Assessing Earthquake Forecasting Performance Based on Annual Mobile Geomagnetic Observations in Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mobile Geomagnetic Data
2.2. Data Preprocessing Methods
- First, diurnal correction is performed. This step is to eliminate the external field effect such as the diurnal variations. The single reference method is adopted, that is, the daily variation in observation data is corrected by the continuous observation of the geomagnetic station nearest to the measuring site. The diurnal variation correction day is selected as the relatively calm day in terms of the magnetic situation change during the month, and the time is from 0:00 to 3:00 (Beijing time). Five geomagnetic stations are selected within the study area: Lanzhou, Tianshui, Chengdu, Xichang, and Tonghai station. After performing the diurnal variation correction, the mean square error of the total intensity is less than 1.5 nT, and the mean square error of declination and inclination are less than 0.5 nT for all observation stations.
- Second, long-term variation correction is carried out. This step is to eliminate secular variations from the main magnetic field in mobile geomagnetic observation data. Based on the 6-order NOC nonlinear model of secular variations for the geomagnetic basic field [46,47,48,49] in China from 1995 to 2020, we obtain the secular variations for each observation in every year and correct their variation values.
- Third, we eliminate the main magnetic field. This step is to eliminate the main magnetic field in the secular variation data using IGRF-12 as the main magnetic field reference model, which was published by the International Association of Geomagnetism and Aeronomy (IAGA) [50]. We calculate the differences between all secular correction data and IGRF-12 to obtain the lithospheric magnetic field data for each year from 2010 to 2015.
- Finally, we calculate annual changes in the lithospheric magnetic field. This step is to obtain the annual changes in the lithospheric magnetic field by computing the differences in lithospheric magnetic field data in the adjacent two years.
2.3. H Value and F Value Calculation
3. Results
3.1. Spatial H Value and F Value in Each Year
Time | Longitude (°N) | Latitude (°E) | Magnitude |
---|---|---|---|
9 August 2011 | 98.7 | 25.0 | 5.2 |
1 November 2011 | 105.4 | 32.5 | 5.4 |
24 June 2012 | 100.7 | 27.7 | 5.7 |
Time | Longitude (°N) | Latitude (°E) | Magnitude |
---|---|---|---|
7 September 2012 | 104.0 | 27.5 | 5.7 |
7 September 2012 | 104.1 | 27.5 | 5.6 |
3 March 2013 | 99.8 | 25.9 | 5.5 |
17 April 2013 | 99.8 | 25.9 | 5.0 |
20 April 2013 | 103.0 | 30.3 | 7.0 |
20 April 2013 | 102.9 | 30.3 | 5.1 |
20 April 2013 | 102.9 | 30.2 | 5.3 |
21 April 2013 | 103.1 | 30.3 | 5.0 |
21 April 2013 | 103.0 | 30.3 | 5.4 |
22 July 2013 | 104.2 | 34.5 | 6.6 |
22 July 2013 | 104.2 | 34.6 | 5.6 |
Time | Longitude (°N) | Latitude (°E) | Magnitude |
---|---|---|---|
28 August 2013 | 99.3 | 28.2 | 5.1 |
31 August 2013 | 99.4 | 28.2 | 5.9 |
5 April 2014 | 103.6 | 28.1 | 5.3 |
Time | Longitude (°N) | Latitude (°E) | Magnitude |
---|---|---|---|
3 August 2014 | 103.3 | 27.1 | 6.5 |
