Dimensional Transitions in Turbulence: The Effects of Rotation and Stratification
Abstract
:1. Introduction
2. Mathematical Models
3. Numerical Results
3.1. Transition in the Absence of Rotation and Stratification
3.2. Dimensional Transition in Rotating Turbulence
3.3. Cyclonic-Anticyclonic Asymmetry in a Thin Layer
3.4. Dimensional Transition in Stably Stratified Flows
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frisch, U. Turbulence: The Legacy of AN Kolmogorov; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Smith, L.; Chasnov, J.; Waleffe, F. Crossover from Two- to Three-Dimensional Turbulence. Phys. Rev. Lett. 1996, 77, 2467–2470. [Google Scholar] [CrossRef] [PubMed]
- Ngan, K.; Straub, D.; Bartello, P. Aspect ratio effects in quasi-two-dimensional turbulence. Phys. Fluids 2005, 17, 125102. [Google Scholar] [CrossRef]
- Celani, A.; Musacchio, S.; Vincenzi, D. Turbulence in more than two and less than three dimensions. Phys. Rev. Lett. 2010, 104, 184506. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Byrne, D.; Falkovich, G.; Shats, M. Upscale energy transfer in thick turbulent fluid layers. Nature Phys. 2011, 7, 321–324. [Google Scholar] [CrossRef]
- Byrne, D.; Xia, H.; Shats, M. Robust inverse energy cascade and turbulence structure in three-dimensional layers of fluid. Phys. Fluids 2011, 23, 95109. [Google Scholar] [CrossRef]
- De Wit, X.M.; Van Kan, A.; Alexakis, A. Bistability of the large-scale dynamics in quasi-two-dimensional turbulence. J. Fluid Mech. 2022, 939, R2. [Google Scholar] [CrossRef]
- van Kan, A.; Nemoto, T.; Alexakis, A. Rare transitions to thin-layer turbulent condensates. J. Fluid Mech. 2019, 878, 356–369. [Google Scholar] [CrossRef]
- Pestana, T.; Hickel, S. Regime transition in the energy cascade of rotating turbulence. Phys. Rev. E 2019, 99, 053103. [Google Scholar] [CrossRef]
- van Kan, A.; Alexakis, A. Critical transition in fast-rotating turbulence within highly elongated domains. J. Fluid Mech. 2020, 899, A33. [Google Scholar] [CrossRef]
- Alexakis, A.; Biferale, L. Cascades and transitions in turbulent flows. Phys. Rep. 2018, 767, 1–101. [Google Scholar]
- Herring, J.; Orszag, S.; Kraichnan, R.; Fox, D. Decay of two-dimensional homogeneous turbulence. J. Fluid Mech. 1974, 66, 417. [Google Scholar] [CrossRef]
- Herring, J.; McWilliams, J. Comparison of direct numerical simulation of two-dimensional turbulence with two-point closure: The effects of intermittency. J. Fluid Mech. 1985, 153, 229–242. [Google Scholar] [CrossRef]
- Herring, J.; Métais, O. Numerical experiments in forced stably stratified turbulence. J. Fluid Mech. 1989, 202, 97–115. [Google Scholar] [CrossRef]
- Lindborg, E.; Brethouwer, G. Stratified turbulence forced in rotational and divergent modes. J. Fluid Mech. 2007, 586, 83–108. [Google Scholar] [CrossRef]
- Boffetta, G.; Musacchio, S.; Mazzino, A.; Rosti, M. Transient inverse energy cascade in free surface turbulence. Phys. Rev. Fluids 2023, 8, 034601. [Google Scholar] [CrossRef]
- Sozza, A.; Boffetta, G.; Muratore-Ginanneschi, P.; Musacchio, S. Dimensional transition of energy cascades in stably stratified forced thin fluid layers. Phys. Fluids 2015, 27, 035112. [Google Scholar] [CrossRef]
- van Kan, A.; Alexakis, A. Condensates in thin-layer turbulence. J. Fluid Mech. 2019, 864, 490–518. [Google Scholar] [CrossRef]
- Musacchio, S.; Boffetta, G. Condensate in quasi-two-dimensional turbulence. Phys. Rev. Fluids 2019, 4, 022602. [Google Scholar] [CrossRef]
- Musacchio, S.; Boffetta, G. Split energy cascade in turbulent thin fluid layers. Phys. Fluids 2017, 29, 111106. [Google Scholar] [CrossRef]
