The Association between Compound Hot Extremes and Mortality Risk in Shandong Province, China: A Time-Series Analysis
Abstract
:1. Introduction
2. Methods
2.1. Study Site
2.2. Data Collection
2.3. Definition of CHEs
2.4. Statistical Analysis
2.5. Sensitivity Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CHE(s) | Compound hot extreme(s) |
IPCC | Intergovernmental Panel on Climate Change |
AR6 | The Sixth Assessment Report |
HW | Heat waves |
ICD-10 | International Classification of Diseases, 10th Revision |
Tmax | Daily maximum temperature |
Tmin | Daily minimum temperature |
RH | Relative humidity |
ORNL | Oak Ridge National Laboratory |
CTS | Case time series |
DLNM | Distributed lag non-linear model |
ED | Excess deaths |
References
- Aldunce, P.; Armour, K.; Blanco, G.; Calvin, K.; Cheung, W.; Dasgupta, D.; Denton, F.; Diongue-niang, A.; Dodman, D.; Garschagen, M.; et al. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Cox, D.T.; Maclean, I.M.; Gardner, A.S.; Gaston, K.J. Global variation in diurnal asymmetry in temperature, cloud cover, specific humidity and precipitation and its association with leaf area index. Glob. Change Biol. 2020, 26, 7099–7111. [Google Scholar] [CrossRef]
- Yazdanpanah, H.; Eitzinger, J.; Baldi, M. Analysis of the extreme heat events in Iran. Int. J. Clim. Change Strateg. Manag. 2017, 9, 418–432. [Google Scholar] [CrossRef]
- Hao, Z.; Hao, F.; Singh, V.P.; Zhang, X. Changes in the severity of compound drought and hot extremes over global land areas. Environ. Res. Lett. 2018, 13, 124022. [Google Scholar] [CrossRef]
- Wu, X.; Hao, Z.; Hao, F.; Li, C.; Zhang, X. Spatial and Temporal Variations of Compound Droughts and Hot Extremes in China. Atmosphere 2019, 10, 95. [Google Scholar] [CrossRef]
- Tavakol, A.; Rahmani, V.; Harrington, J., Jr. Evaluation of hot temperature extremes and heat waves in the Mississippi River Basin. Atmos. Res. 2020, 239, 104907. [Google Scholar] [CrossRef]
- Li, Z.; Hu, J.; Meng, R.; He, G.; Xu, X.; Liu, T.; Zeng, W.; Li, X.; Xiao, J.; Huang, C.; et al. The association of compound hot extreme with mortality risk and vulnerability assessment at fine-spatial scale. Environ. Res. 2021, 198, 111213. [Google Scholar] [CrossRef]
- He, G.; Xu, Y.; Hou, Z.; Ren, Z.; Zhou, M.; Chen, Y.; Zhou, C.; Xiao, Y.; Yu, M.; Huang, B.; et al. The assessment of current mortality burden and future mortality risk attributable to compound hot extremes in China. Sci. Total Environ. 2021, 777, 146219. [Google Scholar] [CrossRef]
- Mora, C.; Dousset, B.; Caldwell, I.R.; Powell, F.E.; Geronimo, R.C.; Bielecki, C.R.; Counsell, C.W.W.; Dietrich, B.S.; Johnston, E.T.; Louis, L.V.; et al. Global risk of deadly heat. Nat. Clim. Change 2017, 7, 501–506. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mishra, V. A sixfold rise in concurrent day and night-time heatwaves in India under 2 degrees C warming. Sci. Rep. 2018, 8, 16922. [Google Scholar] [CrossRef]