1 October 2014 | 102.8 | 28.4 | 5.0 |
7 October 2014 | 100.5 | 23.4 | 6.6 |
22 November 2014 | 101.7 | 30.3 | 6.3 |
25 November 2014 | 101.7 | 30.2 | 5.8 |
6 December 2014 | 100.5 | 23.3 | 5.8 |
6 December 2014 | 100.5 | 23.3 | 5.9 |
14 January 2015 | 103.2 | 29.3 | 5.0 |
Time | Longitude (°N) | Latitude (°E) | Magnitude |
---|---|---|---|
30 October 2015 | 99.5 | 25.1 | 5.1 |
18 May 2016 | 99.5 | 26.1 | 5.0 |
3.2. Forecasting Performance during 2010–2015
4. Discussion
4.1. The Advantage of Using Mobile Geomagnetic Data When Assessing Earthquake Forecasting
4.2. The Mechanism of H Value and F Value
4.3. The Influences of Radius and Station Numbers in Parameter Selection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ogata, Y. Prediction and validation of short-to-long-term earthquake probabilities in inland Japan using the hierarchical space-time ETAS and space-time Poisson process models. Earth Planets Space 2022, 74, 110. [Google Scholar] [CrossRef]
- Iacoletti, S.; Cremen, G.; Galasso, C. Validation of the Epidemic–Type Aftershock Sequence (ETAS) Models for Simulation-Based Seismic Hazard Assessments. Seismol. Res. Lett. 2022, 93, 1601–1618. [Google Scholar] [CrossRef]
- Wang, R.; Chang, Y.; Miao, M.; Zeng, Z.; Chen, H.; Shi, H.; Li, D.; Liu, L.; Su, Y.; Han, P. Assessing Earthquake Forecast Performance Based on b Value in Yunnan Province, China. Entropy 2021, 23, 730. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Zhou, S.; Zhuang, J. Inferring seismic hazard in Sichuan-Yunnan region of China based on the modern earthquake catalogue (1980–2019). Earthq. Sci. 2020, 33, 107–115. [Google Scholar] [CrossRef]
- Lingfang, L.I.; Shi, Y.; Cheng, S. Exploration of long short-term memory neural network in intermediate earthquake forecast: A case study in Sichuan-Yunnan region. Chin. J. Geophys. Chin. Ed. 2022, 65, 12–25. [Google Scholar]
- Shi, H.X.; Meng, L.Y.; Zhang, X.M.; Chang, Y.; Yang, Z.T.; Xie, W.Y.; Hattori, K.; Han, P. Decrease in b value prior to the Wenchuan earthquake (Ms8.0). Chin. J. Geophys. Chin. Ed. 2018, 61, 1874–1882. [Google Scholar]
- Xie, W.; Hattori, K.; Han, P.; Shi, H. Temporal Variation of b Value with Statistical Test in Wenchuan Area, China Prior to the 2008 Wenchuan Earthquake. Entropy 2022, 24, 494. [Google Scholar] [CrossRef]
- Wang, T.; Zhuang, J.; Kato, T.; Bebbington, M. Assessing the potential improvement in short-term earthquake forecasts from incorporation of GPS data. Geophys. Res. Lett. 2013, 40, 2631–2635. [Google Scholar] [CrossRef]
- Wang, F.; Wang, M.; Wang, Y.; Shen, Z.-K. Earthquake potential of the Sichuan-Yunnan region, western China. J. Asian Earth Sci. 2015, 107, 232–243. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, S.; Zhuang, J.; Zhang, B.; Wu, X.; Liang, B. Statistical evaluation of earthquake forecast efficiency using earthquake-catalog and fault slip rate in the Sichuan-Yunnan region, China. Front. Earth Sci. 2023, 11, 1091408. [Google Scholar] [CrossRef]