- Deusebio, E.; Boffetta, G.; Lindborg, E.; Musacchio, S. Dimensional transition in rotating turbulence. Phys. Rev. E 2014, 90, 023005. [Google Scholar] [CrossRef] [PubMed]
- Benavides, S.J.; Alexakis, A. Critical transitions in thin layer turbulence. J. Fluid Mech. 2017, 822, 364–385. [Google Scholar] [CrossRef]
- Poujol, B.; van Kan, A.; Alexakis, A. Role of the forcing dimensionality in thin-layer turbulent energy cascades. Phys. Rev. Fluids 2020, 5, 064610. [Google Scholar] [CrossRef]
- Boffetta, G.; Ecke, R. Two-Dimensional Turbulence. Ann. Rev. Fluid Mech. 2012, 44, 427. [Google Scholar] [CrossRef]
- Biferale, L.; Musacchio, S.; Toschi, F. Inverse Energy Cascade in Three-Dimensional Isotropic Turbulence. Phys. Rev. Lett. 2012, 108, 164501. [Google Scholar] [CrossRef]
- Yarom, E.; Vardi, Y.; Sharon, E. Experimental quantification of inverse energy cascade in deep rotating turbulence. Phys. Fluids 2013, 25, 85105. [Google Scholar] [CrossRef]
- Campagne, A.; Gallet, B.; Moisy, F.; Cortet, P.P. Direct and inverse energy cascades in a forced rotating turbulence experiment. Phys. Fluids 2014, 26, 125112. [Google Scholar] [CrossRef]
- Smith, L.; Waleffe, F. Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys. Fluids 1999, 11, 1608–1622. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, S.; Eyink, G.; Holm, D. Resonant interactions in rotating homogeneous three-dimensional turbulence. J. Fluid Mech. 2005, 542, 139–164. [Google Scholar] [CrossRef]
- Cambon, C.; Rubinstein, R.; Godeferd, F.S. Advances in wave turbulence: Rapidly rotating flows. New J. Phys. 2004, 6, 73. [Google Scholar] [CrossRef]
- Scott, J.F. Wave turbulence in a rotating channel. J. Fluid Mech. 2014, 741, 316–349. [Google Scholar] [CrossRef]
- Gallet, B. Exact two-dimensionalization of rapidly rotating large-Reynolds-number flows. J. Fluid Mech. 2015, 783, 412–447. [Google Scholar] [CrossRef]
- Seshasayanan, K.; Gallet, B. Onset of three-dimensionality in rapidly rotating turbulent flows. J. Fluid Mech. 2020, 901, R5. [Google Scholar] [CrossRef]
- Buzzicotti, M.; Aluie, H.; Biferale, L.; Linkmann, M. Energy transfer in turbulence under rotation. Phys. Rev. Fluids 2018, 3, 034802. [Google Scholar] [CrossRef]
- Moisy, F.; Morize, C.; Rabaud, M.; Sommeria, J. Decay laws, anisotropy and cyclone–anticyclone asymmetry in decaying rotating turbulence. J. Fluid Mech. 2011, 666, 5–35. [Google Scholar] [CrossRef]
- Bourouiba, L.; Bartello, P. The intermediate Rossby number range and two-dimensional-three-dimensional transfers in rotating decaying homogeneous turbulence. J. Fluid Mech. 2007, 587, 139. [Google Scholar] [CrossRef]
- Praud, O.; Sommeria, J.; Fincham, A.M. Decaying grid turbulence in a rotating stratified fluid. J. Fluid Mech. 2006, 547, 389–412. [Google Scholar] [CrossRef]
- van Bokhoven, L.J.A.; Cambon, C.; Liechtenstein, L.; Godeferd, F.S.; Clercx, H.J.H. Refined vorticity statistics of decaying rotating three-dimensional turbulence. J. Turbul. 2008, 9, N6. [Google Scholar] [CrossRef]
- Gallet, B.; Campagne, A.; Cortet, P.P.; Moisy, F. Scale-dependent cyclone-anticyclone asymmetry in a forced rotating turbulence experiment. Phys. Fluids 2014, 26, 35108. [Google Scholar] [CrossRef]
- Boffetta, G.; Toselli, F.; Manfrin, M.; Musacchio, S. Cyclone–anticyclone asymmetry in rotating thin fluid layers. J. Turb. 2021, 22, 242–253. [Google Scholar] [CrossRef]
- Bartello, P.; Metais, O.; Lesieur, M. Coherent structures in rotating three-dimensional turbulence. J. Fluid Mech. 1994, 273, 1–30. [Google Scholar] [CrossRef]