- Ingole, V.; Sheridan, S.C.; Juvekar, S.; Achebak, H.; Moraga, P. Mortality risk attributable to high and low ambient temperature in Pune city, India: A time series analysis from 2004 to 2012. Environ. Res. 2022, 204, 112304. [Google Scholar] [CrossRef]
- Luan, G.; Yin, P.; Wang, L.; Zhou, M. The temperature-mortality relationship: An analysis from 31 Chinese provincial capital cities. Int. J. Environ. Health Res. 2018, 28, 192–201. [Google Scholar] [CrossRef]
- Meehl, G.A.; Arblaster, J.M.; Tebaldi, C. Contributions of natural and anthropogenic forcing to changes in temperature extremes over the United States. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Change 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Awasthi, A.; Vishwakarma, K.; Pattnayak, K.C. Retrospection of heatwave and heat index. Theor. Appl. Climatol. 2022, 147, 589–604. [Google Scholar] [CrossRef]
- Yadav, N.; Rajendra, K.; Awasthi, A.; Singh, C.; Bhushan, B. Systematic exploration of heat wave impact on mortality and urban heat island: A review from 2000 to 2022. Urban Clim. 2023, 51, 101622. [Google Scholar] [CrossRef]
- Ebi, K.L.; Vanos, J.; Baldwin, J.W.; Bell, J.E.; Hondula, D.M.; Errett, N.A.; Hayes, K.; Reid, C.E.; Saha, S.; Spector, J.; et al. Extreme Weather and Climate Change: Population Health and Health System Implications. Annu. Rev. Public Health 2021, 42, 293–315. [Google Scholar] [CrossRef]
- Shi, Z.; Xu, X.; Jia, G. Urbanization Magnified Nighttime Heat Waves in China. Geophys. Res. Lett. 2021, 48, e2021GL093603. [Google Scholar] [CrossRef]
- Yan, Z.W.; Ding, Y.H.; Zhai, P.M.; Song, L.C.; Cao, L.J.; Li, Z. Re-assessing climatic warming in China since the last century. Acta Meteorol. Sin. 2020, 78, 370–378. [Google Scholar]
- He, F.; Wei, J.; Dong, Y.; Liu, C.; Zhao, K.; Peng, W.; Lu, Z.; Zhang, B.; Xue, F.; Guo, X.; et al. Associations of ambient temperature with mortality for ischemic and hemorrhagic stroke and the modification effects of greenness in Shandong Province, China. Sci. Total Environ. 2022, 851, 158046. [Google Scholar] [CrossRef]
- Cao, Y.; Lu, Z.; Chu, J.; Xu, X.; Zhao, Z.; Geng, M.; Chen, G.; Hu, K.; Xia, J.; Liu, Q.; et al. Intraseasonal variation of the association between heat exposure and mortality risk in Shandong province, China. Urban Clim. 2023, 51, 101621. [Google Scholar] [CrossRef]
- Cai, W.; Zhang, C.; Suen, H.P.; Ai, S.; Bai, Y.; Bao, J.; Chen, B.; Cheng, L.; Cui, X.; Dai, H.; et al. The 2020 China report of the Lancet Countdown on health and climate change. Lancet Public Health 2021, 6, E64–E81. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Tett, S.F.B.; Yan, Z.; Zhai, P.; Feng, J.; Xia, J. Anthropogenically-driven increases in the risks of summertime compound hot extremes. Nat. Commun. 2020, 11, 528. [Google Scholar] [CrossRef]
- Hanna, E.G.; Tait, P.W. Limitations to Thermoregulation and Acclimatization Challenge Human Adaptation to Global Warming. Int. J. Environ. Res. Public Health 2015, 12, 8034–8074. [Google Scholar] [CrossRef]
- Wang, Y.; Nordio, F.; Nairn, J.; Zanobetti, A.; Schwartz, J.D. Accounting for adaptation and intensity in projecting heat wave-related mortality. Environ. Res. 2018, 161, 464–471. [Google Scholar] [CrossRef]