- Sarlis, N.V.; Skordas, E.S.; Christopoulos, S.-R.G.; Varotsos, P.A. Natural Time Analysis: The Area under the Receiver Operating Characteristic Curve of the Order Parameter Fluctuations Minima Preceding Major Earthquakes. Entropy 2020, 22, 583. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-Y.; Hattori, K.; Chen, Y.-I. Application of Total Electron Content Derived from the Global Navigation Satellite System for Detecting Earthquake Precursors. In Pre–Earthquake Processes; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; American Geophysical Union: Washington, DC, USA, 2018; pp. 305–317. [Google Scholar]
- Zhang, X.M.; Shen, X.H. The development in seismo-ionospheric coupling mechanism. Prog. Earthq. Sci. Chin. Ed. 2022, 52, 193–202. [Google Scholar]
- Han, P.; Zhuang, J.; Hattori, K.; Chen, C.-H.; Febriani, F.; Chen, H.; Yoshino, C.; Yoshida, S. Assessing the Potential Earthquake Precursory Information in ULF Magnetic Data Recorded in Kanto, Japan during 2000–2010: Distance and Magnitude Dependences. Entropy 2020, 22, 859. [Google Scholar] [CrossRef] [PubMed]
- Uyeda, S.; Nagao, T.; Kamogawa, M. Short-term earthquake prediction: Current status of seismo-electromagnetics. Tectonophysics 2009, 470, 205–213. [Google Scholar] [CrossRef]
- Hattori, K. ULF Geomagnetic Changes Associated with Large Earthquakes. Terr. Atmos. Ocean. Sci. 2004, 15, 329–360. [Google Scholar] [CrossRef]
- Han, P.; Hattori, K.; Hirokawa, M.; Zhuang, J.; Chen, C.; Febriani, F.; Yamaguchi, H.; Yoshino, C.; Liu, J.; Yoshida, S. Statistical analysis of ULF seismomagnetic phenomena at Kakioka, Japan, during 2001–2010. J. Geophys. Res. 2014, 119, 4998–5011. [Google Scholar] [CrossRef]
- Huang, Q.; Han, P.; Hattori, K.; Ren, H. Electromagnetic Signals Associated with Earthquakes. In Seismoelectric Exploration; Grobbe, N., Revil, A., Zhu, Z., Slob, E., Eds.; American Geophysical Union: Washington, DC, USA, 2020; pp. 415–436. [Google Scholar]
- Liu, X.; Hattori, K.; Han, P.; Chen, H.; Chie, Y.; Zhao, X. Possible Anomalous Changes in Solar Quiet Daily Geomagnetic Variation (Sq) Related to the 2011 off the Pacific coast of Tohoku Earthquake (Mw 9.0). Pure Appl. Geophys. 2020, 177, 333–346. [Google Scholar] [CrossRef]
- Chen, C.-H.; Sun, Y.-Y.; Lin, K.; Zhou, C.; Xu, R.; Qing, H.; Gao, Y.; Chen, T.; Wang, F.; Yu, H.; et al. A New Instrumental Array in Sichuan, China, to Monitor Vibrations and Perturbations of the Lithosphere, Atmosphere, and Ionosphere. Surv. Geophys. 2021, 42, 1425–1442. [Google Scholar] [CrossRef]
- Febriani, F.; Dewi, C.N.; Ahadi, S.; Anggono, T.; Syuhada; Hasib, M.; Prasetio, A.D. Detrended Fluctuation Analysis (DFA) of Gunungsitoli Geomagnetic Station to Assess the Possibility of the Earthquake Precursor. In Proceedings of the International Conference on Radioscience, Equatorial Atmospheric Science and Environment and Humanosphere Science, Singapore, 3 July 2023; Basit, A., Yulihastin, E., Cahyarini, S.Y., Santoso, H., Pranowo, W.S., Slamet, S.L., Belgaman, H.A., Eds.; Springer Nature: Singapore, 2023; pp. 45–54. [Google Scholar]