- Sreenivasan, B.; Davidson, P.A. On the formation of cyclones and anticyclones in a rotating fluid. Phys. Fluids 2008, 20, 085104. [Google Scholar] [CrossRef]
- Métais, O.; Bartello, P.; Garnier, E.; Riley, J.; Lesieur, M. Inverse cascade in stably stratified rotating turbulence. Dyn. Atmos. Ocean. 1996, 23, 193–203. [Google Scholar] [CrossRef]
- Smith, L.M.; Waleffe, F. Generation of slow large scales in forced rotating stratified turbulence. J. Fluid Mech. 2002, 451, 145–168. [Google Scholar] [CrossRef]
- Billant, P.; Chomaz, J.M. Experimental evidence for a new instability of a vertical columnar vortex pair in a strongly stratified fluid. J. Fluid Mech. 2000, 418, 167–188. [Google Scholar] [CrossRef]
- Waite, M.L.; Bartello, P. Stratified turbulence dominated by vortical motion. J. Fluid Mech. 2004, 517, 281–308. [Google Scholar] [CrossRef]
- Marino, R.; Mininni, P.D.; Rosenberg, D.; Pouquet, A. Inverse cascades in rotating stratified turbulence: Fast growth of large scales. Europhys. Lett. 2013, 102, 44006. [Google Scholar] [CrossRef]
- Brethouwer, G.; Billant, P.; Lindborg, E.; Chomaz, J.M. Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 2007, 585, 343–368. [Google Scholar] [CrossRef]
- Lindborg, E. The energy cascade in a strongly stratified fluid. J. Fluid Mech. 2006, 550, 207–242. [Google Scholar] [CrossRef]
- Brunet, M.; Gallet, B.; Cortet, P.P. Shortcut to geostrophy in wave-driven rotating turbulence: The quartetic instability. Phys. Rev. Lett. 2020, 124, 124501. [Google Scholar] [CrossRef]
- Marino, R.; Mininni, P.D.; Rosenberg, D.L.; Pouquet, A. Large-scale anisotropy in stably stratified rotating flows. Phys. Rev. E 2014, 90, 023018. [Google Scholar] [CrossRef]
- Pouquet, A.; Marino, R. Geophysical turbulence and the duality of the energy flow across scales. Phys. Rev. Lett. 2013, 111, 234501. [Google Scholar] [CrossRef] [PubMed]
- Waite, M.L.; Bartello, P. The transition from geostrophic to stratified turbulence. J. Fluid Mech. 2006, 568, 89–108. [Google Scholar] [CrossRef]
- Marino, R.; Pouquet, A.; Rosenberg, D. Resolving the paradox of oceanic large-scale balance and small-scale mixing. Phys. Rev. Lett. 2015, 114, 114504. [Google Scholar] [CrossRef] [PubMed]
- Bartello, P. Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci. 1995, 52, 4410–4428. [Google Scholar] [CrossRef]
- Herbert, C.; Marino, R.; Rosenberg, D.; Pouquet, A. Waves and vortices in the inverse cascade regime of stratified turbulence with or without rotation. J. Fluid Mech. 2016, 806, 165–204. [Google Scholar] [CrossRef]
- Pouquet, A.; Marino, R.; Mininni, P.D.; Rosenberg, D. Dual constant-flux energy cascades to both large scales and small scales. Phys. Fluids 2017, 29, 111108. [Google Scholar] [CrossRef]
- Van Kan, A.; Alexakis, A. Energy cascades in rapidly rotating and stratified turbulence within elongated domains. J. Fluid Mech. 2022, 933, A11. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boffetta, G. Dimensional Transitions in Turbulence: The Effects of Rotation and Stratification. Atmosphere 2023, 14, 1688. https://doi.org/10.3390/atmos14111688
Boffetta G. Dimensional Transitions in Turbulence: The Effects of Rotation and Stratification. Atmosphere. 2023; 14(11):1688. https://doi.org/10.3390/atmos14111688
Chicago/Turabian StyleBoffetta, Guido. 2023. "Dimensional Transitions in Turbulence: The Effects of Rotation and Stratification" Atmosphere 14, no. 11: 1688. https://doi.org/10.3390/atmos14111688
APA StyleBoffetta, G. (2023). Dimensional Transitions in Turbulence: The Effects of Rotation and Stratification. Atmosphere, 14(11), 1688. https://doi.org/10.3390/atmos14111688