- Gasparrini, A. A tutorial on the case time series design for small-area analysis. Med. Res. Methodol. 2022, 22, 129. [Google Scholar] [CrossRef]
- Bär, S.; Bundo, M.; De Schrijver, E.; Müller, T.J.; Vicedo-Cabrera, A.M. Suicides and ambient temperature in Switzerland: A nationwide time-series analysis. Swiss Med. Wkly. 2022, 152, w30115. [Google Scholar] [CrossRef]
- Gasparrini, A.; Armstrong, B.; Kenward, M.G. Distributed lag non-linear models. Stat. Med. 2010, 29, 2224–2234. [Google Scholar] [CrossRef]
- Guo, Y.; Gasparrini, A.; Li, S.; Sera, F.; Vicedo-Cabrera, A.M.; de Sousa Zanotti Stagliorio Coelho, M.; Saldiva, P.H.N.; Lavigne, E.; Tawatsupa, B.; Punnasiri, K.; et al. Quantifying excess deaths related to heatwaves under climate change scenarios: A multicountry time series modelling study. PLoS Med. 2018, 15, e1002629. [Google Scholar] [CrossRef]
- Chen, Y.; Zhai, P. Revisiting summertime hot extremes in China during 1961–2015: Overlooked compound extremes and significant changes. Geophys. Res. Lett. 2017, 44, 5096–5103. [Google Scholar] [CrossRef]
- Howard, S.; Krishna, G. How hot weather kills: The rising public health dangers of extreme heat. Br. Med. J. 2022, 378, o1741. [Google Scholar] [CrossRef]
- He, C.; Kim, H.; Hashizume, M.; Lee, W.; Honda, Y.; Kim, S.E.; Kinney, P.L.; Schneider, A.; Zhang, Y.; Zhu, Y.; et al. The effects of night-time warming on mortality burden under future climate change scenarios: A modelling study. Lancet Planet. Health 2022, 6, E648–E657. [Google Scholar] [CrossRef]
- Rifkin, D.I.; Long, M.W.; Perry, M.J. Climate change and sleep: A systematic review of the literature and conceptual framework. Sleep Med. Rev. 2018, 42, 3–9. [Google Scholar] [CrossRef]
- Durgan, D.J.; Bryan, R.M., Jr. Cerebrovascular Consequences of Obstructive Sleep Apnea. J. Am. Heart Assoc. 2012, 1, e000091. [Google Scholar] [CrossRef]
- Philip, P.; Taillard, J.; Micoulaud-Franchi, J.-A. Sleep Restriction, Sleep Hygiene, and Driving Safety the Importance of Situational Sleepiness. Sleep Med. Clin. 2019, 14, 407. [Google Scholar] [CrossRef]
- Gronlund, C.J.; Sullivan, K.P.; Kefelegn, Y.; Cameron, L.; O’neill, M.S. Climate change and temperature extremes: A review of heat- and cold- related morbidity and mortality concerns of municipalities. Maturitas 2018, 114, 54–59. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, L.; Xu, Z.; Wang, L.; Huang, J.; Li, G.; Zhou, M. Have residents adapted to heat wave and cold spell in the 21st century? Evidence from 136 Chinese cities. Environ. Int. 2023, 173, 107811. [Google Scholar] [CrossRef]
- Burse, R.L. Sex-Differences in Human Thermoregulatory Response To Heat And Cold Stress. Hum. Factors 1979, 21, 687–699. [Google Scholar] [CrossRef]
- Denpetkul, T.; Phosri, A. Daily ambient temperature and mortality in Thailand: Estimated effects, attributable risks, and effect modifications by greenness. Sci. Total Environ. 2021, 791, 148373. [Google Scholar] [CrossRef]