- Febriani, F.; Han, P.; Yoshino, C.; Hattori, K.; Nurdiyanto, B.; Effendi, N.; Maulana, I.; Gaffar, E. Ultra low frequency (ULF) electromagnetic anomalies associated with large earthquakes in Java Island, Indonesia by using wavelet transform and detrended fluctuation analysis. Nat. Hazards Earth Syst. Sci. 2014, 14, 789–798. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, S.; Hattori, K.; Taylor, P. Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; John Wiley & Sons: Hoboken, NJ, USA, 2018; Volume 234. [Google Scholar]
- Chen, H.; Han, P.; Hattori, K. Recent Advances and Challenges in the Seismo-Electromagnetic Study: A Brief Review. Remote Sens. 2022, 14, 5893. [Google Scholar] [CrossRef]
- Han, P.; Huang, Q.H.; Xiu, J.G. Principal component analysis of geomagnetic diurnal variation associated with earthquakes: Case study of the M6.1 Iwate-ken Nairiku Hokubu earthquake. Chin. J. Geophys. Chin. Ed. 2009, 52, 1556–1563. [Google Scholar]
- Zhang, X.; Li, M.; Guan, H.P. Anomaly analysis of earth resistivity observations before the Wenchuan earthquake. Earthquake 2009, 29, 108–115. [Google Scholar]
- Xie, T.; Xue, Y.; Ye, Q.; Lu, J. Anisotropic change in apparent resistivity before earthquakes of MS ≥ 7.0 in China mainland. Geomat. Nat. Hazards Risk 2022, 13, 1207–1228. [Google Scholar] [CrossRef]
- Wang, T.; Cui, B.; Ye, Q.; Li, J.; Wang, L.; Tong, Q. Temporal-spatial distribution of apparent resistivity before and after the Jiuzhaigou Ms7.0 earthquake. Chin. J. Geophys. Chin. Ed. 2020, 63, 2345–2356. [Google Scholar]
- Ouyang, X.Y.; Parrot, M.; Bortnik, J. ULF Wave Activity Observed in the Nighttime Ionosphere Above and Some Hours Before Strong Earthquakes. J. Geophys. Res. Space Phys 2020, 125, e2020JA028396. [Google Scholar] [CrossRef]
- Han, P.; Hattori, K.; Zhuang, J.; Chen, C.; Liu, J.; Yoshida, S. Evaluation of ULF seismo-magnetic phenomena in Kakioka, Japan by using Molchan’s error diagram. Geophys. J. Int. 2017, 208, 482–490. [Google Scholar] [CrossRef]
- Han, P.; Hattori, K.; Huang, Q.; Hirano, T.; Ishiguro, Y.; Yoshino, C.; Febriani, F. Evaluation of ULF electromagnetic phenomena associated with the 2000 Izu Islands earthquake swarm by wavelet transform analysis. Nat. Hazards Earth Syst. Sci. 2011, 11, 965–970. [Google Scholar] [CrossRef]
- Hattori, K.; Han, P. Statistical analysis and assessment of ultralow frequency magnetic signals in Japan as potential earthquake precursors. In Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; John Wiley & Sons: Hoboken, NJ, USA, 2018; p. 229. [Google Scholar]
- Hattori, K.; Han, P.; Yoshino, C.; Febriani, F.; Yamaguchi, H.; Chen, C. Investigation of ULF Seismo-Magnetic Phenomena in Kanto, Japan During 2000–2010: Case Studies and Statistical Studies. Surv. Geophys. 2013, 34, 293–316. [Google Scholar] [CrossRef]
- Politis, D.; Potirakis, S.M.; Hayakawa, M. Criticality analysis of 3-year-long VLF subionospheric propagation data possibly related to significant earthquake events in Japan. Nat. Hazards 2020, 102, 47–66. [Google Scholar] [CrossRef]
- Shen, X.H.; Zhima, Z.R.; Zhao, S.F.; Qian, G.; Ye, Q.; Ruzhin, Y. VLF radio wave anomalies associated with the 2010 Ms 7.1 Yushu earthquake. Adv. Space Res. 2017, 59, 2636–2644. [Google Scholar] [CrossRef]
- Maurya, A.K.; Venkatesham, K.; Tiwari, P.; Vijaykumar, K.; Singh, R.; Singh, A.K.; Ramesh, D.S. The 25 April 2015 Nepal Earthquake: Investigation of precursor in VLF subionospheric signal. J. Geophys. Res. Space Phys. 2016, 121, 10403–10416. [Google Scholar] [CrossRef]
