 H | - | 183.31 V ×2 | 183.31 H ×2 | 183.31 QH ×5 | - | - | |
- | - | - | 190.31 V | - | - | - | |
Along/ Cross-track resolution | 12.8 × 12.6 km | 4.7 × 4.3 km | 5.1 × 13.2 km | 16.9 × 17.6 km | 16.1 × 17.7 km | 5.4 × 5.4 km | 3.5 × 1.4 km |
Retrieval resolution | 50 × 40 km | 19 × 11 km | 16 × 10 km | 16 × 16 km $ | 16 × 16 km $ | 5.4 × 5.4 km 250 m # | 3.5 × 1.4 km 500 m # |
Precipitation Products | Description | Sensor(s) | Inputs |
---|---|---|---|
2AGPROF | PMW precipitation | GMI, AMSR2, SSMIS, MHS, ATMS | Brightness temperatures and model environmental information |
2ADPR | AMW precipitation | DPR | Radar backscatter and model environmental information |
2BCMB (CORRA) | Combined AMW/PMW precipitation | DPR, GMI | Brightness temperatures, radar backscatter and model environmental information |
IMERG L3A | Mapped multi-satellite merged precipitation | GMI, AMSR2, SSMIS, MHS, ATMS, GEO-IR | GPROF L2A, CPC gauges, GPCP, GEO IR, CORRA, CMORPH, PERSIANN-CCS and snow/sea ice cover |
GSMaP | Mapped multi-satellite merged precipitation | PMW sensors on multiple LEO satellites, GEO-IR | Brightness temperatures, GEO-IR, radar backscatter, CPC gauges and NOAA snow/sea ice cover |
2C-SNOW-PROFILE | AMW snowfall | CPR | Radar backscatter and model environmental information |
2C-RAIN-PROFILE | AMW rainfall | CPR | Radar backscatter and model environmental information |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milani, L.; Kidd, C. The State of Precipitation Measurements at Mid-to-High Latitudes. Atmosphere 2023, 14, 1677. https://doi.org/10.3390/atmos14111677
Milani L, Kidd C. The State of Precipitation Measurements at Mid-to-High Latitudes. Atmosphere. 2023; 14(11):1677. https://doi.org/10.3390/atmos14111677
Chicago/Turabian StyleMilani, Lisa, and Christopher Kidd. 2023. "The State of Precipitation Measurements at Mid-to-High Latitudes" Atmosphere 14, no. 11: 1677. https://doi.org/10.3390/atmos14111677
APA StyleMilani, L., & Kidd, C. (2023). The State of Precipitation Measurements at Mid-to-High Latitudes. Atmosphere, 14(11), 1677. https://doi.org/10.3390/atmos14111677