- Kouis, P.; Kakkoura, M.; Ziogas, K.; Paschalidou, A.; Papatheodorou, S.I. The effect of ambient air temperature on cardiovascular and respiratory mortality in Thessaloniki, Greece. Sci. Total Environ. 2019, 647, 1351–1358. [Google Scholar] [CrossRef]
- Zhai, L.; Ma, X.; Wang, J.; Luan, G.; Zhang, H. Effects of ambient temperature on cardiovascular disease: A time-series analysis of 229,288 deaths during 2009–2017 in Qingdao, China. Int. J. Environ. Health Res. 2022, 32, 181–190. [Google Scholar] [CrossRef]
- Michelozzi, P.; Accetta, G.; De Sario, M.; D’Ippoliti, D.; Marino, C.; Baccini, M.; Biggeri, A.; Anderson, H.R.; Katsouyanni, K.; Ballester, F.; et al. High Temperature and Hospitalizations for Cardiovascular and Respiratory Causes in 12 European Cities. Am. J. Respir. Crit. Care Med. 2009, 179, 383–389. [Google Scholar] [CrossRef]
- Xu, F.; Wu, Q.; Yang, Y.; Zhang, L.; Yan, Z.; Li, H.; Li, J.; An, Z.; Wu, H.; Song, J.; et al. High temperature exacerbates ozone-induced airway inflammation: Implication of airway microbiota and metabolites. Sci. Total Environ. 2023, 903, 166795. [Google Scholar] [CrossRef]
- Keatinge, W.R.; Coleshaw SR, K.; Easton, J.C.; Cotter, F.; Mattock, M.B. Chelliah. Increased Platelet and Red-Cell Counts, Blood-Viscosity, And Plasma-Cholesterol Levels During Heat-Stress, And Mortality from Coronary And Cerebral Thrombosis. Am. J. Med. 1986, 81, 795–800. [Google Scholar] [CrossRef]
- Moellhoff, N.; Broer, P.N.; Heidekrueger, P.I.; Ninkovic, M.; Ehrl, D. Impact of Intraoperative Hypothermia on Microsurgical Free Flap Reconstructions. J. Reconstr. Microsurg. 2021, 37, 174–179. [Google Scholar] [CrossRef]
- Kampe, E.O.I.; Kovats, S.; Hajat, S. Impact of high ambient temperature on unintentional injuries in high-income countries: A narrative systematic literature review. BMJ Open 2016, 6, e010399. [Google Scholar] [CrossRef]
- Nitschke, M.; Tucker, G.R.; Bi, P. Morbidity and mortality during heatwaves in metropolitan Adelaide. Med. J. Aust. 2007, 187, 662–665. [Google Scholar] [CrossRef]
- Gasparrini, A.; Masselot, P.; Scortichini, M.; Schneider, R.; Mistry, M.N.; Sera, F.; Macintyre, H.L.; Phalkey, R.; Vicedo-Cabrera, A.M. Small-area assessment of temperature-related mortality risks in England and Wales: A case time series analysis. Lancet Planet. Health 2022, 6, E557–E564. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, R.; Kan, H. Mortality burden and related health economic assessment of non-optimal ambient temperature in China. Acta Meteorol. Sin. 2022, 80, 358–365. [Google Scholar]
Variables | Mean | Median | Sum | Proportion (%) | p Value |
---|---|---|---|---|---|
Total | 0.85 | 0.85 | 1,125,907 | 100.00 | |
Gender | |||||
Male | 0.49 | 0 | 649,409 | 57.68 | <0.001 |
Female | 0.36 | 0 | 476,498 | 42.32 | |
Age (year) | |||||
0– | 0.24 | 0 | 318,782 | 28.31 | <0.001 |
65– | 0.19 | 0 | 247,244 | 21.96 | |
≥75 | 0.42 | 0 | 559,881 | 49.73 | |
Educational level | |||||
Junior high school and below | 0.75 | 0 | 996,012 | 88.46 | 0.003 |
Technical secondary school, high school degree, or above | 0.04 | 0 | 63,193 | 5.61 | |