- Popova, I.; Rozhnoi, A.; Solovieva, M.; Chebrov, D.; Hayakawa, M. The Behavior of VLF/LF Variations Associated with Geomagnetic Activity, Earthquakes, and the Quiet Condition Using a Neural Network Approach. Entropy 2018, 20, 691. [Google Scholar] [CrossRef] [PubMed]
- Heki, K. Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett. 2011, 38, 6011–6015. [Google Scholar] [CrossRef]
- He, L.M.; Heki, K. Three-dimensional distribution of ionospheric anomalies prior to three large earthquakes in Chile. Geophys. Res. Lett. 2016, 43, 7287–7293. [Google Scholar] [CrossRef]
- Iwata, T.; Umeno, K. Preseismic ionospheric anomalies detected before the 2016 Kumamoto earthquake. J. Geophys. Res. Space Phys. 2017, 122, 3602–3616. [Google Scholar] [CrossRef]
- Chen, H.; Miao, M.; Chang, Y.; Wang, Q.; Shen, X.; Hattori, K.; Han, P. Singular Spectrum Analysis of the Total Electron Content Changes Prior to M ≥ 6.0 Earthquakes in the Chinese Mainland During 1998–2013. Front. Earth Sci. 2021, 9, 677163. [Google Scholar] [CrossRef]
- Wang, Z.; Su, S.; Yuan, J. The existence of underground gas storage causes geomagnetic anomaly in this area? J. Phys. Conf. Ser. 2021, 1980, 012007. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, J.; Chen, B.; Chen, S.; Wang, C.; Mao, F. Local magnetic field changes during gas injection and extraction in an underground gas storage. Geophys. J. Int. 2019, 217, 271–279. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, B.; Yuan, J.; Yang, F.; Jia, L.; Wang, C. Localized geomagnetic field anomalies in an underground gas storage. Phys. Earth Planet. Inter. 2018, 283, 92–97. [Google Scholar] [CrossRef]
- Gu, Z.; Zhan, Z.; Gao, J.; Han, W.; An, Z.; Yao, T.; Chen, B. Geomagnetic survey and geomagnetic model research in China. Earth Planets Space 2006, 58, 741–750. [Google Scholar] [CrossRef]
- Pushkov, A.; Fainberg, E.; Chernova, T.; Fiskina, M. Analysis of the space-time structure of the main geomagnetic field by expansion into natural orthogonal component. Geomagn. Aeron. 1976, 16, 337–343. [Google Scholar]
- Xu, W.Y.; Sun, W. Eigen mode analysis of earth’s main magnetic field. Acta Geophys. Sin. Chin. Ed. 1998, 41, 2002. [Google Scholar]
- Xu, W.Y. NOC model of the earth’s main magnetic field. Chin. J. Geophys. Chin. Ed. 2002, 32, 576–587. [Google Scholar] [CrossRef]
- Gu, Z.W.; Chen, B.; Gao, J.T.; Xin, C.J.; Yuan, H.H.; Di, C.Z. Research of geomagnetic spatial-temporal variations in China by NOC method. Chin. J. Geophys. Chin. Ed. 2009, 52, 2602–2612. [Google Scholar]
- Alken, P.; Maus, S.; Chulliat, A.; Manoj, C. NOAA/NGDC candidate models for the 12th generation International Geomagnetic Reference Field. Earth Planets Space 2015, 67, 68. [Google Scholar] [CrossRef]
- Ni, Z.; Chen, S.G.; Yuan, H.H.; Yi, W.; Wang, C. Research on Anomalies Variation of Lithosphere Magnetic Field Before and After Lushan Ms7. 0 Earthquake. J. Seismol. Res. Chin. Ed. 2014, 37, 61–65. [Google Scholar]
- Ni, Z. Analysis of Anomalous Characteristics of Geomagnetic Change before and after Eryuan M5. 5 Earthquake. J. Seismol. Res. Chin. Ed. 2014, 37, 426–432. [Google Scholar]