Lack of academic qualifications | 0.05 | 0 | 66,706 | 5.92 | |
Type of Disease | |||||
Cardiovascular diseases | 0.42 | 0 | 549,110 | 48.77 | <0.001 |
Respiratory diseases | 0.06 | 0 | 79,030 | 7.02 | |
Tumor | 0.24 | 0 | 324,537 | 28.82 | |
Other non-accidental deaths | 0.07 | 0 | 88,595 | 7.87 | |
Accidental death | 0.07 | 0 | 84,489 | 7.50 |
Group | Relative Risk (95%CI) | ||
---|---|---|---|
Hot Day | Hot Night | Compound Hot Extreme | |
Total | 1.012 (0.948, 1.080) | 1.439 (1.351, 1.533) * | 1.765 (1.636, 1.904) * |
Gender | |||
Male | 0.971 (0.899, 1.050) | 1.341 (1.253, 1.436) * | 1.586 (1.455, 1.728) * |
Female | 1.050 (0.963, 1.145) | 1.601 (1.463, 1.753) * | 1.993 (1.814, 2.190) * |
Age (year) | |||
0– | 0.946 (0.859, 1.042) | 1.266 (1.159, 1.383) * | 1.323 (1.186, 1.475) * |
65– | 0.926 (0.829, 1.035) | 1.313 (1.193, 1.445) * | 1.589 (1.389, 1.819) * |
≥75 | 1.057 (0.971, 1.151) | 1.625 (1.487, 1.776) * | 2.142 (1.932, 2.375) * |
Type of Disease | |||
Cardiovascular diseases | 1.062 (0.972, 1.162) | 1.640 (1.502, 1.791) * | 2.303 (2.077, 2.554) * |
Respiratory diseases | 0.854 (0.716, 1.020) | 1.614 (1.377, 1.892) * | 2.037 (1.708, 2.430) * |
Tumors | 0.899 (0.822, 0.983) | 1.083 (0.995, 1.178) | 1.053 (0.941, 1.180) |
Other non-accidental deaths | 0.987 (0.837, 1.164) | 1.420 (1.225, 1.647) * | 1.772 (1.491, 2.106) * |
Accidental death | 0.959 (0.813, 1.130) | 1.500 (1.285, 1.752) * | 1.518 (1.245, 1.850) * |
District | Excess Deaths (95%CI) | Excess Death Ratio (95%CI) | Excess Deaths per 1,000,000 Residents (95%CI) | ||||||
---|---|---|---|---|---|---|---|---|---|
Hot Day | Hot Night | Compound Hot Extreme | Hot Day | Hot Night | Compound Hot Extreme | Hot Day | Hot Night | Compound Hot Extreme | |
Shandong Province | 341 (−331, 902) | 5041 (4010, 6072) * | 4888 (4133, 5811) * | 0.18% (−0.51%, 1.41%) | 2.69% (2.14%, 3.25%) * | 2.60% (2.20%, 3.10%) * | 3 (−3, 8) | 52 (40, 62) * | 50 (42, 58) * |
Jinan | −54 (−227, 144) | 780 (422, 1234) * | 373 (167, 616) * | −0.36% (−1.51%, 0.96%) | 5.18% (2.80%, 8.20%) * | 2.48% (1.11%, 4.10%) * | −7 (−27, 17) | 93 (50, 147) * | 45 (20, 73) * |
Zibo | 95 (−19, 226) | 163 (40, 321) * | 555 (279, 937) * | 1.11% (−0.22%, 2.64%) | 1.91% (0.46%, 3.74%) * | 6.48% (3.26%, 10.94%) * | 20 (−3, 50) | 35 (8, 70) * | 120 (60, 203) * |
Zaozhuang | 115 (−17, 290) | −28 (−124, 95) | 172 (3, 452) * | 1.57% (−0.23%, 3.96%) | −0.38% (−1.70%, 1.30%) | 2.35% (0.04%, 6.17%) * | 30 (−5, 75) | −7 (−32, 25) | 45 (0, 117) * |
Dongying | −39 (−89, 27) | −7 (−66, 77) | 69 (−17, 224) | −1.12% (−2.58%, 0.79%) | −0.21% (−1.92%, 2.23%) | 2.01% (−0.49%, 6.50%) | −18 (−42, 13) | −3 (−32, 37) | 33 (−8, 107) |
Yantai | −78 (−215, 107) | 21 (−13, 211) | 405 (244, 578) * | −0.48% (−1.32%, 0.66%) | 0.13% (−0.08%, 1.30%) | 2.50% (1.50%, 3.56%) * | −12 (−30, 15) | 3 (−2, 30) | 57 (33, 80) * |
Weifang | 22 (−131, 203) | 319 (119, 555) * | 238 (104, 397) * | 0.12% (−0.75%, 1.16%) | 1.82% (0.68%, 3.18%) * | 1.36% (0.59%, 2.27%) * | 2 (−13, 22) | 33 (13, 60) * | 25 (12, 42) * |