- Ni, Z.; Yuan, H.H.; Wang, C.; Chen, S.G.; Yan, W.S. Analysis of Local Anomalous Characteristics of Lithospheric Magnetic Field before Ludian M6. 5 and Yongshan M5. 0 Earthquakes in Yunnan in 2014. J. Seismol. Res. Chin. Ed. 2014, 37, 537–541. [Google Scholar]
- Molchan, G.M. Structure of optimal strategies in earthquake prediction. Tectonophysics 1991, 193, 267–276. [Google Scholar] [CrossRef]
- Molchan, G.M. Earthquake prediction as a decision-making problem. Pure Appl. Geophys. 1997, 149, 233–247. [Google Scholar] [CrossRef]
- Molchan, G.M. Strategies in strong earthquake prediction. Phys. Earth Planet. Inter. 1990, 61, 84–98. [Google Scholar] [CrossRef]
- Molchan, G. Space—Time Earthquake Prediction: The Error Diagrams. In Seismogenesis and Earthquake Forecasting: The Frank Evison Volume II; Savage, M.K., Rhoades, D.A., Smith, E.G.C., Gerstenberger, M.C., Vere-Jones, D., Eds.; Springer: Basel, Switzerland, 2010; pp. 53–63. [Google Scholar]
- Zhu, G.; Yang, H.; Tan, Y.J.; Jin, M.; Li, X.; Yang, W. The cascading foreshock sequence of the Ms 6.4 Yangbi earthquake in Yunnan, China. Earth Planet. Sci. Lett. 2022, 591, 117594. [Google Scholar] [CrossRef]
- Wang, R.; Chang, Y.; Han, P.; Miao, M.; Zhiyi, Z.; Shi, H.; Li, D.; Liu, L.; Su, Y. Optimized Traffic Light System with AIC and Application to the 2021 M6.7 Yangbi Earthquake Sequence. Entropy 2023, 25, 759. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, S.; Zhuang, J.; Zhang, B.; Shi, W.; Yang, J.; Xu, W. Gravity field changes reveal deep mass transfer before and after the 2013 Lushan earthquake. Commun. Earth Environ. 2023, 4, 194. [Google Scholar] [CrossRef]
- Qi, G.Z. On the dilatancy-magnetic effect. Acta Geophys. Sin. Chin. Ed. 1978, 21, 18–33. [Google Scholar]
- Wessel, P.; Luis, J.F.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.F.; Tian, D. The Generic Mapping Tools Version. Geochem. Geophys. Geosystems 2019, 20, 5556–5564. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, Z.; Chen, H.; Wang, R.; Miao, M.; Ren, H.; Yuan, J.; Wang, Z.; Zhao, Y.; Zhou, S. Assessing Earthquake Forecasting Performance Based on Annual Mobile Geomagnetic Observations in Southwest China. Atmosphere 2023, 14, 1750. https://doi.org/10.3390/atmos14121750
Ni Z, Chen H, Wang R, Miao M, Ren H, Yuan J, Wang Z, Zhao Y, Zhou S. Assessing Earthquake Forecasting Performance Based on Annual Mobile Geomagnetic Observations in Southwest China. Atmosphere. 2023; 14(12):1750. https://doi.org/10.3390/atmos14121750
Chicago/Turabian StyleNi, Zhe, Hongyan Chen, Rui Wang, Miao Miao, Hengxin Ren, Jiehao Yuan, Zhendong Wang, Yufei Zhao, and Siyuan Zhou. 2023. "Assessing Earthquake Forecasting Performance Based on Annual Mobile Geomagnetic Observations in Southwest China" Atmosphere 14, no. 12: 1750. https://doi.org/10.3390/atmos14121750
APA StyleNi, Z., Chen, H., Wang, R., Miao, M., Ren, H., Yuan, J., Wang, Z., Zhao, Y., & Zhou, S. (2023). Assessing Earthquake Forecasting Performance Based on Annual Mobile Geomagnetic Observations in Southwest China. Atmosphere, 14(12), 1750. https://doi.org/10.3390/atmos14121750