Jining | 109 (−89, 351) | 899 (583, 1288) * | 226 (68, 431) * | 0.72% (−0.58%, 2.31%) | 5.91% (3.83%, 8.47%) * | 1.48% (0.45%, 2.83%) * | 13 (−10, 42) | 108 (70, 155) * | 27 (8, 52) * |
Taian | 189 (37, 383) * | 951 (685, 1288) * | 142 (−6, 336) | 1.58% (0.30%, 3.19%) * | 7.92% (5.71%, 10.74%) * | 1.18% (−0.05%, 2.80%) | 33 (7, 68) * | 168 (122, 228) * | 25 (−2, 60) |
Weihai | −14 (−115, 103) | 147 (21, 339) * | 158 (69, 287) * | −0.22% (−1.83%, 1.65%) | 2.34% (0.33%, 5.41%) * | 2.51% (1.10%, 4.58%) * | −5 (−40, 35) | 52 (7, 117) * | 55 (23, 100) * |
Rizhao | −54 (−115, 36) | 100 (−4, 238) | 357 (207, 568) * | −1.04% (−2.20%, 0.70%) | 1.92% (−0.08%, 4.57%) | 6.86% (3.97%, 10.91%) * | −18 (−40, 12) | 33 (−2, 82) | 122 (70, 193) * |
Linyi | −84 (−285, 176) | 549 (320, 839) * | 580 (305, 963) * | −0.44% (−1.51%, 0.93%) | 2.90% (1.69%, 4.44%) * | 3.07% (1.61%, 5.09%) * | −8 (−28, 17) | 53 (32, 82) * | 57 (30, 93) * |
Dezhou | −23 (−242, 291) | 220 (10, 505) * | 441 (188, 793) * | −0.21% (−2.26%, 2.72%) | 2.05% (0.09%, 4.70%) * | 4.11% (1.75%, 7.39%) * | −3 (−42, 50) | 38 (2, 87) * | 77 (32, 137) * |
Liaocheng | 272 (−13, 679) | 476 (227, 765) * | 190 (−38, 600) | 2.33% (−0.11%, 5.82%) | 4.09% (1.94%, 6.56%) * | 1.63% (−0.32%, 5.15%) | 45 (−2, 112) | 78 (38, 127) * | 32 (−7, 100) |
Binzhou | −1 (−12, 12) | 107 (−34, 323) | 373 (223, 566) * | −0.01% (−0.16%, 0.17%) | 1.47% (−0.46%, 4.43%) | 5.12% (3.06%, 7.76%) * | 0 (−3, 3) | 28 (−8, 83) | 97 (58, 147) * |
Heze | −41 (−375, 515) | 274 (64, 544) * | 396 (151, 696) * | −0.23% (−2.08%, 2.85%) | 1.52% (0.35%, 3.01%) * | 2.19% (0.83%, 3.86%) * | −5 (−43, 60) | 32 (7, 63) * | 47 (17, 80) * |
Qingdao | −73 (−202, 80) | 71 (−67, 233) | 214 (101, 357) * | −0.51% (−1.42%, 0.56%) | 0.50% (−0.47%, 1.63%) | 1.50% (0.71%, 2.50%) * | −8 (−23, 8) | 8 (−7, 27) | 23 (12, 40) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, Y.; Liu, D.; Hu, K.; Lu, Z.; Chu, J.; Xu, X.; Lu, P.; Wang, H.; Cao, Y.; Zhao, Q.; et al. The Association between Compound Hot Extremes and Mortality Risk in Shandong Province, China: A Time-Series Analysis. Atmosphere 2023, 14, 1710. https://doi.org/10.3390/atmos14121710
Xing Y, Liu D, Hu K, Lu Z, Chu J, Xu X, Lu P, Wang H, Cao Y, Zhao Q, et al. The Association between Compound Hot Extremes and Mortality Risk in Shandong Province, China: A Time-Series Analysis. Atmosphere. 2023; 14(12):1710. https://doi.org/10.3390/atmos14121710
Chicago/Turabian StyleXing, Yue, Danru Liu, Kejia Hu, Zilong Lu, Jie Chu, Xiaohui Xu, Peng Lu, Haitao Wang, Yanwen Cao, Qi Zhao, and et al. 2023. "The Association between Compound Hot Extremes and Mortality Risk in Shandong Province, China: A Time-Series Analysis" Atmosphere 14, no. 12: 1710. https://doi.org/10.3390/atmos14121710
APA StyleXing, Y., Liu, D., Hu, K., Lu, Z., Chu, J., Xu, X., Lu, P., Wang, H., Cao, Y., Zhao, Q., Fornah, L., Guo, X., Ma, J., & Ma, W. (2023). The Association between Compound Hot Extremes and Mortality Risk in Shandong Province, China: A Time-Series Analysis. Atmosphere, 14(12), 1710. https://doi.org/10.3390/atmos14121710